

Design and Analysis of Flyover

Bismi M Buhari¹
Assistant Professor
Department of Civil Engineering
Musaliar College of Engineering and Technology
Pathanamthitta, Kerala, India

Abhijith S², Aparna B Lal³, Joseph Samuel⁴, Sarath S⁵
Student
Department of Civil Engineering
Musaliar College of Engineering and Technology
Pathanamthitta, Kerala, India

Abstract- Our project deals with design and analysis of flyover. The manual design of flyover consists of deck slab, longitudinal girder, cross girder, pier, pier cap, abutment, pile cap and pile based on code such as IS: 456-2000 and IRC: 21-2000. Here the structural analysis is carried out by using STAAD Pro V8i software.

Keywords: Deck Slab; Girder; Pier; Pier Cap; Abutment; Pile; Pile Cap.

I. INDRODUCTION

Flyover may be referred as an overpass, a high-level road bridge that crosses over a highway interchange or intersection. Flyover is a grade separated structure connects road at different levels for the purpose of reducing vehicle congestion. This project topic deals with the analysis of flyover at Kayamkulam – Haripad road using staad pro v8i and manual designing.

II. OBJECTIVE

- Analyse need of flyover at the proposed site.
- Creating model using STAAD Pro V8i.
- Designing the flyover manually and using STAAD PRO.

III. STRUCTURAL INFORMATION

The flyover consists of number of spans with columns (piers), deck slab, girders and abutments etc. Total height of the structure provided as 6.25m. Grade of concrete and steel provided as M35 and Fe415 respectively. Diameter of the pier taken as 2m. Thickness of the deck slab 0.3m provided. Width of the carriage way is 7.5m

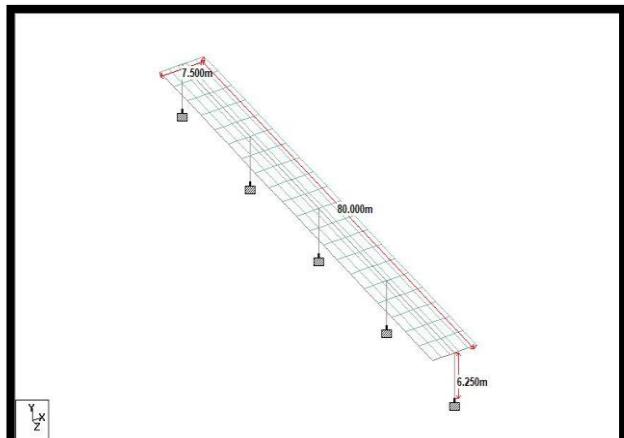


Fig. 1: Structural diagram

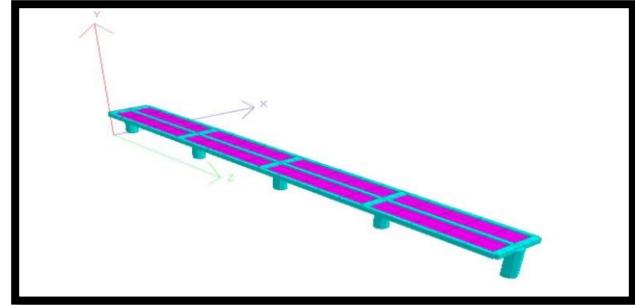


Fig. 2: 3D diagram of the structure

IV. LOAD SPECIFICATIONS

Dead load includes self-weight of the column, slab, girders, abutments, etc. Self-weight of the structure was automatically taken from the software. Different kinds of loads may be estimated by using respective Indian Standard Codes of practice.

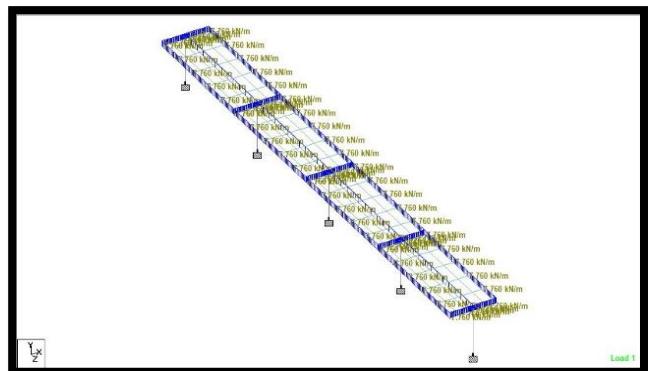


Fig. 3: Dead load diagram

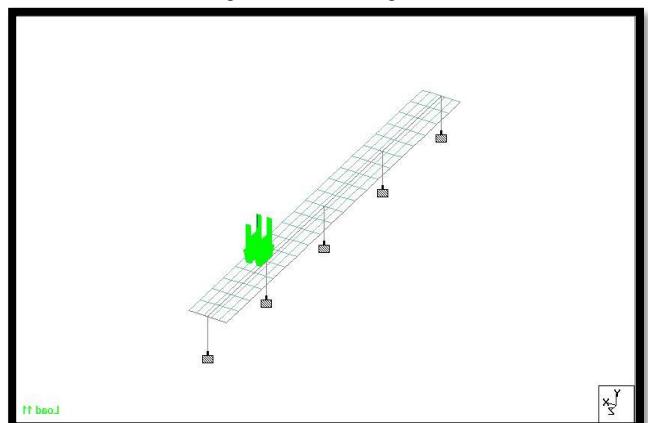


Fig. 4: Loading diagram of moving load at mid span

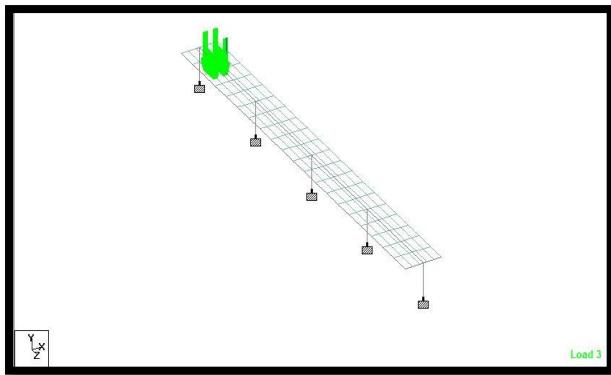


Fig. 5: Loading diagram of moving load at end span

V MANUAL DESIGN AND STAAD ANALYSIS

A. Design of Deck Slab

Centre to center span = 20m

Width of two-way carriage way = 7.5 m (IRC73:1980, clause 6.4)

Width of crash barrier = 450mm (IRC5:1998, Page 50)

Wearing coat = 80mm

Loading = IRC Class AA Loading

Depth of slab in assumed to be =300mm

Wearing coat = 40mm and 20mm channel bar

There for, effective depth = 250

Effective Span = 6.4m

1) Dead load calculation

Self-weight of deck slab = $24 \times 0.3 = 7.2 \text{ kN/m}^2$

Self-weight wearing coat = $22 \times 0.08 = 1.76$

Total dead load = $7.5 + 1.76 = 8.96 \text{ kN/m}^2$

Maximum dead load of shear force

$$= \frac{wl}{2} = 8.96 \times \frac{6.4}{2} = 28.67 \text{ kN}$$

Maximum dead load for Bending Moment = $\frac{WL^2}{8}$

$$= 8.96 \times \frac{6.4^2}{8} = 45.88 \text{ kNm}$$

2) Live load calculation

Angle = 45°

Total width of d = 4.36m

Impact factor (IRC: 6:2016 clause 20.6.3 page 50)

$$\text{Impact factor} = 25 - \frac{25-10}{9.5}$$

Impact factor = 1.197

Effective width load

$$b = \alpha \times a(1 - \frac{a}{l_0}) + b_1$$

$l_0 = 6.4 \text{ m}$

$$a = \frac{l_0}{2} = 3.2 \text{ m}$$

$b_1 = 0.85 + 2 \times 0.08 = 1.01 \text{ mm}$

Width of slab; $b = 8.4 \text{ m}$

$$\frac{b}{l_0} = \frac{8.4}{6.4} = 1.31$$

By interpolation, $\alpha = 2.728$

$$b = 2.728 \times 3.2 \left(1 - \frac{3.2}{6.4}\right) + 1.01 = 5.37 \text{ m}$$

length = $2.075 + 2.05 + 2.685 = 6.81 \text{ m}$

$$\text{average live load} = \frac{700 \times 1.19}{6.81 \times 4.36} = 28.224 \text{ kN/m}$$

$K_1 = 61.52 \text{ kN}$

$K_2 = 61.52 \text{ kN}$

$$\text{Live load moment} = 61.52 \times 3.2 - 28.222 \times \frac{4.36}{2} \times \frac{4.36}{4} = 130.13 \text{ kNm}$$

Shear force due to live load

For maximum shear at support the jec class AA

$$b_0 \delta = La \left(L - \frac{a}{l_0} \right) + bl$$

$$A = \frac{4.36}{2} = 2.18$$

$$l_0 = 6.4 \text{ m}$$

$$b_1 = 1.01 \text{ m}$$

$$b_0 \delta = 2.728 \times 2.18 \times \left(1 - \frac{2.18}{6.4}\right) + 1.01 = 5.1 \text{ m}$$

$$\text{Total width} = 2.55 + 2.05 + 2.55 = 7.15 \text{ m}$$

$$\text{Average Live Load} = 700 \times \frac{1.197}{7.15} \times 4.36 = 26.89 \text{ kN/m}^2$$

$$R_1 = 77.29 \text{ kN}$$

$$R_2 = 40 \text{ kN}$$

$$\text{Maximum live load for shear force } V_q = 77.24 \text{ kN}$$

3) Load Calculation

$$\text{Design Bending Moment, } M_u = 1.35 M_{g+1.5 M_q} = 1.35 \times 45.88 + 1.5 \times 130.13 = 257.133 \text{ kNm}$$

$$\text{Design Shear Force, } V_u = 1.35 V_g + 1.5 V_q = 1.35 \times 28.67 + 1.5 \times 77.24 = 154.56 \text{ kN}$$

4) Design

$$M_u \text{ limit} = 0.138 f_{ck} bd^2$$

$$d = \sqrt{\frac{M_u \text{ limit}}{0.138 f_{ck} b}}$$

$$d = \sqrt{\frac{257.133 \times 10^6}{0.138 \times 1.5 \times 1000}} = 230 < 300 \text{ mm}$$

Hence safe

$$M_u = 0.87 f_y A_{st} d \left\{ 1 - \frac{A_{st} f_y}{b d f_{ck}} \right\}$$

$$A_{st} = 2651.88 \text{ mm}^2$$

Use 20mm Ø bars,

$$Ast = \frac{\pi}{4} \times 20^2 = 314.15 \text{ mm}^2$$

$$\text{Spacing} = \frac{1000 \times 314.15}{2651.88} = 100 \text{ mm}$$

$$Ast_{\text{provided}} = \frac{1000 \times 314.15}{100} = 314.15 \text{ mm}^2$$

$$\text{Moment} = 0.3 M_{ul} + 0.2 M_{ud} = 72.3 \text{ kNm}$$

$$Ast_d = \frac{Ast_{\text{provided}}}{M_u} \times \text{Moment} = 883.2 \text{ mm}^2$$

Provide 12mm Ø bar @ 110mm c/c

- Check for ultimate flexural strength

$$M_u = 0.87 f_y A_{st} d \left\{ 1 - \frac{A_{st} f_y}{b d f_{ck}} \right\} = 298.1 \text{ kNm} > M_u$$

- Check for ultimate shear strength

$$V_{rdc} = (0.12 \times K (80 \rho_1 \delta_1 U)^{0.33}) bd = 197.13 > V_u$$

Hence safe

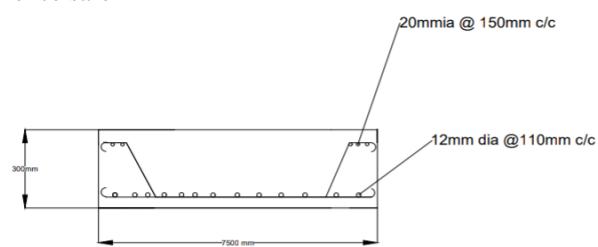


Fig. 6: Cross section along shorter span

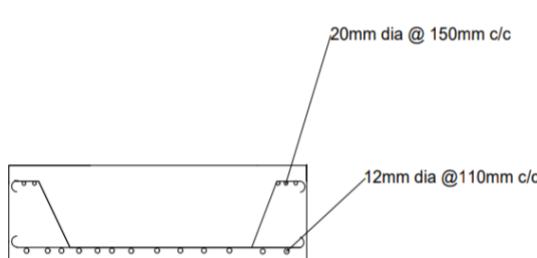


Fig. 7: Cross section along longer span

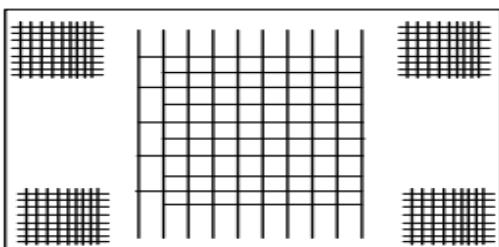


Fig. 8: Bottom span

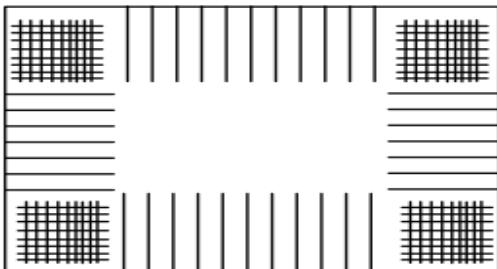


Fig. 9: Top span

B. Design of Longitudinal Girder

1) Reaction factors

Using Courbon's theory,

- Reaction factor at outer girder(A)

$$R_A = \frac{2W_1}{3} \left[1 + \frac{3I \times 2.5 \times 1.1}{2I \times 2.5^2} \right] = 1.107 W_1$$

- Reaction factor at inner girder (B)

$$R_B = \frac{2W_1}{3} \left[1 + \frac{3I \times 2.5 \times 1.1}{2I \times \theta} \right]$$

If w = axle load + 700kN

Where, $w_1 = 0.5w$

$$R_A = 1.107 \times 0.5w = 0.5536w \text{ [reaction factor } = 0.5536]$$

$$R_B = \frac{2}{3} \times 0.5w = 0.3333w$$

2) Dead load from slab for girder

Dead load of the deck slab

Parapet railing = 1kN/m

Wearing coat = $(22 \times 1.197 \times 0.08) = 2.1 \text{ kN/m}$

Deck slab = $(24 \times 1.197 \times 0.3) = 8.61 \text{ kN/m}$

Total load = 11.71 kN/m

$$\text{Total dead load of deck} = (2 \times 11.71) + (8.96 \times 5.3) = 70.91 \text{ kN/m}$$

Considering the girder to be rigid

$$\frac{\text{Dead load}}{\text{girder}} = \frac{70.91}{3} = 23.64 \text{ kN/m}$$

3) Live load bending moment in girder

Span of the girder = 20m

Impact allowance 20m span above 9m = 10%

The live load is placed centrally on the span.

$$\text{Bending moment} = \left(\frac{5+4}{2} \right) \times 700 = 3185 \text{ KNm}$$

$$\text{Area of one side} = 0.5 \times 1.8 \times (5+4.1) = 8.19$$

$$\text{Area of two side} = 2 \times 8.19 = 16.38 \text{ m}$$

$$M_{\max} = (700/3.6) \times 16.38 = 3185 \text{ KNm}$$

Bending moment including impact and reaction factor for outer girder

$$= 3185 \times 1.197 \times 0.5536 = 2110.6 \text{ KNm}$$

Bending moment including impact and reaction factor of inner girder

$$B = 3185 \times 1.197 \times 0.3333 = 1270.7 \text{ KNm}$$

1) Live load shears in girder

For estimating the maximum Live load shear in the girder, the IRC class AA loads

$$\text{Reaction of } w_2 \text{ on girder B} = \frac{(350 \times 0.45)}{2.5} = 63 \text{ KN}$$

$$\text{Reaction of } w_1 \text{ on girder A} = \frac{(350 \times 2.05)}{2.5} = 287 \text{ KN}$$

$$\text{Total load on girder B} = 350 + 63 = 413 \text{ KN}$$

$$\text{Total load on girder A} = 350 - 63 = 287 \text{ KN}$$

Maximum reaction in girder B

$$\text{Reaction on girder B} = \frac{(470 \times 18.2)}{20} = 375.83 \text{ kN}$$

Girder A

$$\text{Reaction on girder A} = \frac{(287 \times 18.2)}{20} = 261.17 \text{ kN}$$

Maximum Live load shear with impact factor in
Inner girder B = $375.83 \times 1.197 = 449.87 \text{ kN}$

Outer girder A = $261.17 \times 1.197 = 313.27 \text{ kN}$

5) Dead load moments and shear force in main girder

The depth of girder is assumed as 1400mm

Depth of rib = 1.4m

Width of rib = 0.5m

Weight of rib/m = $24 \times 1.4 \times 0.5 = 16.8 \text{ kN/m}$

The cross girder is assumed to have the same cross section dimensions of the main girder.

Weight of cross girder = 16.8 kN/m

Reaction on main girder = $16.8 \times 2.5 = 42 \text{ kN/m}$

Reaction from the deck slab = 22.64 kN/m

Total dead load / m on girder = $22.64 + 16.8 = 39.44 \text{ kN/m}$

Total downward load = $(42 \times 3) + (39.44 \times 20) = 914.8 \text{ kN}$

$$R_a = R_b = 914.8/2 = 457.4 \text{ kN}$$

$$M_{\max} \text{ at center} = (457.4 \times 10) - (39.44 \times 10 \times (10/2)) - (42 \times 5) = 2392 \text{ kN-m}$$

$$\text{Dead load shear at the support} = \frac{(39.44 \times 20)}{2} + 42 + (42/2) = 457.4 \text{ KN}$$

6) Design moments and shear force

Table 1: Design Moments and Shear Force

B.M	DL B.M	LL B.M	TOTAL B.M
Outer Girder	2392 kNm	2110.6 kNm	4502.6 kNm
Inner Girder	2392 kNm	1270.7 kNm	3662.7 kNm
S.F	DL S.F	LL S.F	TOTAL S.F
Outer Girder	457.4 kN	313.27 kN	770.67 kN
Inner Girder	457.4 kN	449.87 kN	907.27 kN

$$\text{Max B.M} = 4502.6 \text{ kN-m}$$

$$\text{Max S.F} = 907.27 \text{ kN}$$

$$\text{Effective depth} = 1450 \text{ mm}$$

$$\text{Approximate Lever arm} = 1400 - 100 = 1300 \text{ mm}$$

$$Ast = (4502.6 \times 10^6) / (200 \times 0.9 \times 1300) \\ = 19241.88 \text{ mm}^2$$

Provide 32mm ϕ bars

$$\text{No of bars} = 19241.88 / ((3.14 \times 32^2) / 4) = 24$$

7) Design of section for maximum B.M and S.F

$$\text{Nominal shear stress, } \tau_v = \frac{V}{bd}$$

$$\tau_v = (907.27 \times 10^3) / (500 \times 1400)$$

$$\tau_v = 1.3 \text{ N/mm}$$

$$\tau_c = 100As/bd = (100 \times 19241.88) / (500 \times 1400) = 2.75 \\ = 0.6 \text{ N/mm}^2$$

$$\tau_v > \tau_c$$

Hence safe provide shear reinforcement

Assume 2 bars of 32mm ϕ is bent up

$$U_s = \frac{\sigma_{sv} A_{sv} d}{s_v} (\sin \alpha)$$

$$\alpha = 45^\circ$$

$$U_s = 200 \times 2 \times \frac{\pi}{4} \times 32^2 \times \frac{1}{\sqrt{2}} = 227.36 \text{ KN}$$

$$\text{Balance shear} = 907.27 - 227.36 = 679.91 \text{ KN}$$

Using 10mm ϕ , 4 legged stirrups

$$S_v = \frac{\sigma_{sv} A_{sv} d}{V}$$

$$= (200 \times 4 \times (3.14/4) \times (10^2) \times 1400) / 679.91 = 130 \text{ mm}$$

Provide 10mm ϕ 4 legged stirrups at 120 mm c/c

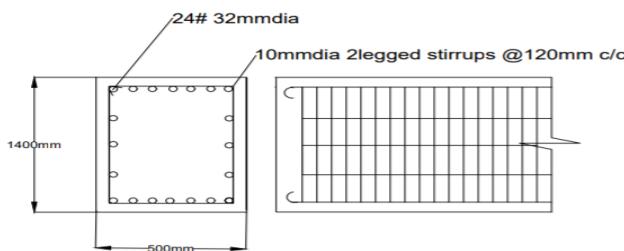


Fig. 10: Detailing of longitudinal girder

C. Design of Cross Girder

1) Dead load calculation

Self-weight of the cross girder (same as longitudinal girder size) = 16.8 KN/m Dead load from slab

$$= 2 \times (1/2) \times 2.5 \times 1.25 \times 8.96 = 28 \text{ KN}$$

Uniformly distributed load = 28/2.5 = 14 KN/m

Total load on cross girder = 16.8 + 14 = 30.8 KN/m

Assuming the cross girder to be rigid

$$\text{Reaction on each cross girder} = (30.8 \times 5) / 3 = 51.33 \text{ kN}$$

Dead load shear = 51.33 kN

2) Live load calculation

Load coming on the cross girder = 271.25 KN

Assuming the cross girder as rigid, reaction on each longitudinal girder is $\frac{2 \times 271.25}{3}$

Live load bending moment including impact

$$= 1.25 \times 180.53 \times 1.475$$

$$\{ \text{for 5m span for c/s is 25\%} \} = 332.85 \text{ KNm}$$

Dead load bending moment at 1.475m from support

$$= 51.33 \times 1.475 - (30.8 \times 1.475) \times (1.475/2)$$

$$= 42.2 \text{ KNm}$$

Total bending moment

$$= 332.85 + 42.2 = 375.05$$

kNm

$$\text{Live load shear including impact} = \frac{2 \times 271.25}{3} \times 1.25$$

(reaction on each longitudinal girder) = 226.04 KN

Dead load shear = 51.33 kN

$$\text{Total shear} = 226.04 + 51.33$$

$$= 277.37 \text{ kN}$$

3) Design moments and shear force

Maximum bending moment = 375.05 kN-m

Maximum shear force = 277.37 kN

Effective depth = 1400 mm

$$\text{Approximate lever arm} = 1300 \text{ mm} \\ \text{Ast} = \frac{375.05 \times 10^6}{200 \times 0.9 \times 1300} = 1602.78 \text{ mm}^2$$

Provide 32 mm ϕ bars

$$\text{No of bars} = \frac{1602.78}{\frac{\pi}{4} \times 32} = 2$$

4) Design of shear

$$\text{Nominal shear stress, } \tau_v = \frac{V}{bd}$$

$$= \frac{277.37 \times 10^3}{500 \times 1400} (277.37 \times 10^3) / (500 \times 1400) = 0.4 \text{ N/mm}^2$$

$$100 \frac{As}{bd} = \frac{100 \times 1602.78}{500 \times 1400} = 0.23$$

$$\tau_c = 0.224 \text{ N/mm}^2$$

$$\tau_v > \tau_c$$

Hence safe provide shear reinforcement

Assume 2 bars of 32mm ϕ as bent up

$$Us = \frac{\sigma_{sv} A_{sv} d}{s} (\sin \alpha)$$

$$\alpha = 45$$

$$Us = 200 \times 2 \times \frac{\pi}{4} \times 32^2 \times \frac{1}{\sqrt{2}} = 227.36 \text{ KN}$$

$$\text{Balance shear} = 277.37 - 227.36 = 50.01 \text{ KN}$$

Using 10mm ϕ , 4 legged stirrups

$$S_v = \frac{\sigma_{sv} \times A_{sv} \times d}{V}$$

$$= \frac{200 \times 4 \times \frac{\pi}{4} \times 10^2 \times 1450}{256.92} \left| \frac{200 \times 4 \times \left(\frac{3.14}{2}\right) \times (10^2) \times 1400}{277.37 \times 10^3} \right| = 317 \text{ mm}$$

Provide 10mm ϕ 4 legged stirrups at 300mm c/c

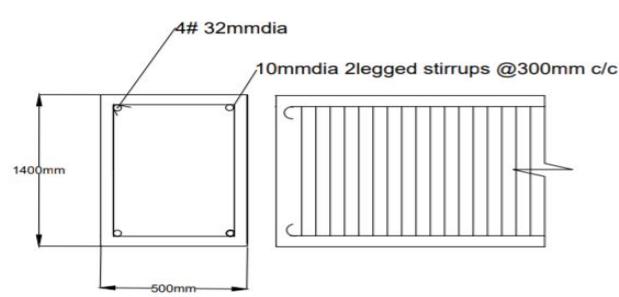


Fig.11: Detailing of cross girder

D. Pier cap

➤ Design Procedure

Design of hammer head portion over circular pier for the following details

Live load: IRC Class AA Tracked vehicle

Materials: M35 grade concrete and Fe 415 steel

➤ Data

Clear projection of cantilever slab = 3200mm

Thickness of wearing coat = 80 mm

Materials: M35 grade concrete and Fe 415 steel.

Live load is IRC class AA tracked vehicle.

➤ Permissible stresses (IRC: 21):

For M35 grade concrete and Fe415 steel.

$$\sigma_{cb} = 11.67 \text{ N/mm}, m = 10, \sigma_{st} = 200 \text{ N/mm}, j = 0.9, Q = 1.93$$

1) Calculations of moments

Total dead load moment,

$$M_d = 70.56 + 105.84 + 4.2 + 15.52 + 30.24 + 508.032 + 432.36 \\ = 1166.752 \text{ kNm}$$

➤ Live load moment

The live load is IRC class AA tracked vehicle. This is placed with its edge 1200 mm from the kerb.

Effective width of dispersion perpendicular to span is given by

$$b_e = 1.2x + b_w$$

$$x = 0.1 \text{ m}$$

$$b_w = [0.85 + 2x \cdot 0.075] = 1 \text{ m.}$$

$$\text{Therefore } b_e = (1.2 \times 0.1) + 1 = 1.12 \text{ m.}$$

Live load per meter width including impact = 2110.6 KNm

2) Design moment

Design moment, $M = 1166.752 + 2110.6$

Factored moment = 4916.028 KNm

3) Reinforcements

Effective depth required

$$2Q_{bd} = \text{maximum bending moment}$$

$$d = \left[\frac{(4916.028 \times 10^6)}{(1.93 \times 1000) \cdot 0.5} \right] = 1595.98 \text{ mm}$$

Effective depth required = 2200 - 50

$$= 2150 \text{ mm} > 1595.98 \text{ mm}$$

Hence adopted depth is adequate

$$A_{st} = \left[\frac{(4916.028 \times 10^6)}{(200 \times 0.9 \times 2150)} \right] = 12702 \text{ mm}^2$$

Use 32 mm Ø bars

$$A_{st} = \left[\frac{(3.14 \times 32^2)}{4} \right] = 804.24 \text{ mm}^2$$

$$\text{No of bars} = \frac{12702}{804.2} = 16$$

However, provided more for effective reinforcement than required.

➤ Top reinforcement:

Provide 30 numbers of 32mm Ø bars in 2 layers

➤ Side reinforcement:

Provide 10 numbers of 16mm Ø bars on each face equally spaced

➤ Inclined reinforcement:

Provide 10 numbers of 16mm Ø bars on each face equally spaced.

➤ Shear reinforcement:

Provide reinforcement 12mm Ø 4-legged stirrups @ 150 mm/cc.

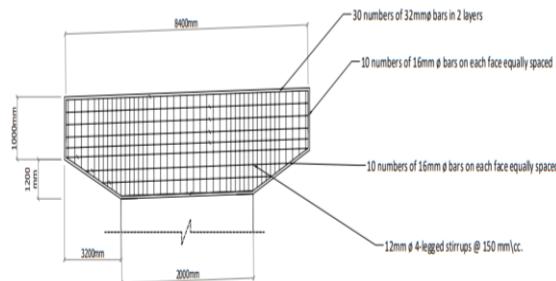


Fig. 12: Detailing of Pier cap

E. Pier

Live load: IRC Class AA tracked vehicle

Materials: M35 grade concrete and Fe 415 steel

➤ Calculation of loads

Data

Effective span of girder bridge = 20 m

Clear width of roadway = 7.5 m

Live load on bridge class AA

Height of pier = 6.250 m

Height of flood level = 2 m

Dead load of super structure per span equal to dead load coming outer girders and inner girders.

Assume weight of bearing, plate etc. as 10 KN

Dead load of pier cap:

The pier cap is divided into two cantilevers and one rectangular section Weight (moment) of two trapezoidal sections = area × unit weight of concrete = 322.56 KNm

Dead load moment of circular pier

$$= \left[\frac{3.14 \times 2^2}{4} \right] \times 6.250 \times 24 = 471.24 \text{ KNm}$$

➤ Stresses Due to Live Load

Reaction due to live load class AA loading including impact = $1.197 \times 70 = 83.79 \text{ kN}$

Maximum bending moment = $83.79 \times 0.5 = 41.895 \text{ KNm}$

Maximum and minimum stresses at the base due to this load will be

$$\sigma_c = 5.74 \text{ kN/m}^2 \text{ and } -0.916 \text{ kN/m}^2$$

➤ Stresses Due to Longitudinal Force

Maximum longitudinal force will occur due to class AA loading = 14 kN

Moment at base of pier due to this force = $100 \times 14 = 140 \text{ kNm}$

Stress at base = $\frac{140 \times 14}{I_{xx}} = 12.106 \text{ kN/m}^2$, Assume coefficient of friction as 0.25 at one bearing and 0.22 at other bearing Total resistance at one set of bearing with DL and LL

$$= 0.25 (166.85 + 1.197 \times 700) = 234.212 \text{ kN}$$

Total resistance at other set of bearings due to DL only = $0.22 \times 166.85 = 36.707 \text{ KN}$

Unbalanced force at top of the pier = $234.212 - 36.707 = 197.505 \text{ kN}$

$$\text{Moment at base} = \frac{197.505 \times 1.4}{19.847} = 13.932 \text{ kN/m}^2$$

➤ Stresses Due to Wind Loads

Exposed height of the structure

= depth of girder + thickness of slab + height of railing

$$= 1.4 + 0.23 + 1.45 = 3.05 \text{ m}$$

Exposed area contributing wind pressure per pier

$$= \text{span} \times \text{height}$$

$$= 20 \times 3.141 = 62.831 \text{ m}$$

Assume average height of about 5 m

The wind pressure from table is 76.96 kg/m^2

$$\text{i. Wind force on exposed surface} = \frac{62.831 \times 76.96}{1000} \\ = 4.83 \text{ kN}$$

ii. The design wind load should not be less than 450 kg/m of the loaded chord.

$$\text{Hence minimum design wind force} = \frac{20 \times 450}{1000} = 9 \text{ KN}$$

iii. The wind force for design purposes should be less than 240 kg/m²

For the unloaded structure = $\frac{62.831 \times 240}{1000} = 15.079 \text{ KN}$

Condition (iii) gives maximum wind force. Hence this is considered in design.

Assume this to act at mid height,

$$\frac{3.141}{2} = 1.57 \text{ m from the top of pier}$$

$$\text{Moment at base about Y axis } M_w = 15.079 \times (10 + 1.57) = 174.964 \text{ kNm}$$

The bending takes place about Y axis.

Maximum stresses at the base at end of straight portion.

$$\sigma_{w1} = \frac{M_w}{I_y} \times 3.6 = \frac{174.464}{184.711} \times 3.6 = 3.345 \text{ kN/m}^2$$

$$\text{Maximum stress at the edge of the pier} = \frac{M_w}{I_y} \times 5 = \frac{174.464}{184.711} \times 5 = 4.722 \text{ kN/m}^2$$

- Total Stresses
Under dry conditions

Total stress = DL + LL + WL

At end of straight portion,

$$\text{Maximum} = 9.409 + 5.741 + 12.106 + 142.144 - 3.345 + 4.722 = 177.467 \text{ kg/m}^2$$

$$\text{Minimum} = 9.409 - 5.741 - 12.106 - 142.144 - 3.345 - 4.722 = -158.649 \text{ kg/m}^2$$

At end of pier,

$$\text{Maximum} = 9.409 + 4.722 = 14.131 \text{ kg/m}^2$$

$$\text{Minimum} = 9.409 - 4.722 = 4.687 \text{ kg/m}^2$$

Under wet conditions, Total stress = DL + LL + WL

At end of straight portion,

$$\text{Maximum} = 9.409 - 6.609 + 5.741 + 12.106 + 142.144 + 3.345 + 1.373 = 1464.673 \text{ kg/m}^2$$

$$\text{Minimum} = 9.409 - 6.699 - 0.916 - 12.106 - 142.144 - 3.345 - 1.373 = -157.174 \text{ kg/m}^2$$

At end of pier,

$$\text{Maximum} = 9.409 - 6.699 + 4.722 - 1.907 = 9.339 \text{ kg/m}^2$$

$$\text{Minimum} = 9.409 - 6.699 - 4.722 - 1.907 = -3.919 \text{ kg/m}^2$$

Allowable compressive stress in 1:3:6 concrete is 2000 kg/m² & 250 kg/m² tension. The stresses in pier are within these permissible limits.

Weight of IRC Class AA tracked vehicle is 700 KN

$$\text{Total load} = \text{dead load} + \text{live load} = 1929.389 + 700 = 20629.389 \text{ KN}$$

$$\text{Total load with impact} = 20629.389 \times 2 = 5258.778 \text{ kN}$$

Factor of safety = 2

$$\text{Factored load} = 5258.778 \times 2 = 10517.556 \text{ kN}$$

$$\text{Factored load } P_u = 10517.556 \text{ kN.}$$

e is the eccentricity of the wheel load from center.

$$e = 1.1 \text{ m}$$

$$\text{Live load} = 700 \times 2 = 1400 \text{ KN}$$

$$\text{Maximum moment} = 1400 \times 1.197 = 1675.8 \text{ KN}$$

$$\text{Moment with impact} = 700 \times 1.197 = 837.9 \text{ KN}$$

$$\text{Factored moment} = 1675.8 \times 2.2 = 3686.76 \text{ KN-m}$$

$$\text{Therefore, factored moment} = M_u = 3686.76 \text{ KN-m}$$

1) Non dimensional parameters

$$\frac{P_u}{F_{ck} d^2} = \frac{10517.553 \times 10^3}{35 \times 2000^2} = 0.1$$

$$\frac{M_u}{F_{ck} 3} = \frac{3686.76 \times 10^6}{35 \times 2000^3} = 0.02$$

$$\text{Ratio } \left(\frac{d}{D} \right) = \frac{60}{2000} = 0.03$$

Where D is the diameter of the circular pier = 2000 mm

d is the clear cover = 60 mm

By referring chart number 55 of SP 16

Where P is the percentage of steel reinforcement

$$P = 0.01 \times 20 = 0.2$$

$$\text{Area of steel} = 0.2 \pi \times \frac{2000^2}{4} = 6283.18 \text{ mm}^2$$

Use 25 mm Ø bar

$$A_{st} = \frac{3.14 \times 25^2}{4} = 490.87 \text{ mm}^2$$

$$\text{Number of bars} = \frac{6283.18}{490.87} = 14$$

However, provide 32 numbers of 25 Ø mm bars around the circular pier.

Using 10 mm Ø lateral ties

Spacing is the least of the following

1. Least lateral dimension = 2000 mm

2. $16 \times 25 = 400 \text{ mm}$

3. 300 mm

Hence provide 10 mm Ø bars of lateral ties @ 300 mm c/c

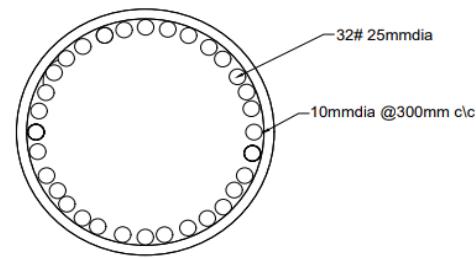


Fig.13: Detailing of pier

F. Design of Pile Cap

1. Data

Total Load on the column $P_u = 10517.556 \text{ KN}$

Diameter of column = 2m

Pile diameter = 300mm

Allowable load on each pile = 1350KN

Grade of concrete for pile cap = M50

2. Size of pile cap

$$\text{Number of piles required, } N = \frac{10517.5}{1350} = 8$$

Let us provide 8 nos of pile

Spacing of piles: (IS 2911:1/2, 2010)

$$S = 4 \times 300 = 1200 \text{ mm}$$

3. Overhang portion of the pile cap

$$\text{overhang} = 2 \times 300 = 0.6 \text{ m}$$

Thus, the total width and breadth of the pile cap is

$$B_{cap} = (2 \times 1.2) + (2 \times 0.6) = 3.6 \text{ m}$$

$$W_{cap} = B_{cap}$$

Hence let us assume pile cap size 3.6 m x 3.6 m

4. Thickness of pile cap based on shear

$$\text{Pile reaction; } R = \frac{10517.556}{8} = 1314.69 \text{ kN}$$

One way shear,

The critical section is at a distance d from the face of the column

Clear distance c = 2.4 - 2 - 0.3 = 0.1m

Considering tolerance of 50mm

Clear spacing = 100 + 50 = 150mm

$$r = \frac{150 + 300 - d}{300}$$

$$V_{ul} = 3 \times R \times r = 3 \times \left(\frac{150 + 300 - d}{300} \right) \times 1.3 \times 10^6$$

$$=5916105-13146.9d$$

Assuming percentage of steel 0.25% for M50 grade concrete $T_c=0.38 \text{ N/mm}^2$

a) One way shear resistance

$$V_{cl} = 0.38 \times 3600 \times d = 1368d$$

$$V_{cl} > V_{ul}$$

$$D > 407.588 \text{ mm}$$

$$\text{therefore } d = 408 \text{ mm}$$

Since, computed value of d

$$c=150 \text{ mm}$$

$$c+d=450 \text{ mm}$$

$$d > 487 \text{ mm}$$

Hence assumption is correct

b) Two-way shear

The critical face is at a distance $\frac{d}{2}$ from the face of the column.

Let us assume that

$$\frac{d}{2} = c$$

Factored shear force.

$$V_{u2} = 8 \times 1314.69 = 10517.52 \text{ kN}$$

Two-way shear resistance

$$K_s = 1$$

$$T_c = 0.25 \times \sqrt{F_{ck}} = 1.77 \text{ N/mm}^2$$

$$V_{c2} = K_s \times T_c \times (4 \times (2000+d) d) = 14160d + 7.08d^2$$

$$V_{c2} > V_{u2}$$

$$d = 577 \text{ mm}$$

$$\frac{d}{2} > c$$

assumption that full pile reaction is not valid

$$V_{u2} = R - (R \times (1-r_1) \times (1-r_2))$$

$$r_1 = r_2 = \left(\frac{150+300-d}{300} \right)$$

$$V_{u2} = 8 \times 1.3 \times 10^6 \times (1 - (1 - r_1)^2)$$

$$V_{c2} > V_{u2}$$

$$d = 651 \text{ mm}$$

c) Around the pile punching shear

Factored shear force, $V_{up} = 1000 \text{ kN}$

Two-way shear resistance, $V_{cp} = 1 \times 1.77 \times (\pi \times (300+d) \times d)$

$$V_{cp} > V_{up}$$

$$d = 376 \text{ mm}$$

d) Shear around the pile along ABCD

$$V_{cp} = 1 \times 1.77 \times \left(\frac{\pi + 300 + d}{4} \right) + 2 \times 600$$

$$d = 488 \text{ mm}$$

hence the effective depth is considering critical case of two-way shear around the column $d = 651 \text{ mm}$

$$D = 651 + 16 + 150 = 817 \text{ mm}$$

Let us assume $D = 850 \text{ mm}$

$$d = 850 - 16 - 150 = 684 \text{ mm}$$

d) Design of flexural reinforcement

$$Mu = 3 \times R \left(c + \frac{d_p}{2} \right) = 1183.221 \text{ kNm}$$

$$B = 3600 \text{ mm}$$

$$D = 684 \text{ mm}$$

$$A_{st} \text{ required} = f$$

$$ck \times b \times d \times \frac{(1 - \frac{2}{\sqrt{1 - 4.598 \times \frac{m_u}{f_{ck} \times b \times d^2}}})}{2 \times f_y}$$

$$= 4871.48 \text{ mm}^2$$

$$A_{min} = 0.0012 \times b \times D = 2954.88 \text{ mm}^2$$

$$A_{assumed} = 0.0025 \times b \times D = 6156 \text{ mm}^2$$

Assuming 16 mm Ø bars

$$\text{No of bars required} = \frac{6156}{\pi \times \left(\frac{16^2}{4} \right)} = 31$$

$$\text{Spacing} = \frac{3600 - (31 \times 16) - 2 \times 75}{31 - 1} = 98.466 \text{ mm}$$

$$S = 90 \text{ mm c/c}$$

e) Development length.

$$T_{bd} = 1.9 \text{ N/mm}^2$$

$$L = \frac{(0.87 \times f_y) \times 16 \text{ mm}}{4 \times 1.6 \times T_{bd}} = 0.475 \text{ m}$$

Length available; $L = 0.8 \text{ m}$

$$L_d < L$$

f) Transfer of force at column base

Column to pile cap interaction

➤ For column face.

$$A_1 = A_2 = \frac{\pi}{4} \times 2000^2$$

$$F_{ck, \text{column}} = 50 \text{ N/mm}^2$$

$$\left(\frac{A_1}{A_2} \right) = 1$$

$$F_{br, \text{max, column}} = 0.45 \times 50 \times 1 = 22.5 \text{ N/mm}^2$$

➤ For pile cap face.

$$A_1 = 3600 \times 3600$$

$$A_2 = \frac{\pi}{4} \times 2000^2$$

$$F_{ck, \text{PILECAP}} = 50 \text{ N/mm}^2$$

$$\sqrt{\frac{A_1}{A_2}} = 4.125 \text{ (limited to 2)}$$

$$F_{br, \text{max, pilecap}} = 0.45 \times 50 \times 2 = 45 \text{ N/mm}^2$$

Evidently the column face governs

Limiting bearing resistance

$$F_{br} = 9232.5 \text{ kN}$$

$$P = 10517.556 \text{ KN}$$

$$\text{Here, } F_{br} < P_u$$

Excess force; $P = 1285 \text{ kN}$

If column bars are extended into the footing, then, force per bar

$$F_{bar} = 1285/32 = 40.15 \text{ kN}$$

$$\text{corresponding stress in bar} = \frac{40.15 \times 10^3}{\frac{\pi}{4} \times 25^2} = 81.79 \text{ N/mm}^2$$

development length required to take the stress

$$l_d = \frac{81.79 \times 25}{4 \times 1.6 \times 1.25 \times 1.9} = 134.5 \text{ mm}$$

Available vertical embedment in the footing $d = 654 \text{ mm}$ more than Minimum

$$l_d = 135 \text{ mm}$$

$$Ast \text{ interface}_{\text{min}} = 0.005 \times \frac{\pi}{4} \times 2000^2 = 15.7 \times 10^3 \text{ mm}^2$$

$$Ast \text{ interface provided} = 32 \times \frac{\pi}{4} \times 24^2 = 31.41 \times 10^3 \text{ mm}^2$$

hence area provided is well over minimum interface reinforcement required.

g) Transfer of force at pile-to-pile cap

Factored reaction from pile; $P_{upile} = 1000 \text{ kn}$

Column to pile cap interaction:

For pile face

$$A_1 = A_2 = \frac{\pi}{4} \times 300^2$$

$$F_{ck, \text{pile}} = 50 \text{ N/mm}^2$$

$$\text{root} \left(\frac{A_1}{A_2} \right) = 1$$

$$F_{br, \text{max, pile}} = 0.45 \times 50 \times 1 = 22.5 \text{ N/mm}^2$$

h) Pile cap face

$$A_1 = \frac{\pi}{4} \times 1200^2$$

$A_2 = \frac{\pi}{4} \times 300^2$
 $F_{ck,PILECAP} = 50 \text{ N/mm}^2$
 $\text{root}(\frac{A_1}{A_2}) = 4$ (limited to 2)
 $F_{br, \max, pilecap} = 0.45 \times 50 \times 2 = 45 \text{ N/mm}^2$
 Evidently the column face governs
 Limiting bearing resistance
 $F_{br} = 1590.43 \text{ kN}$
 $P = 10517.556 \text{ KN}$
 Here, $F_{br} > p_u$
 Hence Safe

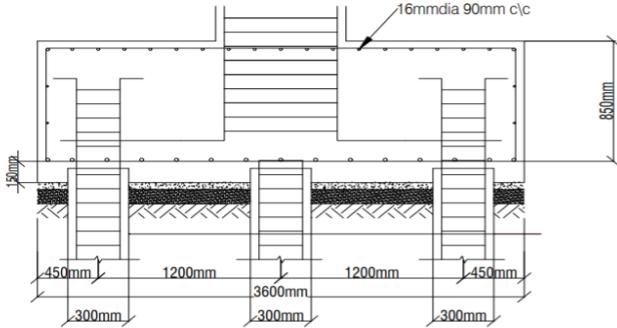


Fig.14: Detailing Pile and pile cap

E. Design of Abutment

Density of soil = 16.42 kN/m^3
 Coefficient of friction = 0.6
 Angle of repose = 30°
 Live load on bridge = IRC Class AA load
 Angle of friction between soil and concrete = 18°
 Longitudinal girder = 3 number of $1.4 \text{ m} \times 0.5 \text{ m}$
 Deck slab = 0.3 m depth
 Span of the bridge = 20 m
 Self- weight,
 $W_1 = ((0.5 \times 1.24 \times 4) + (0.5 \times 1.2 \times 3.7) + (0.6 \times 4.4) + (0.8 \times 3.7)) \times 24 = 251.04 \text{ kN}$

➤ Dead load

$$W_2 = L_1 + L_2$$

$$L_1 = \text{Load from longitudinal girder} = 3 \times 1.4 \times 0.5 \times 20 \times 24 = 1008 \text{ kN}$$

$$L_2 = \text{Load from slab and wearing course} = (0.3 \times 8.4 \times 20 \times 24) + (0.8 \times 7.5 \times 20 \times 22) = 3849.6 \text{ kN}$$

$$W_2 = 4857.6 \text{ kN}$$

Considering dead load (super structure) shared by an abutment and a pillar

$$= \frac{4857}{2} = 2428.8 \text{ kN}$$

$$\text{Dead load per meter span of abutment } W_2 = \frac{2428}{84} = 289.14 \text{ kN}$$

Live load reaction = $W \times L$

For Class AA tracked vehicle, $W = 350 \text{ kN}$

$$R_{A=350} = 350 \times \left(\frac{20 - \text{Wheel load}}{20} \right)$$

$$R_{A=350} = 350 \times \left(\frac{20 - \frac{3.6}{2}}{20} \right)$$

$$= 318 \text{ kN}$$

Total load carrying on the abutment

$$W = W_1 + W_2 + R_A = 251.04 + 289.14 + 318.5 = 858.68 \text{ kN}$$

➤ Earth pressure

Lateral earth pressure $k_a = 0.408$

Horizontal component of earth pressure = total earth pressure $\times \cos(\delta + \theta)$

$$\text{Total Earth pressure} = \frac{1}{2} \times \delta \times h^2 \times \cos\theta \times k_a$$

$$= 0.5 \times 16.42 \times 4.4^2 \times \cos 15.25 \times 0.408 = 62.56 \text{ kN}$$

$$\text{Horizontal component} = 62.56 \cos (16.42 + 15.255)$$

$$= 53.24 \text{ kN}$$

$$\text{Vertical component} = 62.56 \sin (16.42 + 15.255) = 32.85 \text{ kN}$$

$$R = \sqrt{\sum V^2 + \sum H^2} = ((32.85^2) + (53.24^2)) \times 0.5 = 63.07 \text{ kN}$$

➤ Overturning

Earth pressure is acting at 0.42 of height from base

$$= 0.42 \times 4.4 = 1.848 \text{ m}$$

$$\text{Moments due to overturning} = 1.848 \times 53.24 = 98.39 \text{ kNm}$$

$$\text{Restoring moments} = (0.5 \times 1.2 \times 4.4 \times 24 \times 3.0) + (0.6 \times 4.4 \times 24 \times 2.3) + (0.8 \times 3.7 \times 24 \times 1.6)$$

$$+ (0.5 \times 1.2 \times 3.7 \times 24 \times 0.8) + (858.68 \times 1.6) = 1865.984 \text{ kNm}$$

$$\text{Factor of safety against overturning} = 1865.984 / 98.39 = 18.86$$

➤ Sliding

$$\text{Factor of safety} = (0.6 \times 858.68) / 53.24 = 9.6$$

➤ Base pressure

Distance of the resultant from the toe.

$$x = \frac{(\text{restoring moment} - \text{moment due to overturning})}{\text{resultant}} = \frac{1865.986 - 98.39}{858.68} = 2.058 \text{ m}$$

Eccentricity of the resultant from the centre of the base.

$$e = \frac{b}{2} - x = 0.022$$

$$\text{Maximum pressure, } P_{\max} = \frac{858.68}{3.8} \times \left(1 + \frac{6 \times 0.022}{3.8} \right) = 233.82 \text{ kN}$$

$$= 233.82 \text{ km/m}^2$$

$$P_{\min} = (858.68 / 3.8) (1 - ((6 \times 0.022) / 3.8)) = 218.12 \text{ km/m}^2$$

VI CONCLUSION

- The proposed project could help rectify the traffic conjunction problems and improve safe driving.
- Project is designed manually and using STAAD Pro V8i.
- Amount of steel provided for the structure is economic.
- Structure is designed on the basis of IRC class AA loading.
-

REFERENCE

- [1] S. Chandra; P.K. Sikdar; "Factors Affecting Pcu In Mixed Traffic Situations on Urban Roads" P. 40-50: ILL.; Includes Bibliographical References (P. 49). Road & Transport Research. Vol. 9, No. 3 (Sept. 2000)
- [2] Rasheed Saleem Abed; "Experience on Using Total Station Surveying for Mapping and Contouring" ISSN 0976 – 6308 (Print) ISSN 0976 – 6316(Volume 4, Issue 3, May - June (2013), pp. 155-167 IAEME: www.iaeme.com/ijciet.asp Journal Impact Factor (2013): 5.3277
- [3] Narabodee Salatoom; Pichai Taneerananon; "A Study of a Flyover Bridge - Improved Intersection" ENGINEERING JOURNAL Volume 19 Issue 1 Received 28 May 2014 Accepted 8 September 2014 Published 30 January 2015
- [4] A Nithin Chandra; "An Overview Towards Flyover Construction for Lessening Congestion of Traffic" (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND

RESEARCH Volume No.4, Issue No.3, April – May 2016, 2934
– 2937.

- [5] IRC 21-2000 – Standard specification and code for practise for road bridges section II
- [6] IRC 5-2000 – Standard specification and code for practise for road bridges section I.
- [7] IRC 6-2000 – Standard specification and code for practise for road bridges section II.
- [8] IS 456- 2000 – Plain and reinforcement concrete code of practise