

Deriving Best Practices from Development Methodology
Base (Part 2)

Bhushan Thakare
Assistant Professor

STES Sinhgad Academy of
Engineering, Kondhwa, Pune,

Maharashtra, India

Bhushan Bhokse
Assistant Professor

MAEER Maharashtra Academy
of Engineering, Alandi (D),

Pune,
Maharashtra, India

Laxmi Thakare
Assistant Professor

MAEER Maharashtra Academy
of Engineering, Alandi (D),

Pune,
Maharashtra, India

ABSTRACT

There are abundant methodologies for the product

development. Out of which only few could have renowned

because for their universal importance. But some system or

process cannot follow general methodology. Hence some

process follows specific methodology e.g., XP follows Agile

methodology. Hence we surveyed a detailed review of

existing software development methodologies in which

mainly on their development processes. The descriptions of

methodologies fashioned aimed to provide an abstract and

structured description in a way that facilitates their elaborate

analysis for the purposes of improving understanding, and

making it easier to tailor, select, and evaluate the processes.

General Terms

We commence with basic definitions software development

methodologies. We then provide a comprehensive review of

the processes of a selection of methodologies. The

methodologies reviewed in this article are:

ASD (Adaptive Software Development), BON (Business

Object Notation), Catalysis, Coad and Yourdon, Crystal,

Doors (Design of Object Oriented Real Time Systems),

DSDM (Dynamic Systems Development Method), EROOS

(Entity Relationship based Object-Oriented Specification),

FDD (Feature Driven Development) , FOOM (Functional and

Object Oriented Methodology) , Hodge-Mock, ICONIX,

IDEA (Intelligent Database Environment for Advanced

Applications), MOSES (Modeling Software and Platform

Architecture in UML-2 for Simulation-based Performance

Analysis), MERODE (Model Driven, Existence Dependency

Relation, Object-Oriented Development), Object COMX

(Object Communicating X-Machines), Objecteering, OEP

(Object Engineering Process), OOIE (Object-Oriented

Information Engineering), OOHDM (Object-Oriented

Hypermedia Design Model),OOSC (Object-Oriented

Software Construction),OOSP (Object-Oriented Software

Process), OPM (Object-Process Methodology), RAD (Rapid

Application Development), RUP (Rational Unified Process)/

UML, SDL (Specification and Description Language) /

SOMT (SDL-oriented Object Modeling Technique),

Shlaer and Mellor etc.

Keywords

Methodology, Phases, Software Development, and Object

Oriented, Design, Management.

1. INTRODUCTION
A Software Development Methodology is a framework for

applying software engineering practices to develop software-

intensive systems. Software development methodologies

provide the means for timely and orderly execution of the

various finer-grained techniques and methods of software

engineering. A software development methodology can be

defined as ―a recommended collection of phases, procedures,

rules, techniques, tools, documentation, management, and

training used to develop a system‖.

Whereas the modelling language provides developers with a

means to model the different aspects of the system, the

process determines what activities should be carried out to

develop the system, in what order, and how. In its most

abstract form, a process is a sequence of steps—sometimes

deprecatingly called a recipe—that aims to guide its users in

applying the modelling language for accomplishing a set of

software development tasks. The process thus acts as the

dynamic, behavioural component of the methodology,

governing the technical development and management

subprocesses, and therefore encompassing the phases,

procedures, rules, techniques, and tools prescribed by the

methodology, as well as the issues pertaining to

documentation and project management..

And in the last paper named Deriving Best Practices from

Development Methodology Base (Paper 1) we have seen

already Booch, CBD/e (Component Based Development),

CRC (Class-Responsibility-Collaborator), Demeter, dX, EUP

(Enterprise Unified Process), Fusion, HOOD (Hierarchical

Object-Oriented Design), Octopus, OMT (Object Modeling

Technique), OOBE (Object-Oriented Business Engineering),

OOram, OOSE (Object-Oriented Software Engineering),

OPEN (Object-Oriented Process, Environment and Notation),

OSA (Object-Oriented System Analysis), RDD

(Responsibility-Driven Design), ROPES (Rapid Object-

Oriented Process for Embedded Systems), Scrum, Syntropy

and XP (Xtreme Programming) methodologies.

2. LITERATURE SURVEY

2.1 ASD: (Adaptive Software Development)

The ASD constitutes five phases process which are as

follows:

a) Project initiation: This step focuses on understanding

the project’s objectives and estimating its size and scope,

exploring the constraints.

b) Iterative development phases:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

a) Adaptive cycle planning: This step focuses on setting

time frames for the project and the development cycles,

defining the components that should be developed,

assigning the components to cycles, and scheduling the

iterations.

b) Concurrent component engineering: This step focuses

on concurrent design and implementation of the

components assigned to individual cycles.

c) Quality review: This step focuses on conducting group

reviews of the components produced and rectifying the

problems confronted.

c) Final Q/A and release: This step focuses on validating

the produced system and deploying it into the working

environment.

2.2 BON: (Business Object Notation)

Basically the BON process is used to build the deliverables,

which provide static and dynamic descriptions of the system.

Description of each task is as follows:

a) Delineating System Borderline. The scope of the

system and its subsystems is identified, user metaphors

are compiled, and the system functionality is defined as

typical usage scenarios.

b) Listing Candidate Classes. This task is mainly

concerned with extracting a list of candidate classes from

the problem domain.

c) Selecting Classes and Grouping into Clusters.

Concepts will then be modeled as classes, which are then

grouped into clusters. This task also involves the

identification of relationships: inheritance, client-server,

and aggregation, among the classes in a cluster, and

among the clusters themselves.

d) Defining Classes. Define each class in terms of its state,

its behavior, and the general rules that must be obeyed by

the class and its clients.

e) Sketching System Behavior. The dynamic model of the

system is elaborated.

f) Defining Public Features. The informal class

descriptions filled into the class charts during defining

classes are translated into formal class interfaces

(features).

g) Refining the System. This task begins the design part of

the BON process, and therefore includes a repetition of

many activities already performed for the analysis

classes, now applied to new design classes.

h) Generalizing. This task concerns improving the

inheritance hierarchy of the classes by factoring common

state and behavior into deferred (abstract) superclasses.

i) Completing and Reviewing the System. This typically

involves reviewing and perfecting the static and dynamic

models, syntactic verification of the classes, and

checking the consistency of class invariants and the pre-

and post-conditions of routines.

2.3 Catalysis:

Catalysis proposes a set of process patterns to be selected and

applied according to the characteristics of the project at hand.

It consists of the following activities:

(1) Identify and model the requirements.

(2) Develop the system specification.

(3) Develop the architectural design.

(4) Develop the component internal design.

Analysis usually starts by modeling the problem domain as a

collection of classes, with their own inter-relationships and

interactions. Then the system is added to the context, treated

like another problem domain type, whose state, operations

(functionality), and behavior are carefully modeled. The focus

is then shifted onto the system itself, modeling it as a

collection of components, again with their own

interrelationships and interactions. Finally, each component is

modeled as a collection of implementation-level classes,

interfaces, and off-the-shelf components; yet again with their

own interrelationships and interactions.

2.4 Coad-Yourdon :

Coad-Yourdon methodology suggests techniques for

translating the design models into code.

a) Analysis: This step consists of five principal activities:

(1) Finding abstract classes and concrete classes;

(2) Identifying generalization-specialization and whole-part

relationships among classes;

(3) Identifying subjects (partitions/subsystems);

(4) Defining attributes, and instance-connections;

(5) Defining class operations and invocations of operations.

Results of these activities are reflected in a special Class-and-

Object Diagram that is the pivotal model of the system.

b) Design:

Components, provides certain functionality needed to realize

the requirements and implement the system, are listed below:

(1) Problem Domain Component: During OOD, result of

the analysis phase is improved and enriched with

implementation detail.

(2) Human Interaction Component: This handles sending

and receiving messages to and from the user.

(3) Task Management Component: This is needed to

implement multiple threads of control.

(4) Data Management Component: This provides the

infrastructure to store and retrieve objects.

2.5 Crystal:

In Crystal, projects are categorized according to their size and

the criticality of the system being produced. Four levels of

criticality have been defined, based on what might be lost

because of a failure in the produced system: comfort (C),

discretionary money (D), essential money (E), or life (L).

Crystal methodologies put heavy emphasis on communication

among people involved in the project.

The project lifecycle in Crystal Clear consists of the following

phases:

a) Chartering: It involves forming the development team,

performing a preliminary feasibility analysis, shaping

and fine-tuning the development methodology, and

developing an initial plan for the project.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

b) Cyclic delivery: It involves team updates and refines

the release plan, implements a subset of the requirements

through one or more program-test-integrate iterations,

delivers the integrated product to real users, and reviews

the methodology adopted and the project plans.

c) Wrap-up: This involves the software product is

deployed into the user environment, and post deployment

reviews and reflections are performed.

2.6 DOORS: (Design of Object Oriented

Real Time Systems)

The objective of DOORS is to develop a method for the

design of real-time (RT) systems that: is practical for systems

of large scale and complexity; includes support of object-

oriented techniques for achieving reusability in

implementations; helps with visualizing and testing design

concepts during the early stages when the big decisions are

being made.

This output of DOORS will be useful to designers of real-time

systems to help them do their job better, and to designers of

future tools to help them identify the capabilities required.

Approach is to develop a loosely-coupled set of (1) modified

versions of existing OO and RT methods and (2) new

methods. Important tasks are: development of a new design

method that focuses on a concept time threads, the method is

called Timethread-Driven design; visualization techniques for

OO frameworks and design guidelines for frameworks;

research into integrating the ideas of our design method into

CASE tools; and new visualization techniques for displaying

the structure and behavior of a large system in a limited

screen area.

2.7 DSDM: (Dynamic Systems Development

Method)

DSDM is referred to as a configurable process framework,

rather than a methodology. In customizing the process

framework, the development team also has to set up a strict

time-constrained plan for the development. In DSDM,

stringent constraints are set on time and resources, leaving the

requirements (functionality) as the only variable parameter of

the project.

DSDM is thus deemed especially suitable for projects with

highly volatile requirements. The DSDM process consists of 7

phases which are:

a) Pre-project: This focuses on providing the necessary

resources for starting the project, along with a plan for

the feasibility study.

b) Project-proper: The five main phases of the DSDM are

applied:

 Sequential phases: This primarily is concerned with

studying the business domain and performing a

preliminary analysis of the system i.e., feasibility studies.

 Iterative phases: The functional model, design and

build, and implementation iterative phases iteratively and

incrementally analyze, design, code, and deploy the

system through evolutionary prototyping:

 Post-project: The focus is on system maintenance.

2.8 EROOS: (Entity-Relationship based

Object Oriented Specification)

The power of EROOS is based on three important aspects:

a) A combination of behavior modeling and structure

modeling;

A full integration of these two modeling techniques will

provide the specification method with more powerful

composition and decomposition properties. This will lead to

better structured, changeable, maintainable and reusable

software systems.

b) Declarative rather than operational description of the

software system;

The description of a software system at the beginning will be

focused on what the system should do, whereupon a gradual

transformation will be achieved during the design phase to

describe how the system should do it.

c) And separation of the system kernel from the system

functionality.

This will provide a flexible and changeable system the heart

of which is a solid kernel. This will allow to adapt the existing

system to the ever changing user demands instead of

restarting from scratch. By its layered approach, the EROOS

method aims at increasing modularity, extendibility,

reusability and maintainability of software systems.

2.9 FDD: (Feature Driven Development)

FDD is based on expressing and realizing the requirements in

terms of small user-valued pieces of functionality called

features. Each feature is a relatively fine-grained function of

the system. The subprocesses of the FDD process are:

9.1. Sequential subprocesses: In this the problem domain is

modeled, requirements are identified as hierarchical lists

of features, and development planning is performed. The

subprocesses are as follows:

a) Develop an overall model: This focuses on building a

mainly structural model of the problem domain, called

the object model. This model mainly consists of full-

featured class diagrams.

b) Build a features list: This focuses on identifying the

required functionality of the system.

c) Plan by feature: This focuses on scheduling the features

for development, and then assigning the feature sets

(activities), and the classes in the object model, to

developers.

9.2. Iterative subprocesses: During this phase, strands of

design and- build iterations start off as each chief

programmer selects the set of features that should be

developed in each of the iterations performed under his

supervision. The subprocesses are as follows:

a) Design by feature: This focuses on determining how the

features in the work package should be realized at run-

time by interactions among objects.

b) Build by feature: This focuses on coding and unit-

testing the necessary items for realization of the features

in the work package.

2.10 FOOM: (Functional and Object

Oriented Methodology)

The FOOM process consists of the following phases:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

10.1.Analysis: Analysis is concerned with requirements

elicitation and problem-domain modeling, this phase

consists of two activities which are:

a) Data modeling: This focuses on identifying and

modeling the class structure of the problem domain.

b) Functional analysis: This focuses on identifying and

modeling the functional requirements of the system;

10.2.Design:

Design is concerned with designing implementation-specific

classes and adding structural and behavioral detail to the

models, this phase consists of the following stages:

a) Defining basic methods: This focuses on specifying

primitive operations for the classes.

b) Top-level design of application transactions: This

focuses on identifying transactions; each transaction is in

fact a unit of functionality performed by the system in

realization of its functional requirements.

c) Interface design: This focuses on designing a menu-

based user interface for the system; suitable classes are

then defined in order to implement these menus.

d) Input/output design: This focuses on designing the

input forms/screens and the output reports/screens of the

system, and defining classes for implementing them.

e) Design of system behavior: This focuses on providing

detailed specifications for the transactions, and

elaborating on object interactions and operations of the

classes;

10.3. Implementation: FOOM is mainly targeted at data-

intensive information systems. Targeting data intensive

systems has also resulted in a slack attitude towards

behavioral design of the system.

2.11 Hodge-Mock:

Hodge-Mock methodology is for use in a simulation and

prototyping laboratory, the sole purpose of which was to

explore the feasibility of introducing higher levels of

automation into air traffic control systems. The Hodge-Mock

process consists of five phases:

11.1.Analysis: This focuses on refining the requirements and

identifying the scope, structure and behavior of the system.

This phase in turn consists of four subphases:

a) Requirements analysis: This focuses on eliciting the

requirements of the system.

b) Information analysis: This focuses on determining the

classes in the problem domain, their interrelationships,

and the collaborations among their instances.

c) Event analysis: This focuses on identifying the behavior

of the system through viewing the system as a stimulus-

response machine.

d) Transition to system design: This focuses on providing

a more detailed view of the collaborations among

objects.

11.2.System design: This focuses on adding design classes to

the class structure of the system and refining the external

behavior of each of the classes.

11.3.Software design: This focuses on adding

implementation-specific classes and details to the class

structure of the system, and specifying the internal structure

and behavior of each class.

11.4.Implementation: This focuses on coding and unit

testing.

11.5.Testing: This focuses on system-level verification and

validation.

2.12 ICONIX:

ICONIX is a software development methodology which

predates RUP, XP and Agile software development. The

ICONIX process is UML Use Case driven but more

lightweight than RUP. ICONIX provides sufficient

requirement and design documentation, but without analysis

paralysis.

A principal distinction of ICONIX is its use of robustness

analysis, a method for bridging the gap between analysis and

design. This process makes the use cases much easier to

design, test and estimate. Essentially, the ICONIX Process

describes the core logical analysis and design modelling

process. However, the process can be used without much

tailoring on projects that follow different project management.

The ICONIX process is split up into four milestones. At each

stage the work for the previous milestone is reviewed and

updated. These are as: Requirements review, Preliminary

Design Review, Detailed Design Review, Deployment.

Unit tests are written to verify the system will match up to the

use case text, and sequence diagrams. Finally code is written

using the class and sequence diagrams as a guide.

2.13 IDEA: (Intelligent Database

Environment for Advanced

Applications)

The goal of the IDEA methodology is to produce a coherent

body of concepts, languages and tools, together with an

execution environment, suitable for the design and

development of database applications requiring intelligent

features.

The IDEA addresses the analysis, design, prototyping, and

implementation of modern database systems applications,

taking benefit of modern approaches developed in the context

of database design, but also in the broader area of object-

oriented software engineering. IDEA emphasis on both

deductive rules and active rules, which significantly enrich the

semantics supported within database applications.

2.14 MOSES: (Modeling Software and

Platform Architecture in UML-2 for

 Simulation-based Performance

Analysis)

MOSES is a full-lifecycle, OO software development

methodology which encompasses not only technical aspects

of OOA/D but also project management, business planning,

maintenance and product enhancements. MOSES is the new

implementation of our methodology based on the UML 2

metamodel which allows the modeling of software and

platform architecture for simulation-based performance

analysis within the same modeling environment.

2.15 MERODE: (Model Driven,

Existence Dependency Relation, Object-

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

Oriented Development)

A typical Merode analysis or conceptualization consists of

three views or diagrams: a so called existence dependency

graph similarly to a UML class diagram, a proprietarily

concept namely an object event table and a group of finite

state machines.

MERMAID is an object-oriented domain modeling tool to

create enterprise models using an UML class diagram, an

object-event table and finite state machines. The CASE tool

checks view consistency, has XMI support and code

generation abilities. The method is still incomplete.

2.16 Object COMX: (Object

Communicating X-Machines)

COMX is a new design methodology that contains the formal

specification technique of communicating X-machines.

Communicating X-machines are typed finite state machines

that can communicate with each other via typed channels.

Object COMX comprises five main phases, each with specific

deliverables using a reachability analysis:

(1) Requirements Analysis using soft systems analysis, use

cases and traditional methods of customer and user

interviews etc. to describe the proposed system in the

most effective way.

(2) Object Modeling in the external behavioral view, where

the system is modeled directly as a set of interacting

objects.

(3) Formal Specification of the internal behavior of the

objects, each as a communicating X-machine object.

(4) Verification of the CXMO specification occurs via a use

case-reachability analysis. Various system properties

such as reachability, freedom from deadlock etc. can be

gathered from the use case - reachability tree.

(5) Object-oriented Design of the system for

implementation purposes in which each CXMO is

classified and any inheritance and aggregation identified.

2.17 Objecteering:

Objecteering/UML has just added dynamic behavior rules to

UML Profiles. This technique has provided

Objecteering/UML with the qualities for which it is

renowned: the benefit of interactive model control, the power

of automatic transformation of analysis models into design

models, the performance of its code generators and the

flexibility of its parameterization.

Objecteering/UML is already realizing all the promise of

MDA such as truly reusable models, reusable technical rules,

progressiveness of applications, through the productivity

gains, thanks to the availability of off the shelf generators,

simple exchange of generation rules, quality gains, through

the systematizing of model and code writing rules, reactivity,

through the flexibility of parameterization, complete

traceability throughout all the development phases.

2.18 OEP: (Object Engineering Process)

The OEP has been developed to create a usable process

guideline for all important project stakeholders. The main

addressees are:

 Persons who are involved in the project leading

Persons who are involved in quality assurance

and project controlling

 Project members

The process model is an important planning document for the

project management. They are able to deduce sensible und

useful activities. The optimal profit will be achieved by the

project management, if they checking all including activities,

results, mile stones, etc. The project management can also use

or deduce important coherences and dependencies to define

the order and urgency of the project activities. In spite of the

support the project management has the responsibility for the

project planning and execution.

For persons who are involved in quality assurance and project

controlling the process model is a useful guideline to check

planning and execution. Numerous descriptions of activities

and results are contained as well as also hint how the quality

can be valued.

2.19 OOIE: (Object Oriented

Information Engineering)

It aims to enable an enterprise to improve the management of

its resources, including capital, people and information

systems, to support the achievement of its business vision.

Information engineering has many purposes, including

organization planning, business re-engineering, application

development, information systems planning and systems re-

engineering.

There are two variants of information engineering.

1) DP-driven: The DP-driven variant of Information

engineering was designed to enable IS Departments to

develop information systems.

2) Business-driven: Information Engineering was extended

into strategic business planning and developed the business-

driven variant of IE.

2.20 OOHDM: (Object Oriented

Hypermedia Design Model)

OOHDM uses abstraction and composition mechanisms in an

object oriented framework to, on one hand, allow a concise

description of complex information items, and on the other

hand, allow the specification of complex navigation patterns

and interface transformations.

1) Domain Analysis: This describes the collection of

classes, with their own inter-relationships and

interactions.

2) Navigational Design: This describes the navigational

structure of a hypermedia application in terms of

navigational contexts such as Nodes, Links, Indices, and

Guided Tours.

3) Abstract Interface Design: The abstract interface model

is built by defining perceptible objects in terms of

interface classes. Interface objects provide navigational

objects with a perceptible appearance.

4) Implementation: This focuses on the actual coding of

the system.

2.21 OOSC: (Object Oriented Software

Construction)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

"OOSC", presents object technology with a special emphasis

on addressing the software quality factors of correctness,

robustness, extendibility and reusability. It starts with an

examination of the issues of software quality, then introduces

abstract data types as the theoretical basis for object

technology and proceeds with the main object-oriented

techniques: classes, objects, generosity, inheritance, Design

by Contract, concurrency, and persistence.

The structured paradigm focuses on decomposing behaviors.

The OO paradigm focuses on objects, classes, and inheritance.

The two paradigms do not mix well. While the OO paradigm

tightly integrates the development phases of analysis, design

and implementation, intrinsic differences between these

phases should not be blurred. OO methods are compatible

with prototyping efforts, especially those constructed in order

to elucidate otherwise unknown requirement fragments.

2.22 OOSP: (Object Oriented Software

Process)

A Process Pattern provides guidance on how to effectively

carry out discrete tasks within the development process. That

is, a Process Pattern represents a structured approach to a

given task that has been proven to yield effective results.

Process Pattern includes describing the Forces, Initial Context

and Solution.

Types of Process Patterns

1. Task process patterns: This depicts the detailed steps to

perform a specific task, such as the Technical Review and

Reuse First process patterns

2. Stage process patterns: This depicts the steps, which are

often performed iteratively, of a single project stage.

3. Phase process patterns: This depicts the interactions

between the stage process patterns for a single project phase,

such as the Initiate and Delivery phases.

2.23 OPM: (Object Process Methodology)

OPM’s modeling strength lies in the fact that only one type of

diagram is used for modeling the structure, function, and

behavior of the system. The single diagram type is called the

object-process diagram (OPD). The OPM process consists of

three high-level subprocesses:

(1) Initiating focuses on preliminary analysis of the system,

determining the scope of the system, the required resources,

and high-level requirements.

(2) Developing focuses on detailed analysis, design, and

implementation of the system.

(3) Deploying focuses on the introduction of the system into

the user environment, and the subsequent maintenance

activities.

2.24 RAD: (Rapid Application

Development)

RAD proposes that products can be developed faster and of

higher quality by using workshops or focus groups to gather

requirements, prototyping and user testing of designs, re-using

software components, following a schedule that defers design

improvements to the next product version, keeping review

meetings and other team communication informal. RAD

usually embraces object-oriented programming methodology,

which inherently fosters software re-use.

Advantages of RAD are such as buying may save money

compared to building, deliverables sometimes easier to port ,

development conducted at a higher level of abstraction, early

visibility, greater flexibility, greatly reduced manual coding,

increased user involvement, possibly fewer defects, possibly

reduced cost, shorter development cycles, standardized look

and feel.

2.25 RUP: (Rational Unified Process)

RUP is use-case-driven, a feature inherited from OOSE. UML

is used as the modeling language in RUP; therefore RUP has

also been mistakenly called the UML Methodology. The

overall RUP development cycle consists of four phases:

(1) Inception: This focuses on defining the objectives of the

project, especially the business case;

(2) Elaboration: This focuses on capturing the crucial

requirements, developing and validating the architecture of

the software system, and planning the remaining phases of the

project;

(3) Construction: This focuses on implementing the system

in an iterative and incremental fashion based on the

architecture developed in the previous phase;

(4) Transition: This focuses on beta-testing the system and

preparing for releasing the system.

2.26 SDL: (Specification and Description

Language)

SDL is an object-oriented, formal language defined by ITU-T.

SDL provides graphical symbols to represent flow lines,

input, output, tasks and decisions. SDL is specification and

description of the behavior of telecommunications systems.

An SDL specification defines system behavior in a

stimulus/response fashion, assuming that both stimuli and

responses are discrete and carry information.

The SOMT (SDL Object Modeling Technique) method

provides a framework that shows how to use object oriented

analysis and SDL-based design together in a coherent way.

The framework is based on describing the analysis and design

of a system as a number of activities. Each activity deals with

some specific aspects of the development process.

SOMT consists of five major activities:

• Requirements analysis

• System analysis

• System design

• Object design: The purpose of the object design is to define

in detail the functionality including the behavior of all objects.

• Implementation

2.27 Shlaer and Mellor Methodology:

This process covers the analysis, design, and implementation

phases of the software development lifecycle. It can be broken

down into eight steps:

(1) Partition the system into domains according to the four

domain types: problem domain, application independent

services, physical architecture, and physical implementation;

(2) Analyze the application (problem) domain;

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

6www.ijert.org

(3) Confirm the analysis through static and dynamic

verification;

(4) Extract the requirements for the application-independent

service domains;

(5) Analyze the service domains;

(6) Specify the components of the architectural domain;

(7) Build the architectural components;

(8) Translate (implement) the analysis models of relevant

domains into the architectural components.

3. CONCLUSION
This article presents a comprehensive review of software

development methodologies, but from the perspective of

process. There are existing reviews of methodologies from the

perspective of modelling languages available in the literature,

but there is little up-to-date synthesis material available that

focuses on process.

Attempts at integration, unification, and standardization

have actually aggravated the problems of complexity and

inconsistency, giving rise to a new family of lightweight, agile

methodologies, In every methodology, there are features to

exploit and pitfalls to avoid, many of which are direct or

indirect consequences of the method used in developing the

methodology or the circumstances surrounding the

development. Choosing the right method for developing the

target methodology is therefore of utmost importance.
Macintosh, use the font named Times. Right margins should

be justified, not ragged.

4. ACKNOWLEDGMENTS

Our thanks to the expert Mr. Ankush S. Thakare who have

contributed towards development of the template.

5. REFERENCES
[1] D’souza, D. F. and Wills, A. C. 1995. Catalysis—

practical rigor and refinement: Extending OMT, Fusion,

and Objectory. Available online at

http://www.catalysis.org/publications/papers/1995-

catalysisfusion.pdf.

[2] D’souza, D. F. and Wills, A. C. 1998. Objects,

Components, and Frameworks with UML: The Catalysis

Approach. Addison-Wesley, Reading, MA.

[3] Coad, P. and Yourdon, E. 1991a. Object-Oriented

Analysis, 2nd ed. Yourdon Press/Prentice-Hall,

Englewood Cliffs, NJ.

[4] Coad, P. and Yourdon, E. 1991b. Object-Oriented

Design. Yourdon Press/Prentice-Hall, Englewood Cliffs,

NJ.

[5] Cockburn, A. 2004. Crystal Clear: A Human-Powered

Methodology for Small Teams. Addison-Wesley,

Reading, MA.

[6] DSDM Consortium. 2003. DSDM: Business Focused

Development, 2nd ed. J. Stapleton, Ed. Addison-Wesley,

Reading, MA.

[7] Palmer, S. R. and Felsing, J. M. 2002. A Practical Guide

to Feature-Driven Development. Prentice-Hall,

Englewood Cliffs, NJ.

[8] Kabeli, J., and Shoval, P. 2003. Software analysis

process—which order of activities is preferred? An

experimental

[9] Comparison using FOOM methodology. In Proceedings

of the IEEE International Conference on Software-

Science, Technology and Engineering, 111–122.

[10] Shoval, P. and Kabeli, J. 2001. FOOM: Functional- and

object-oriented analysis and design of information

systems: An integrated methodology. J. Database

Manage. 12, 1 (January–March), 15–25.

[11] Booch, G., Martin, R. C., and Newkirk, J. 1998. Object

Oriented Analysis and Design with Applications, 2nd ed.

(Unpublished). Addison Wesley, Reading, MA. Chapter

on RUP and dX is available online at

http://www.objectmentor.com/resources/articles/RUPvs

XP.pdf.

[12] Stefan Baelen, Johan Lewi, Eric Steegmans and Helena

Riel. EROOS: An Entity-Relationship Based Object-

Oriented Specification Method.

[13] Stefano Ceri, Piero Fraternali and Stefano Paraboschi.

The IDEA Tool Set.

[14] Mark Birkin, Martin Clarke, Phil Rees. MOSES:

Modelling and Simulation for e-Social Science.

[15] Aaron McDaid and Neil Hurley Model-based

Overlapping Seed ExpanSion.

[16] Edwards, J.M., MOSES: Methodology for Object-

oriented Software Engineering of Systems| Henderson-

Sellers, 1994a, BOOKTWO of Object-Oriented

Knowledge: The Working Object, Prentice Hall, Sydney,

616pp.

[17] Scott W. Ambler An Introduction to Process Patterns.

[18] Martin and Odell. Object-Oriented Information

Engineering.

[19] Daniel Schwabe, Gustavo Rossi and Simone D.J.

Barbosa Systematic Hypermedia Application Design

with OOHDM.

[20] Rubén Tous. Updating Hypermedia Object Oriented

Design Method (OOHDM) to systematic the process of

designing Web applications.

[21] Daniel Schwabe and Gustavo Rossi. The Object-

Oriented Hypermedia Design Model (OOHDM).

[22] Bertrand Meyer. Object Oriented Software Construction.

[23] SDL by Telelogic Specification and description language

(SDL). Telecommunication Standardization Sector of

ITU.

[24] Intelligent Database Environment for Advanced

Applications http://www.iai.uni-bonn.de/~idea/.

[25] Agile Software Requirement. Retrieved from

http://www.agiledata.org/essays/evolutionaryDevelopme

nt.html.

[26] Rapid Application Development

http://www.mariosalexandrou.com/methodologies/rapid-

application-development.asp.

[27] Rapid Application Development

http://www.sce.carleton.ca/rads/doors.html.

[28] Objectneering http://www.objecteering.com/.

[29] Object Oriented Software Engineering

http://www.oose.de/oep/main/eng_zielgruppe.htm.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

7www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

8www.ijert.org

