
Design and Analysis of Aspect Oriented Metric

CW CAE using Cognitive Approach

G. Arockia Sahaya Sheela

Dept. of Computer Science

Holy Cross College Trichy

TamilNadu India.

A. Aloysius
Dept. of Computer Science

St. Joseph’s College Trichy

TamilNadu India.

K.

R.

Martin

Dept. of Computer Science

St. Joseph’s College Trichy

TamilNadu India.

Abstract - Aspect Oriented Systems (AOS) in order to evaluate

their quality, gain importance as the paradigm continues to

increase in popularity. Aspect Oriented Programming (AOP)

emphasizes the creation of aspects, which are modules that

centralize distributed functionality. AOP is one of the most

promising solutions to the problem of creating clean, well

encapsulated objects without extraneous functionality.

Consequently, several Aspect- oriented metrics have been

proposed to evaluate different aspects of these systems. This

paper presents a new cognitive complexity metric namely

“Design and Analysis of Aspect Oriented Metric CWCAE

using Cognitive Approach” in Aspect Oriented System. This

paper addresses the Cognitive Weighted Coupling on Advice

Execution (CWCAE) metric to measure the different type of

joint points.

Keywords: Aspect Oriented Systems (AOS), Aspect Oriented

Programming (AOP), Cognitive Approach, Advice, metric, Join

Point, Coupling.

I. Introduction

Software engineering is the study and application

of engineering to the design, development, and

maintenance of software. Software metric is a measure of

some property of a piece of software or its specifications.

Metrics attempt to measure a particular aspect of a software

system. There are several approaches to estimate

complexity of software, but none of them have been

accepted as a true measure of complexity of a class.

In computing, aspect-oriented programming is a

programming paradigm that aims to increase modularity (a

grouping of related code) by allowing the separation of

cross-cutting concerns. AOP forms a basis for aspect-

oriented software development. Out of the available AOP

languages, AspectJ is the most popular and mostly used in

research areas. AspectJ is a simple general purpose

extension to Java that provides, through the definition of

new constructors, support for modular implementation of

crosscutting concerns. AspectJ has been successfully used

to cleanly modularize implementations of crosscutting

concerns such as synchronization, consistency checking,

protocol management and others.

The aspect is the modular unit of crosscutting

implementation. Each aspect encapsulates functionality

that crosscuts other classes in an AspectJ program. A

central concept in the composition of an aspect with other

classes is called a join point. A join point is a well-defined

point in the execution of a program, such as a call to a

method, an access to an attribute, an object initialization,

an exception handler etc.

 AspectJ has no Cognitive Weighted Coupling on

Advice Execution (CWCAE) metric to measure the

different type of Join Points proposed by various

researchers. So, there is a need for cognitive weighted CAE

for the Aspect level measurement. Hence our main goal is

to define a Cognitive Weighted Coupling on Advice

Execution (CWCAE) metric to measure the Complexity of

various types of Joint Points.

II. Literature Review

Several metrics have been proposed for AOP

systems by researchers. One of the metric proposed by

Ceccato et.al [9] and KotrappaSirbi et.al [7] is CAE.

Coupling on Advice Execution (CAE) is a number of

aspects containing advices possibly triggered by the

execution of operations in a given module. Such kind of

coupling is absent in Object Oriented (OO) systems.

Bartsch and Harrison [11] suggested, all join

points that can cause advice to be executed. AspectJ

supports more types of join points that can also cause the

execution of advice, such as object initialization join

points, exception handler join points, call join points and

advice execution join points. A valid measure of coupling

on advice execution needs to count all of these join point

coupling mechanisms.

WJP metric proposed by Parthipan, SenthilVelan,

ChitraBabu [1]. The WJP per class or aspect is the sum of

cognitive weights of types of join points shadow in classes

or aspects. The cognitive weight assigned to the identified

designators is based on its cognitive complexity. The

drawback of the WJP metric is that they didn’t prove their

metric according to the statistical approach and data are not

accurate. Because of empirical data collection, the data

doesn’t satisfy the Fenton et al. [8] properties.

 The motivation of proposed metric is discussed in

section 5, Empirical Metric Data Collection & Evaluation

Criteria 6, the experimentation of a new metric and the case

study is described in section 8, a comparative study of

CWCAE with CAE in section 9 and Section 10 presents

the conclusion and future work.

III. ASPECTJ

AspectJ is an implementation of AOP for the Java

language built as an extension to the language. A compiler

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

543

and a set of JAR files take common Java code and AspectJ

aspects and compile them into standard Java byte-code,

which can be executed on any Java-compliant machine.

Followings are some of the concepts in AspectJ.

 Join point—A predictable point in the execution

of an application.

 Pointcut—A structure designed to identify and

select join points within an AspectJ program.

 Advice—Code to be executed when a join point is

reached in the application code.

 Inter-type declarations—A powerful mechanism

to add attributes and methods to previously

established classes.

 Aspect—A structure analogous to a Java class that

encapsulates join points, pointcuts, advice, and

inter-type declarations.

IV. Metric Analysis

A. Existing work

Coupling on Advice Execution (CAE) is a number

of aspects containing advices possibly triggered by the

execution of operations in a given module. If the behavior

of an operation can be altered by an aspect advice, due to a

pointcut intercepting it, there is an (implicit) dependence of

the operation from the advice. Thus, the given module is

coupled with the aspect containing the advice and a change

of the latter might impact the former. Such kind of

coupling is absent in Object Oriented (OO) systems.

B. Proposed work

Several metrics have been proposed for AOP

systems by researchers. One of the metric proposed by

Ceccato et.al [9] and KotrappaSirbi et.al [7] is CAE. CAE

Ananthi et.al [12] counts the number of aspects containing

advices possibly triggered by the execution of methods,

advices or method intertype declarations, attribute and

attribute intertype declarations in a given class or aspect.

AspectJ supports more types of join points that can also

cause the execution of advice, such as object initialization

join points, exception handler join points, call join points

and advice execution join points. This metric does not

considered the various types of join point. The proposed

metric called Cognitive Weighted CAE (CWCAE),

considers the cognitive complexity of the different types of

joint points.

 Assessment Framework

V. EXPERIMENTAL DESIGN

 This section discusses the chosen metric for the

analysis, Cognitive Approach used to gather data.

A. Calibration

 In this section, an experiment is conducted to

assign cognitive weight to the various types of join point. A

comprehension test has been conducted for a group of

students to find out the time taken to understand

complexity of aspect oriented program with respect to

different types of join point. The group of students selected

had sufficient exposure in analysing the aspect oriented

programs, as they had undergone courses in AspectJ

language. 30 students from Rural, 30 students from Urban

were selected to participate in the comprehension test.

 The time taken by students to comprehend the

programs was recorded after the completion of each

program. The time taken for comprehension of all these

programs was noted and the mean time to comprehend was

calculated. Five different programs were administered in

each case, totally fifteen different mean timings were

recorded. Average time was calculated for each program

from the individual time taken by students which is shown

in Table 1.

 The average comprehension time, for programs

are listed in table1. These programs are based on Aspect

Oriented Programming. The mean time is also calculated

for each category of the programs and is tabulated.

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

544

Table 1 Categorized mean comprehension time

Programs

Average Comprehension Time

(In Minutes)

Method
Call(MC)

Method
Execution(ME)

Field Read

Access(FR)

Field

Write

Access
(FW)

Class

Initialization
(CI)

Exception Handler

Execution

(EH)
Constructor

Call(CC)

Constructor

Execution(CE)

P1 15 18 25 30 34 37

P2 14 19 23 28 33 39

P3 14 18 24 27 34 39

P4 12 17 23 27 31 36

P5 13 16 22 25 33 36

Mean value 13.6 17.6 23.4 27.4 33 37.4

VI. COGNITIVE WEIGHTED COUPLING ON ADVICE

EXECUTION

The proposed metric called Cognitive Weighted

Coupling on Advice Execution (CWCAE), which considers

the cognitive complexity of the different types of joint

points such as object initialization join points, exception

handler join points, call join points and advice execution

join points. The existing CAE metric proposed by Ceccato

et.al [9] and KotrappaSirbi et.al [7] counts the number of

aspects containing advices possibly triggered by the

execution of methods or advice. This metric does not

consider the various types of joint point. CWCAE can be

calculated by using the Equation as follows,

CWCAE = ((MC*WFMC) + (ME*WFME) +

(CC*WFCC) + (CE*WFCE) +

 (CI*WFCI) + (FR*WFFR) +

(FW*WFFW) + (EH*WFEH)) ------- 1

Where,

 MC is the count of Method Call Joint Point

 ME is the count of Method Execution Joint

Point

 CC is the count of Constructor Call Joint

Point

 CE is the count of Constructor Execution

Joint Point

 CI is the count of Class Initialization Joint

Point

 FR is the count of Field Read Access Joint

Point

 FW is the count of Field Write Access Joint

Point

 EH is the count of Exception Handler

Execution Joint Point

The Weighting Factor of each type of Joint Point is

calibrated using the method discussed in the Empirical

Metric Data Collection. The weight value is calculated

based on the mean time and mean correlation time, to

normalize the mean value to get appropriate weight value.

Average mean value of each type of joint point is divided

by corresponding mean correlation time. Finally weight

value is calculated by dividing the values by 20 to reduce

the range of values. The finalize weight values are given as

follows,

Table 4 Weight Value of Each type of Advice

Joint Point Weight Value

WFMC 1

WFME 1

WFCC 1.4

WFCE 1.4

WFFR 1.9

WFFW 2.3

WFCI 3

WFEH 3.7

Where,

WFMC is the Weighting Factor of Method Call Joint Point

 WFME is the Weighting Factor of Method Execution Joint Point

 WFCC is the Weighting Factor of Constructor Call Joint Point

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

545

 WFCE is the Weighting Factor of Constructor Execution Joint Point

 WFCI is the Weighting Factor of Class Initialization Joint Point

 WFFR is the Weighting Factor of Field Read Access Joint Point

 WFFW is the Weighting Factor of Field Write Access Joint Point

 WFEH is the Weighting Factor of Exception Handler Execution Joint Point

VII. STATISTICAL ANALYSIS

 For statistical analysis, CAE metric is selected for AO software. This metric is used to find the complexity of various

types of advice using Cognitive Approach. The relationship among the join points are evaluated and analyzed statistically. For

each join point, mean was selected as a measure of correlation between other join points. Table 2 illustrates statistical

computation of different types of join points.

Table 2 Correlation between Comprehensions time of different joint points

Types of join points are compared on the basis of

mean and correlation. One join point, mean was selected as

a measure of correlation between other join points and used

for evaluation. If the value of this correlation is high, it

shows better indicator of complexity of the classes or

aspects.

VIII. THEORETICAL ANALYSIS & DATA

COLLECTION PROPERTIES

Fenton et al. [8] defined some properties which were

used for the data collection process and are described as

follows:

 Accuracy: The higher the difference between the actual

data and measured data and the lower is the accuracy

and vice-versa. The difference between CWCAE and

CAE is lower so the accuracy is higher.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fig 2 Mean Correlation Time

Mean
Correlation
Time

MC

ME

FR

FW

CI

EH

CC

CE

MC

1

0.8077 0.9231 0.6940 0.5718 0.3468

CC

ME

0.8077

1

0.5385 0.6940 0.0673 0.7473

CE

FR

0.9231

0.5385

1

0.4627 0.7736 0.0534

FW

0.6940

0.6940

0.4627

1

0.0759 0.2408

CI

0.5718

0.0673

0.7736

0.0759

1

-0.0934

EH

0.3468

0.7473

0.0534

0.2408

-0.0934

1

Mean
Correlation

Value

0.7239

0.6425

0.6252

0.5279

0.3992

0.3825

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

546

 Replicability: Means that the analysis can be done at

different times by different people using the same

setting. Data are taken from rural and urban PG

students at different time.

 Correctness: According to the metrics definition data

was collected.

 Precision: Data is expressed by number of decimal

places. Less decimal place shows a lower accuracy. If

the decimal place of the data is high (i.e. 0.5502), it

shows a higher accuracy.

 Consistency: It counts the differences with the metric

values when collected using different tools by different

people.

The following section explains how CWCBO is calculated

by means of a case study.

IX. ILLUSTRATION

The proposed CWWMC metric given by Eq 1 is evaluated

with the following program.

Program:

A. Java program

public class Stack

{

static final int DEFAULT_CAPACITY=5;

private Object [] theArray;

privateinttopOfStack;

public Stack()

{

theArray = new Object[DEFAULT_CAPACITY];

topOfStack=-1;

}

public void push(Object x)

{

if (topOfStack+1 == theArray.length)

doubleArray();

topOfStack++;

theArray[topOfStack]=x;

}

public void pop() throws Exception

{

if (isEmpty())

throw new Exception("Stack pop");

topOfStack--;

}

public Object top() throws Exception

{

if (isEmpty())

throw new Exception("Stack top");

returntheArray[topOfStack];

}

publicbooleanisEmpty()

{

returntopOfStack==-1;

}

public void clear()

 {

topOfStack=-1;

}

publicintgetSize()

{

return topOfStack+1;

}

}

public static void main(String args[])

{

Stack stack = new Stack();

stack.push(new Integer(4));

try

{

System.out.println(stack.top());

}

catch(Exception e)

{

System.exit(1);

}

stack.push(new Integer(5));

stack.push(new Integer(6));

try

{

System.out.println(stack.top());

stack.pop();

}

catch(Exception e) { System.exit(1); }

System.out.println("Empty? : " + stack.isEmpty());

}

}

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

547

B. AspectJ program

aspect PointEX

{

pointcut field() : call(* Stack.push(..));

before() : field()

{

Stack stack = (Stack)thisJoinPoint.getTarget();

System.out.println(thisJoinPoint.toLongString() +

" Stack Size:" + stack.getSize());

}

pointcut field() : execution(Stack.new(..));

before() : field()

{

Stack stack = (Stack)thisJoinPoint.getTarget();

}

pointcut field() : set(private Object [] Stack.theArray);

before() : field()

 {

System.out.println("Attribute theArray set");

}

pointcut field() : get(private intStack.topOfStack);

before() : field()

{

System.out.println("Attribute topOfStack read");

}

pointcut field() : handler(Exception);

before() : field(s)

 {

System.out.println("Exception Thrown");

}

pointcut field() : staticinitialization(Stack);

before() : field()

 {

System.out.println(thisJoinPoint.getSignature());

}

}

CAE

CMPX (CAE) = ∑ CMPX (jp)

x

x=0

x=6 so,

CMPX(CAE) = 6

CWCAE

CWCAE= ((MC*CWMC) + (CE*WFCE) + (FR*WFFR) +

(FW*CWFW) + (CI*CWCI) +

 (EH*CWEH))

CWCAE= ((1*1) + (1*1.4) + (1*1.9) + (1*2.3) + (1*3) +

(1*3.7))

CWCAE= 1 + 1.4 + 1.9 +2. 3 +3 +3.7 = 13.5

Table 5 Joint Point Complexity metric value for the above program

Program# CAE CWCAE

1 6 13.5

X. COMPARATIVE STUDY

A comparative study has been made with most widely accepted metric proposed by Ceccato et.al [9] and KotrappaSirbi

et.al [7] is CAE. CAE defines total number of the aspects containing advices possibly triggered by the execution of methods or

advice. The current CWCAE metric is one step ahead of existing CAE metric, because it includes the complexity that arises due

to the various types of Join Points. Another advantage of CWCAE metric is that, it takes cognitive weights into consideration

and data collection satisfies the Fenton et.al [8] properties. In order to compare the proposed metric a comprehension test was

conducted for rural and urban post graduate students. Sixty students participated in the test; the students were given five

different programs in AspectJ for the comprehension test. The test was to find out the output of the given programs. The time

taken to complete the test in minutes is recorded. The average time taken by all the students is calculated. In the following Table

6, a comparison has been demonstrated with CAE, CWCAE of the comprehension test result.

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

548

Table 6 Complexity metric values and Fig 3 Complexity metric values Vs
comprehension time

 comprehension time

The CAE complexity of the class is calculated by

computing Method Call(MC), Method Execution(ME),

Constructor Call(CC), Constructor Execution(CE), Class

Initialization(CI), Field Read Access(FR), Field Write

Access(FW) and Exception Handler Execution(EH). This

is better indicator than CAE. The weight of each type of

Join Point is calculated by using cognitive weights and

weighting factor of type of the Join Point similar to that

suggested by Wang et al.[6] It is found that the resulting

value of CWCAE is larger than the CAE. This is because,

in CAE, the weight of each advice is assumed to be one.

However, including cognitive weights for calculation of the

CWCAE is more realistic because it considers different

types of Joint Point. The results are shown in the Table 6.

A correlation analysis was performed between CAE Vs

Comprehension Time with r = 0.221981 and CWCAE Vs

Comprehension time with r = 0.980778. CWCAE is more

positively correlated than CAE. From the table 6, it is

observed that CWCAE value is larger than CAE value

which concludes that CWCAE is a better indicator of

complexity of the classes with various types of Join Point

in Advice Execution.

XI. CONCLUSION AND FUTURE WORK

A CWCAE metric for measuring the class level complexity

has been formulated. The complexity of the class includes

the Advice Execution complexity of the class. CWCAE

includes the cognitive complexity due to different types of

Joint Point. CWCAE has proven that, complexity of the

class getting affected, is based on the cognitive weights of

the various types of Joint Point. The assigned cognitive

weight of the various types of Join Point is validated using

the comprehension test and found that the cognitive load to

understand the EH > CI > FW > FW > FR > CE, ME > CC,

MC. The metric is evaluated through a statistical analysis,

case study and a comparative study, and proved to be a

better indicator of the class level complexity. Newer

metrics may also be proposed and validated for assessing

the cognitive complexity of another types of join point.

XII. REFERENCE

[1] Parthipan, SenthilVelan and ChitraBabu , “Design Level

Metrics to Measure the Complexity Across Versions of AO

Software”, IEEE , 2014.

[2] A. Aloysius and G. Arockia Sahaya Sheela, “Aspect

Oriented Programming Metrics – A Survey”, in the

“International Journal of Emerging Trends in Computing

and Communication Technology (IJETCCT)”, Volume 1,

No 3, August 2015.

[3] Chidamber S.R., Kemerer, C.F., “A metrics suit for object

oriented design”, IEEE, Trans. Software Engineering,

vol.20, pp.476-498, 1994.

[4] G. Arockia Sahaya Sheela and A. Aloysius, “Analysis of

Measuring the complexity of Advice using a Cognitive

Approach”, “International Journal of Applied Engineering

Research (IJAER)”, Vol. 10, No.82, 2015.

[5] Aloysius. A., “Coupling Complexity Metric: A Cognitive

Approach”, Modern Education and Computer Science, vol.9,

pp.29-35, 2012.

[6] J. Shao and Y. Wang, “A new measure of software

complexity based on cognitive weights.”,Canadian Journal

of Electrical and Computer Engineering, 2003.

[7] Kotrappa Sirbi and Prakash Jayanth Kulkarni, “Metrics for

Aspect Oriented Programming-An Empirical Study”,

International Journal of Computer Applications, pp.17-23,

2010.

[8] N.Fenton, S.P.fleeger, “Software Metrics: A Rigorous and

Practical Approach”. PWS Publishing Company, 1997.

[9] Ceccato, M., and Tonella, P.: „Measuring the Effects of

Software Aspectization‟, Proc. Workshop on Aspect

Reverse Engineering (WARE 2004), Delft, The Netherlands,

November 2004 (Cd-rom)

[10] Joseph D.Gradecki, Nicholas Lesiecki, “Mastering AspectJ –

Aspect-Oriented Programming in Java”,Wiley Publishing,

Inc., 2003.

[11] Bartsch, M., Harrison, R, “An Evaluation of Coupling

Measures for AspectJ”, LATE Workshop AOSD, 2006.

[12] Ananthi Sheshasaayee, Roby Jose, “A Theoretical

Framework for the Maintainability Model of Aspect

Oriented Systems”, Elsevier, SCSE, 2015.

[13] https://eclipse.org/aspectj/doc/next/progguide/semanticsadvi

ce.html

[14] https://eclipse.org/aspectj/doc/released/progguide/startingasp

ectj.html

Program#

Existing

Metric

Value

(CAE)

Proposed

Metric Value

(CWCAE)

Mean Comprehension

Time

1

7

14

16

2

6

17

18

3

11

19.5

21

4

6

20.5

22.8

5

8

23.5

24

0

5

10

15

20

25

30

1 2 3 4 5

CAE

CWCAE

Mean
Comprehension
time

Program

mean
 mean

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

549

G.Arockia Sahaya Sheela is working as Assistant Professor

in Department of Computer Science, Holy Cross College

(Autonomous), Tiruchirappalli, Tamil Nadu, India. She has

obtained the Master of Computer Science degree in 2005

and Master of Philosophy degree in 2007 from

Bharathidasan University, Trichy. She has 11 years of

experience in teaching Computer Science. Her research

areas are Sensor Networks and Software Metrics. She has

published many research articles in the National/

International Conferences, and Journals. She is currently

pursuing Doctor of Philosophy Program and her current

area of research is the Cognitive Complexity of Aspect-

Oriented Software Metrics.

A. Aloysius is working as Assistant Professor in

Department of Computer Science, St. Joseph’s College,

Trichy, Tamil Nadu, India. He has got the Master of

Computer Science degree in 1996, Master of Philosophy

degree in 2004, and Doctor of Philosophy in Computer

Science degree in 2013 from Bharathidasan University,

Trichy. He has 15 years of experience in teaching and

research. He has published many research articles in the

National/International conferences and journals. He has

also presented 2 research articles in the International

Conferences on Computational Intelligence and Cognitive

Informatics in Indonesia. He has acted as a chair person for

many national and international conferences. His current

area of research is Cognitive Aspects in Software Design,

Big Data, and Cloud Computing.

K R Martin is working as Assistant Professor in

Department of Computer Science, St. Joseph’s College

(Autonomous), Tiruchirappalli, Tamil Nadu, India. He has

obtained the Master of Computer Applications degree in

1999, Master of Philosophy degree in 2007 and Master of

Business Administration degree in 2011 from

Bharathidasan University, Trichy. He has 17 years of

experience in teaching Computer Science. His research

areas are Software Engineering and Software Metrics. He

has published many research articles in the

National/International Conferences and Journals. He is

currently pursuing Doctor of Philosophy Program and his

current area of research is the Cognitive Complexity of

Aspect-oriented Software Metrics.

Vol. 5 Issue 04, April-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS040835

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

550

