
Deriving Best Practices from Development Methodology
Base (Part 1)

Bhushan Thakare
Assistant Professor

STES Sinhgad Academy of
Engineering, Kondhwa, Pune,

Maharashtra, India

Bhushan Bhokse
Assistant Professor

MAEER Maharashtra Academy
of Engineering, Alandi (D),

Pune,
Maharashtra, India

Laxmi Thakare
Assistant Professor

MAEER Maharashtra Academy
of Engineering, Alandi (D),

Pune,
Maharashtra, India

ABSTRACT

There are abundant methodologies for the product

development. Out of which only few could have renowned

because for their universal importance. But some system or

process cannot follow general methodology. Hence some

process follows specific methodology e.g., XP follows Agile

methodology. Hence we surveyed a detailed review of

existing software development methodologies in which

mainly on their development processes. The descriptions of

methodologies fashioned aimed to provide an abstract and

structured description in a way that facilitates their elaborate

analysis for the purposes of improving understanding, and

making it easier to tailor, select, and evaluate the processes.

General Terms

We are providing a comprehensive review of the processes of

a selection of methodologies. The methodologies reviewed in

this article are:

Booch, CBD/e (Component Based Development), CRC

(Class-Responsibility-Collaborator), Demeter, dX, EUP

(Enterprise Unified Process), Fusion, HOOD (Hierarchical

Object-Oriented Design), Octopus, OMT (Object Modeling

Technique), OOBE (Object-Oriented Business Engineering),

OOram, OOSE (Object-Oriented Software Engineering),

OPEN (Object-Oriented Process, Environment and Notation),

OSA (Object-Oriented System Analysis), RDD

(Responsibility-Driven Design), ROPES (Rapid Object-

Oriented Process for Embedded Systems), Scrum, Syntropy

and XP (Xtreme Programming) etc.

Keywords

Methodology, Phases, Software Development, Object

Oriented, Design, Management, Software Engineering.

1. INTRODUCTION
A Software Development Methodology is a framework for

applying software engineering practices to develop software-

intensive systems. Software development methodologies

provide the means for timely and orderly execution of the

various finer-grained techniques and methods of software

engineering. A software development methodology can be

defined as ―a recommended collection of phases, procedures,

rules, techniques, tools, documentation, management, and

training used to develop a system‖.

Whereas the modelling language provides developers with a

means to model the different aspects of the system, the

process determines what activities should be carried out to

develop the system, in what order, and how. In its most

abstract form, a process is a sequence of steps—sometimes

deprecatingly called a recipe—that aims to guide its users in

applying the modelling language for accomplishing a set of

software development tasks. The process thus acts as the

dynamic, behavioural component of the methodology,

governing the technical development and management sub

processes, and therefore encompassing the phases,

procedures, rules, techniques, and tools prescribed by the

methodology, as well as the issues pertaining to

documentation and project management..

And in the next paper named Deriving Best Practices from

Development Methodology Base (Paper 2) will see ASD

(Adaptive Software Development), BON (Business Object

Notation), Catalysis, Coad and Yourdon, Crystal, Doors

(Design of Object Oriented Real Time Systems), DSDM

(Dynamic Systems Development Method), EROOS (Entity

Relationship based Object-Oriented Specification), FDD

(Feature Driven Development) , FOOM (Functional and

Object Oriented Methodology) , Hodge-Mock, ICONIX,

IDEA (Intelligent Database Environment for Advanced

Applications), MOSES (Modeling Software and Platform

Architecture in UML-2 for Simulation-based Performance

Analysis), MERODE (Model Driven, Existence Dependency

Relation, Object-Oriented Development), Object COMX

(Object Communicating X-Machines), Objecteering, OEP

(Object Engineering Process), OOIE (Object-Oriented

Information Engineering), OOHDM (Object-Oriented

Hypermedia Design Model),OOSC (Object-Oriented

Software Construction),OOSP (Object-Oriented Software

Process), OPM (Object-Process Methodology), RAD (Rapid

Application Development), RUP (Rational Unified Process)/

UML, SDL (Specification and Description Language) /

SOMT (SDL-oriented Object Modeling Technique),

Shlaer and Mellor methodologies.

2. LITERATURE SURVEY

2.1 Booch:

Booch has modeled object-oriented design as a repeating

process (referred to as ―The Micro Process‖) within a

lifecycle-level repeating process (referred to as ―The Macro

Process‖).

a) Macro Process (Booch). The macro process serves as a

controlling framework for the micro process. The macro

process tends to follow these steps:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

(1) Conceptualization: Establish core requirements for

software;

(2) Analysis: Develop a model of the system’s desired

behavior;

(3) Design: Create architecture for the implementation;

(4) Evolution: Evolve the implementation through successive

refinements;

(5) Maintenance: Manage post-delivery evolution.

b) Micro Process (Booch). The micro process tends to

follow these steps:

(1) Identify the classes and objects at a given level of

abstraction.

(2) Identify the semantics of classes and objects.

(3) Identify the relationships among classes and objects.

(4) Specify the interface and implementation of classes and

objects.

2.2 CBD/e: (Component Base Development)

CBD/e is a methodology for allowing organizations to begin

component-based development quickly. CBD/e consists of

two major parts Process and Analysis and Design (A&D)

methodology.

1. The CBD/e Process

The CBD/e process is based on repeating plan which is

follows:

a) Assessment: To decide what your organization wants

from CBD.

b) Planning: Planning takes place, including selecting the

project that will be executed and the participants for this

particular program.

c) Education: Fundamental training that is required to go

to CBD.

d) Infrastructure: Your organization’s infrastructure is

adjusted to enable component-based development.

e) Execution: This is where the start of implementation

occurs.

f) Improvement: This is where to review the results.

2) The CBD/e Analysis and Design Methodology

A&D methodology uses behavioral analysis and design

techniques to facilitate building components. Behavioral

analysis and design is based on the concept that the pieces of

your system are not just chunks of data that are there to be

worked by whatever processes you develop.

The first steps design the specification, which describes the

solution without any implementation details. The specification

should work for any realization of the system. The realization

of the system contains all of the details of a particular

implementation, including the user interface design and the

details of how the operations of an interface will work. There

are three steps in CBD/e which are analysis, design and

implementation.

2.3 CRC:

CRC cards characterize objects by class name,

responsibilities, and collaborators, as a way of giving learners

a direct experience of objects. Three dimensions which

identify the role of an object in a design: class name,

responsibilities, and collaborators. The class name of an

object creates a vocabulary for discussing a design.

Responsibilities identify problems to be solved. The solutions

will exist in many versions and refinements. A responsibility

serves as a handle for discussing potential solutions.

Collaborators objects will send or be sent messages in the

course of satisfying responsibilities.

Classes are created that describe real world objects that exist

in a system. These classes are assigned responsibilities, i.e.,

data and actions that the class is required to support. A class

may fulfill a responsibility by itself, or it may collaborate with

some other class to fulfill the responsibility. The advantage is

that the design team can easily move the cards around to

visualize the design, and modifications to the design can be

made quickly by simply replacing cards.

2.4 Demeter:

Adaptive programming deals with specifying the connections

between objects as loosely as possible and this is called

"structure-shy" programming. The Demeter system and tools

are all about "Adaptive" programming.

Law of Demeter (LoD) for functions says that: A method "M"

of an object "O" should invoke only the methods of the

following kinds of objects:

1. Itself

2. Its parameters

3. Any objects it creates/instantiates

4. Its direct component objects

The basic idea is to avoid invoking methods of a member

object that is returned by another method. When you do this,

you make structural assumptions about the container object

that may be likely to change. The container may later need to

be modified to contain a different number of the contained

objects, or it may end up being changed to contain another

object which contains the original component object. If the

"returned" object isn't a subpart of the object whose method

was invoked, nor of some other object, then it typically is not

a violation of LoD to invoke a method of the returned object.

Using the LoD you instead ask the container to invoke a

method on its elements and return the result. The details of

how the container propagates the message to its elements are

encapsulated by the containing object.

A side-effect of this is that if you conform to LoD, while it

may quite increase the maintainability and adaptiveness of

your software system, you also end up having to write lots of

little wrapper methods to propagate methods calls to its

components. This problem is addressed by the Demeter tools,

which automate the solution.

In this diagram, Object A has a dependency on Object B

which composes Object C. Under the LoD, Object A is

permitted to invoke methods on Object B, but is not permitted

to invoke methods on Object C.

2.5 dX:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

dX is an agile instance of RUP. The dX process consists of

the same four phases as RUP. The dX versions of the four

phases are:

a) Inception: This step focuses on determining the major

requirements, producing a preliminary version of the

project schedule, and designing a basic architecture for

the system.

b) Elaboration: This step focuses on iterative and

incremental design and coding of higher priority (higher-

risk) use cases, until the architecture of the system and

the project schedule are stabilized to a point that a release

schedule can be reliably worked out.

c) Construction: This step focuses on designing and

coding the remaining use cases. In dX, the construction

phase is a seamless extension of the elaboration phase,

with the release schedule being the only milestone

signifying the transition between the two.

Transition: This step focuses on gradual introduction of the

implemented releases of the system into the user environment,

and the subsequent maintenance activities.

2.6 EUP: (Enterprise Unified Process)

EUP extends RUP by adding two new phases and two new

disciplines, and also by extending the activities in some of the

old disciplines. In EUP, several changes have been made to

RUP disciplines also.

1) New Phases. The two new phases that EUP has added

are:

a) Production: Its focus is on keeping the software in

production until it is either replaced with a new version,

or retired and removed.

b) Retirement: It typically involves:

—Identification of the existing system’s coupling to other

systems;

—Redesign and rework of other systems so that they no

longer rely on the system being retired;

—Transformation of existing legacy data;

—Archiving of data previously maintained by the system;

—Configuration management of the removed software;

—System integration testing of the remaining systems.

2) New Disciplines. The two new disciplines that EUP has

added are:

a) Operations and support: This is concerned with issues

related to operating and supporting the system, typically

associated with the maintenance phase of the generic

software development lifecycle.

b) Enterprise management: This is concerned with the

activities required to create, evolve, and maintain the

organization’s cross-system artifacts, such as the

organization-wide models, software process, standards,

guidelines, and reusable artefacts.

2.7 Fusion:

Fusion methodology is the result of the integration,

unification and extension mainly of OMT, Booch, Objectory

and RDD. Fusion provides consistency and completeness

checks between phases to enable orderly and reliable

progression. The Fusion process consists of three phases:

1) Analysis: This focuses is on what the system does. The

models produced in this phase describe:

—Classes and objects of interest found in the application

domain, and the relationships that exist among these classes

and objects,

—The operations that are to be performed by the system; and

—The proper ordering of these operations.

2) Design: This focuses on how the system is to do what

has been defined during analysis. The design phase

models describe:

—Realization of system operations in terms of cooperating

objects;

—How these objects are linked together;

—How the classes to which the objects belong, are

specialized and refined

—Detailed particulars of each class’s attributes and methods.

3) Implementation: This focuses on the actual coding of

the system. The system design is mapped to a particular

programming environment. Design classes are mapped to

language-specific classes and object communications are

encoded as implementation methods.

2.8 HOOD: (Hierarchical Object Oriented

Design)

Object Oriented Design by Grady Booch and the concepts of

Abstract Machines are integrated into a coherent design

method called HOOD methodology. A HOOD design consists

of a parent-child hierarchy with a root object which represents

the system to be designed and a number of objects at different

lower levels. An object which is not decomposed into children

is called a terminal object. Intermediate objects are called

non-terminal objects.

Activities which take place during the definition of a non-

terminal object are like problem definition, statement of the

problem, analysis and structuring of the requirement data,

elaboration of an informal solution strategy, formalization of

the strategy, identification of objects, identification of

operations, grouping operations and objects, graphical

description, justification of the design decisions, formalization

of the solution - Object Description Skeleton

HOOD has its own benefits like design clarity, extensibility,

mapping to manpower, integration, public domain model,

maintainability and reusability. HOOD was designed special

consideration: smooth integration with requirements analysis,

concurrent development of independent parts, automated code

generation and testing, client-server and post-partitioning

support.

2.9 Octopus:

The purpose of the method is to create models which

elaborate on issues such as which classes and objects exist,

the structure, behavior and purpose of those objects and

classes, the structure and dynamics of relationships between

objects, the structural relationships between classes, the

smooth transition from objects and classes to tasks and

processes.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

Two object-oriented software life-cycle models exist: the

incremental and the evolutionary model. Octopus/UML

allows any combination of the two models because real-life

projects desire such flexibility.

2.10 OMT: (Object Modeling Technique)

The phases of OMT process are as follows:

1) Analysis: This builds a correct and comprehensible

model of the real world. Requirements of the users,

developers, and managers provide the information

needed to develop the initial problem statement.

2) System Design: In this high-level structure of the system

is chosen. The decisions that will be addressed during

system design are organizing the system into subsystems,

identifying concurrency, allocating subsystems to

processors and tasks, choosing the strategy for

implementing data stores in terms of data structures,

files, and databases, identifying global resources and

determining mechanisms for controlling access to them,

choosing an approach to implementing software control,

considering boundary conditions, establishing trade-off

priorities.

3) Object Design: Object design is concerned with fully

specifying the existing and remaining classes,

associations, attributes, and operations necessary for

implementing the system.

2.11 OOBE: (Object Oriented Business

Engineering)

The aim in all this work is to make semantics precise and

explicit in various OO specifications: business specifications

are used to understand and describe businesses independently

of any systems to be used for process automation. The hope of

this approach is that a single, clear and unambiguous

repository of knowledge about the business might be built in

order to provide a common reference point from which

relevant parties, including business domain experts, software

developers, or anyone else associated with examining or

changing the systems or processes of the organization, may

proceed.

The goal of this approach is to achieve seamlessness across

modeling phases, possibly reducing semantic dissonance by

using a consistent paradigm.

2.12 OOram:

The OOram method is a frame of reference for a family of

objects oriented methodologies. It captures the essence of

object orientation, which is to model interesting phenomena

as a structure of interacting objects. It offers the role model as

a powerful abstraction that supports a very general separation

of concern. The notion of role model synthesis supports the

construction of complex models from simpler ones in a safe

and controlled manner, and offers many opportunities for the

systematic application of reusable components.

2.13 OOSE: (Object Oriented Software

Engineering)

OOSE process consists of three main phases, each producing

a set of models:

(1) Analysis: Focuses on understanding the system and

creating a conceptual model of it. This phase consists of two

non-sequential, iterative subphases:

(1.1) Requirements analysis

(1.2) Robustness analysis: Aims at modeling the structure of

the system in terms of interface, data, and control objects, and

also by specifying the subsystems.

(2) Construction: This phase consists of two subphases:

(2.1) Design: Aims at modeling the run-time structure of the

system, and also the interobject as well as intraobject behavior

necessary to realize the requirements.

 (2.2) Implementation: Aims at building the software.

(3) Testing: Focuses on verifying and validating the

implemented system.

2.14 OPEN: (Object Oriented Process,

Environment and Notation)

OPF (OPEN Process Framework) is a process metamodel

defining five classes of components and guidelines for

constructing customized OPEN processes.

 (1) Work products: Any significant thing of value

(document, diagram, model, class, application) developed

during the project;

(2) Languages: The media used to document work products,

such as natural languages, modeling languages such as UML

or OML, and implementation languages such as Java, SQL, or

CORBA-IDL;

(3) Producers: Active entities (human or nonhuman) that

develop the work products;

(4) Work units: Operations that are performed by producers

when developing work products. Work units are activity, task,

technique.

(5) Stages: Durations or points in time that provide a high-

level organization to the work units. Stages are milestone and

stage with duration.

2.15 OSA: (Object Oriented System

Analysis)

In OSA, the system is modeled from three perspectives: object

structure, object behavior, and object interaction. An OSA

model of the system consists of three parts:

(1) Object relationship model: This describes objects and

classes as well as their relationships with each other and with

the ―real world‖;

(2) Object-behavior model: This provides the dynamic view

through states, transitions, events, actions, and exceptions

(analogous to a state-transition diagram);

(3) Object-interaction model: This specifies possible

interactions among objects.

2.16 RDD: (Responsibility Driven

Design)

RDD process starts when a detailed requirements

specification of the system has already been provided.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

RDD models an application as a collection of objects that

collaborate to fulfill their responsibilities. Responsibilities

include two key items:

(1) The knowledge an object maintains; and

(2) The actions an object can perform.

The process is divided into two phases:

1) Exploratory Phase: Discover the classes, determine

what behavior the system is responsible for and assign

these responsibilities to specific classes; and determine

what collaborations must occur among classes of objects.

2) Analysis Phase (RDD). The activities primarily

performed are factoring the responsibilities, identifying

possible subsystems of objects and modeling the

collaborations among objects and determining class

protocols and completing the specification of classes,

subsystems of classes, and client-server contracts.

2.17 ROPES: (Rapid Object Oriented

Process for Embedded Systems)

 A good process is needed to:

– Improve the product quality

– Save calendar and work time

– Make development efforts more predictable, schedulable,

and reliable

– Enable rapid response to looming risks

A ROPES consists of five phase which are as analysis, design,

translation, testing and party.

2.18 Scrum:

The name emphasizes the importance of teamwork in the

methodology and is derived from the game of rugby.

The Scrum process consists of three phases:

(1) Pregame: Concerned with setting the stage for the

iterative-incremental development effort; this phase consists

of the following subphases:

(1.1) Planning: Focuses on producing an initial list of

prioritized requirements for the system, analyzing risks

associated with the project, estimating the resources needed

for implementing the requirements, obtaining the resources

necessary for starting the development, and determining an

overall schedule for the project;

(1.2) Architecture/high-level design: Determines the overall

architecture so as to accommodate the realization of the

requirements identified so far;

(2) Development (game): Focuses on iterative and

incremental development of the system.

(3) Post-game: Focuses on integrating the increments

produced and releasing the system into the user environment.

2.19 Syntropy:

Syntropy does suggest a definite process through the levels of

modeling it prescribes. The three distinct, yet integrated,

model levels used in Syntropy are:

(1) Essential model: This models the problem domain, totally

disregarding software as a component of the system;

(2) Specification model: This abstractly models the

requirements of the software system, treating the system as a

stimulus-response mechanism, and assuming a computing

environment with unlimited resources;

(3) Implementation model: This models the software

system’s run-time structure and behavior in detail, taking into

account considerations pertaining to the computing

environment, and elaborating on how the software objects

should communicate.

Each model may be expressed along structural and behavioral

views. There are three kinds of views in Syntropy:

—Type view: This provides the structural view by describing

object types, their static properties and their relationships.

—State view: This provides the behavioral view by

describing the possible states for each object type and the way

it responds to stimuli by changing state and generating

responses.

—Mechanism diagram: This is solely used in the

implementation model for describing the flow of messages

among objects in response to stimuli.

2.20 XP: (Xtreme Programming)

The XP lifecycle consists of six phases:

 (1) Exploration: This focuses on developing an initial list of

high-level requirements, and determining the overall design

through prototyping.

(2) Planning: This focuses on estimating the time needed for

the implementation of each requirement, prioritizing the

requirements, and determining a schedule for the first release

of the system.

(3) Iterations to first release: This focuses on iterative

development of the first release of the system, using the

specific rules and practices.

(4) Productionizing: This focuses on system-wide

verification and validation of the first release, and its

deployment into user environment.

(5) Maintenance: It is the time for system evolution, and

therefore is the time when the project is considered to be in its

normal state.

(6) Death: This focuses on closing the project and conducting

post-mortem review and documentation.

2.21 MERODE: (Model Driven,

Existence Dependency Relation, Object-

Oriented Development)

A typical Merode analysis or conceptualization consists of

three views or diagrams: a so called existence dependency

graph (EDG) similarly to a UML class diagram, a propriarity

concept namely an object event table (OET) and a group of

finite state machines.

MERMAID is an object-oriented domain modeling tool to

create enterprise models using an UML class diagram, an

object-event table and finite state machines. The CASE tool

checks view consistency, has XMI support and code

generation abilities. The method is still incomplete

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

2.22 Object COMX: (Object

Communicating X-Machines)

COMX is a new design methodology that contains the formal

specification technique of communicating X-machines.

Communicating X-machines are typed finite state machines

that can communicate with each other via typed channels.

Object COMX comprises five main phases, each with specific

deliverables using a reachability analysis:

1) Requirements Analysis using soft systems analysis, use

cases and traditional methods of customer and user

interviews etc. to describe the proposed system in the

most effective way.

2) Object Modeling in the external behavioral view, where

the system is modeled directly as a set of interacting

objects.

3) Formal Specification of the internal behavior of the

objects, each as a communicating X-machine object.

4) Verification of the CXMO specification occurs via a use

case-reachability analysis. Various system properties

such as reachability, freedom from deadlock etc. can be

gathered from the use case - reachability tree.

5) Object-oriented Design of the system for

implementation purposes in which each CXMO is

classified and any inheritance and aggregation identified.

2.23 Octopus:

The purpose of the method is to create models which

elaborate on issues such as which classes and objects exist,

the structure, behavior and purpose of those objects and

classes, the structure and dynamics of relationships between

objects, the structural relationships between classes, the

smooth transition from objects and classes to tasks and

processes.

Two object-oriented software life-cycle models exist: the

incremental and the evolutionary model. Octopus/UML

allows any combination of the two models because real-life

projects desire such flexibility.

2.24 OMT: (Object Modeling Technique)

The phases of OMT process are as follows:

1) Analysis: This builds a correct and comprehensible

model of the real world. Requirements of the users,

developers, and managers provide the information

needed to develop the initial problem statement.

2) System Design: In this high-level structure of the system

is chosen. The decisions that will be addressed during

system design are organizing the system into subsystems,

identifying concurrency, allocating subsystems to

processors and tasks, choosing the strategy for

implementing data stores in terms of data structures,

files, and databases, identifying global resources and

determining mechanisms for controlling access to them,

choosing an approach to implementing software control,

considering boundary conditions, establishing trade-off

priorities.

3) Object Design: Object design is concerned with fully

specifying the existing and remaining classes,

associations, attributes, and operations necessary for

implementing the system.

2.25 HOOD: (Hierarchical Object

Oriented Design)

Object Oriented Design by Grady Booch and the concepts of

Abstract Machines are integrated into a coherent design

method called HOOD methodology. A HOOD design consists

of a parent-child hierarchy with a root object which represents

the system to be designed and a number of objects at different

lower levels. An object which is not decomposed into children

is called a terminal object. Intermediate objects are called

non-terminal objects.

Activities which take place during the definition of a non-

terminal object are like problem definition, statement of the

problem, analysis and structuring of the requirement data,

elaboration of an informal solution strategy, formalization of

the strategy, identification of objects, identification of

operations, grouping operations and objects, graphical

description, justification of the design decisions, formalization

of the solution - Object Description Skeleton

HOOD has its own benefits like design clarity, extensibility,

mapping to manpower, integration, public domain model,

maintainability and reusability. HOOD was designed special

consideration: smooth integration with requirements analysis,

concurrent development of independent parts, automated code

generation and testing, client-server and post-partitioning

support.

2.26 ICONIX:

ICONIX is a software development methodology which

predates RUP, XP and Agile software development. The

ICONIX process is UML Use Case driven but more

lightweight than RUP. ICONIX provides sufficient

requirement and design documentation, but without analysis

paralysis.

A principal distinction of ICONIX is its use of robustness

analysis, a method for bridging the gap between analysis and

design. This process makes the use cases much easier to

design, test and estimate. Essentially, the ICONIX Process

describes the core logical analysis and design modelling

process. However, the process can be used without much

tailoring on projects that follow different project management.

The ICONIX process is split up into four milestones. At each

stage the work for the previous milestone is reviewed and

updated. These are as: Requirements review, Preliminary

Design Review, Detailed Design Review, Deployment.

Unit tests are written to verify the system will match up to the

use case text, and sequence diagrams. Finally code is written

using the class and sequence diagrams as a guide.

All material on each page should fit within a rectangle of 18 x

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm

(1") from the top of the page and ending with 2.54 cm (1")

from the bottom. The right and left margins should be 1.9 cm

(.75‖). The text should be in two 8.45 cm (3.33") columns

with a .83 cm (.33") gutter.

3. CONCLUSION
This article presents a comprehensive review of software

development methodologies, but from the perspective of

process. There are existing reviews of methodologies from the

perspective of modelling languages available in the literature,

but there is little up-to-date synthesis material available that

focuses on process.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

6www.ijert.org

Attempts at integration, unification, and standardization

have actually aggravated the problems of complexity and

inconsistency, giving rise to a new family of lightweight, agile

methodologies, In every methodology, there are features to

exploit and pitfalls to avoid, many of which are direct or

indirect consequences of the method used in developing the

methodology or the circumstances surrounding the

development. Choosing the right method for developing the

target methodology is therefore of utmost importance.
Macintosh, use the font named Times. Right margins should

be justified, not ragged.

4. ACKNOWLEDGMENTS
Our thanks to the expert Mr. Ankush Thakare who have

contributed towards development of the template.

5. REFERENCES
[1] Booch, G., Martin, R. C., and Newkirk, J. 1998. Object

Oriented Analysis and Design with Applications, 2nd ed.

(Unpublished). Addison Wesley, Reading, MA. Chapter

on RUP and dX is available online at

http://www.objectmentor.com/resources/articles/RUPvs

XP.pdf.

[2] Cook, S. and Daniels, J. 1994. Designing Object

Systems: Object-Oriented Modeling with Syntropy.

Prentice-Hall, Englewood Cliffs, NJ.

[3] Lano, K., France, R., and Bruel, J. 2000. A semantic

comparison of Fusion and Syntropy. Comput. J. 43, 6,

451–468.

[4] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and

Sutherland, J. 2000. SCRUM: A pattern language for

hyperproductive software development. In Pattern

Languages of Program Design 4. N. Harrison, B. Foote,

and H. Rohnert, Eds. Addison-Wesley, Reading, MA.

637–651.

[5] Schwaber, K. 1995. SCRUM development process. In

Proceedings of the Conference on Object-Oriented

Programing Systems, Languages, and Applications

(OOPSLA’95) Workshop on Business Object Design and

Implementation, available online at

http://jeffsutherland.com/oopsla/schwapub.pdf.

[6] Firesmith, D. and Henderson-Sellers, B. 2001. The

OPEN Process Framework: An Introduction. Addison-

Wesley, Reading, MA.

[7] Graham, I., Henderson-Sellers, B., and Younessi, H.

1997. The OPEN Process Specification. ACM

Press/Addison-Wesley, New York, NY.

[8] Henderson-Sellers, B. and Unhelkar, B. 2000. OPEN

Modeling with UML. Addison-Wesley, Reading,MA.

REENSKAUG, T., WOLD, P., AND LEHNE, O. 1996.

Working with Objects: The OOram Software Engineering

Method. Manning Publications, Greenwich, CT.

[9] D’souza, D. F. and Wills, A. C. 1995. Catalysis—

practical rigor and refinement: Extending OMT, Fusion,

and Objectory. Available online at

http://www.catalysis.org/publications/papers/1995-

catalysisfusion.pdf.

[10] Derr, K.W. 1995. Apply OMT: A Practical Step-by-step

Guide to Using the Object Modeling Technique.

Cambridge University Press, New York, NY.

[11] Coleman, D., Arnold, P., Bodoff, S., Dollin, C.,

Gilchrist, H., Hayes, F., and Jeremaes, P. 1994. Object-

Oriented Development: The Fusion Method. Prentice-

Hall, Englewood Cliffs, NJ.

[12] Coleman, D., Jeremaes, P., and Dollin, C. 1992. Fusion:

A Systematic Method for Object-Oriented Development.

Hewlett Packard Laboratories.

[13] Booch, G. 1986. Object-oriented development. IEEE

Trans. Softw. Eng. 12, 2 (February), 211–221.

[14] Booch, G. 1994. Object Oriented Analysis and Design

with Applications. Benjamin/Cummings, Redwood City,

CA.

[15] Kirby McInnis and Castek. An Overview of CBD/e.

[16] Castek Introduces CBD/e Bringing the Power of

Components to Your Organization.

[17] Robert Biddle, James Noble and Ewan Tempero.

Reflections on CRC cards and OO Design.

[18] Kathleen Arnold Gray and Mark Guzdial and Spencer

Rugaber. Extending CRC Cards into a Complete Design

Process

[19] David Bock. The Paperboy, The Wallet and The Law of

Demeter

[20] Karl Lieberherr. Adaptive Object Oriented Software The

Demeter Method

[21] Jagdish Bansiya and Carl Davis. A Hierarchical Model

of Object Oriented Design Quality Assessment.

[22] Pawel Martenka and Bartosz Walter. Hierarchical Model

for Software Design Quality.

[23] Aslett M. An Overview of the HOOD Method.

[24] Domiczi Endre, Farfarakis Rallis, Ziegler Jürgen.

Release of Ocopus/UML.

[25] Octopus/UML Notation Summary. Farfarakis Rallis.

[26] Trygve Reenskaug. Working with OOram Software

Engineering Method.

[27] Trygve Reenskaug. MVC and DCA.

[28] Neil Maiden, Stephen Morris, Wolfgang Emmerich.

Object Oriented Analysis Design.

[29] Koichiro Ochimizu. Object Oriented Software

Development.

[30] Bruce Douglass. ROPES:Rapid Object Oriented Process

for Embedded Systems.

[31] Bruce Douglass. The Telelogic Harmony/ESW Process

for Real Time and Embedded Development.

[32] Linda Rising and Norman Janoff. The Scrum Software

Development Process for Small Teams.

[33] Jeff Sutherland, Fully Distributed Scrum: The Secret

Sauce of Hyperproductive Offshored Development

Teams.

[34] Mike Beeedle. Scrum: An Extension Pattren Language

for Hyperproductive Software Development.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

7www.ijert.org

