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Abstract—Beside there are lot of papers about parametric 

robot calibration, there is lack of research focused on the last 

step of the parametric calibration procedure – compensation. In 

this paper, an iterative numerical compensation algorithm is 

described in detail. In the case when the robot’s movement is 

controlled using its machine coordinates in order to compensate 

the robot’s errors, the issue is if such changes in machine 

coordinates eventually cause some unwanted changes or 

constraints violations in the feed or acceleration profile. 

Derivative analysis of compensated machine coordinates for 

robot motion typical in composite industry use case, showed 

there are not any violations of the constraints raised out of 

velocity, acceleration or jerk limitations, for all robot’s axes 

Keywords—Robot calibration; compensation; derivative 

analysis 

I.  INTRODUCTION  

In composite industry, the robot accuracy is one of the 

most important factors needed in the technological process. 

Any deviation from the given pose (position and orientation) 

of the robot tool could cause some product defect. In 

composite manufacturing, AFP (Automated fiber placement) 

or ATL (Automated tape laying) head, with very complex 

mechanical structure is used as a robot tool.  

Most common defects in AFP/ATL technologies are gaps 

between fibers/tapes out of predefined tolerance, overlap of 

consecutive tapes, laminate wrinkling, local buckling of the 

first ply etc. More details about composite product defects, 

their sources and comprehensive analysis of such defects’ 

types are given in Jordaens & Steensels [1]. 

One can conclude, an improvement in the robot accuracy 

is one of the key factors in reducing composite product 

defects, despite it not the only factor. To avoid composite 

product defects, entire process should be controlled in real 

time, including defect detection and robot accuracy control. 

Most common approach in robot accuracy improvement is 

parametric calibration. Most comprehensive review of robot 

accuracy improvement state of the art is given in Abderrahim 

et al [2]. They define the robot calibration as “a process by 

which manipulator real parameters’ values affecting its 

accuracy are established through direct or indirect 

measurement and used to improve its accuracy by modifying 

the positioning software”.  

Up to some modifications, the parametric calibration 

procedure follows these steps: 

1. Establish kinematics model 

2. Measurement 

3. Robot’s parameters identification 

4. Compensation 

Additionally, non-geometric sources of errors as 

temperature, links’ stiffness, loads etc, in a similar manner 

could be included in the parametric calibration procedure.  

Optotrac measurement system used to determine the tool 

position only and the Krypton K600 system with three linear 

CCD cameras developed by Metris company as well are 

described in [2]. Position accuracy is improved reducing  the 

position error from 3.25mm to 0.29mm and the orientation 

error from 5.43mrad to 0.35mrad, for a robot with load of 

158kg. 

All the researches related to the robot’s parametric 

calibration mainly follow the 4 steps procedure described 

above.  There are some variations in type of metrological 

equipment, choices of sample of measured poses in the robot’s 

workspace and whether nongeometric parameters are included 

or not.  

Nguyen et al. [3] for example, have developed a model to 

calibrate 27 DH robot parameters, measuring set of positions 

that follow circle path. Their results are experimentally 

confirmed on Hyundai HA-06 robot, reducing the average 

volumetric positional error from 3.657mm before the 

calibration, to 0.129mm after the calibration. Orientation error 

expressed by the Euler angles is reduced from [0.330o, 

0.672o, 1.400o] in average, to [0.009o, 0.017o, 0.013o] after 

the calibration. 

Similar research is conducted by Santolaria et al. [4], 

taking specific choice of measurement points made by Circle 
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Point Analysis approach. This approach advances are having 

clear geometric and physical meaning of the errors, since the 

robot tool is forced to describe circle movement, employing 

one particular robot’s axes at a time. They have used active 

target in order to achieve greater ranges measurements, but 

that increase the uncertainties. Some results can be found in 

[4] for the experiments made on Kuka KR 5 sixx R650 robot. 

One can conclude beside most clear result in geometric 

representation of measured errors, improvement in total 

volumetric error reduction is significantly worse – 33%-40% 

compared to 70-90% of improvement achieved by the models 

that perform parameters optimization in formal manner, 

without consideration of their physical meaning. 

Very accurate contact sensor in combination to specially 

designed artefact of 3 spheres is used to calibrate 25 robot 

parameters in the research presented by Joubair & Bonev [5]. 

The details of parametric calibration algorithm to identify 36 

geometric parameters of KUKA 480 R3330 robot could be 

found in [6]. Only positional errors are taken into 

consideration and 2 levels of algorithm validation are 

provided – using simulation and experimentally.  

Zhou & Kang [7] go step beyond, including non-

geometrical parameters in the optimization procedure, using 

genetic algorithm. They emphasize the stiffness of the robot’s 

links as key reason why geometric parameters calibration does 

not provide maximal accuracy improvement across entire 

workspace, especially in a case of complex tool as significant 

load. Experimental verification shows average positional error 

reduction to 0.091mm. Compared to results in [3], including 

non-geometrical parameters in robot calibration procedure 

significantly improve the robot accuracy. 

Comparison between geometric and non-geometric robot 

calibration is given in Joubair er al. [8]. The experimental data 

given there refer to Fanuc LR Mate 200 iC robot with both of 

approaches and using more than 7000 measurement points. 

Average positional error before calibration is 0.622mm. After 

the geometric calibration it is reduced to 0.250mm and after 

including stiffness of the last 5 robot’s axes, it is reduced to 

0.142mm. Tool orientation is not taken into consideration and 

an important note is given that only 200 measurement points 

are sufficient to identify all the robot parameters. More details 

how to include non-geometric parameters in the mathematical 

model are given by Kamil et al. [9]. In this research, different 

loads are used in order to experiment the impact of stiffness 

parameters. Experimental data refer to ABB IRB 1600 robot 

and the maximal positional error is 0.960mm if stiffness 

parameters are used, compared to 2.571mm if just geometric 

parameters are used. 

In our research, we have designed parametric robot 

calibration algorithm including 30 geometric parameters based 

on the kinematic model built as screw theory model [10] and 5 

stiffness parameters. This approach is experimentally 

confirmed on machine configuration consists of KUKA 

KR500 robot with ATL head manufactured by Mikrosam 

company. The average positional error is reduced from 

2.040mm before the calibration, to 0.580mm after the 

calibration. Orientation deviations are included in the 

optimization procedure as well. Improvements in the 

orientation accuracy are obtained, reducing the total 

orientation error from 0.147o to 0.095o in average. 

Making literature review, one can notice less information 

are provided for the step for in typical parametric calibration 

procedure – compensation. Usually, calibrated parameters are 

sent to the robot controller and there is lack of technical 

details how are they used to compensate the robot’s errors. 

This issue is especially important from robot’s kinematic and 

dynamic analysis point of view, in the case when the robot’s 

movement is controlled using its machine coordinates in order 

to compensate the robot’s errors. Interpolation also has some 

impact on the robot accuracy and some fluctuations could 

eventually lead to unwanted jumps in the velocity or 

acceleration profiles, for some of the robot axes.  

In the following section, our iterative numerical 

compensation algorithm is elaborated in detail. In the section 

3, derivative analysis of the machine coordinates is provided. 

Conclusions are given in the last section. 

II. ITERATIVE NUMERICAL COMPENSATION ALGORITHM 

Let Pdesired be a given pose vector of the 6R robot tool and 

its scalar components with respect to the reference coordinate 

system (RCS) are: 

 T
RCS

CBAZYX
desired

P ,,,,,=                              (1) 

The first three coordinates of the desired pose Pdesired refer 

to the position of tool center point (TCP) in millimeters, and 

the last three coordinates are Euler angles in degrees, and they 

refer to the tool orientation with respect to RCS. This format 

of desired pose in transformed to homogeneous 4x4 matrix for 

the purpose of easy calculations: 
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In order to determine appropriate machine coordinates for 

the given pose, the inverse kinematics algorithm based on the 

Paden-Kahan subproblems could be applied. Details of 

algorithmic approach of the generalized form of these 

subproblems are given in Dimovski et al [10]. Using this 

approach, 8 solutions of machine coordinates are usually 

determined, so trajectory planning algorithm is used to choose 

the most optimal one. For 6R industrial robot used in this 

research, 6 machine coordinates respective to 6 rotational axes 

are obtained: 

 T
iiiiiiideal ,6

,
,5

,
,4

,
,3

,
,2

,
,1

=                     (3) 

There are at least two reasons why this approach is 

idealized and mostly theoretical. First, nominal robot 

parameters are user, and second assumptions like last 3 axes 

of rotation are concurrent – they intersect at a single point in 

3D space. In reality, there are always some deviations of such 

idealized assumptions. The point is – such deviations are 
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quantified in the calibration procedure, so calibrated 

parameters should be used instead of nominal ones. 

No matter what kind of calibration algorithm is applied, 

the new set of calibrated parameters is obtained, and they 

differ from the nominal parameters. Also, these calibrated 

values of the parameters cannot be simply substituted in the 

same inverse kinematics procedure, since changing the 

parameters values, the assumptions of parallelism, 

orthogonally and concurrency are not valid anymore.  

Because of that, iterative numerical compensation 

algorithm is designed in order to calculate compensated 

machine coordinates appropriate to the given desired pose 

Pdesired, using the new set of calibrated values of the robot 

parameters. 

 T
ccccccdcompensate ,6

,
,5

,
,4

,
,3

,
,2

,
,1

=     (4) 

This algorithm is based on the Newton method. This 

approach’s fundamentals are given by Curry [11]. In the 

contemporary applied mathematics literature, more 

specifically papers refer to optimization problems, some 

details of the Newton method, its application and variety of 

modifications and implementations could be found, like in 

[12], [13].  

The desired pose coordinates Pdesired are input in this 

algorithm, as well as the ideal machine coordinates ideal, used 

as initial guess. The algorithm actually iteratively makes 

deviation reduction in order to get as closer as possible to the 

desired pose Pdesired, in the pose space, to some predefined 

tolerance  that also comes as input in the algorithm. One 

additional input value is needed – iterative step  as a measure 

of machine coordinates changes in each iteration. 

In the first iteration, machine coordinates are set to the 

initial guess values: 

idealdcompensate


1
     (5) 

The forward kinematics algorithm with calibrated values 

of the parameters is called in the next step and its output is 

used to determine deviation from the desired pose Pdesired. 

Such deviations are calculated and transformed into the pose 

space in order to obtain 6 scalar components of the deviations 

vector: 

 T
CBAZYXx

F = ,,,,,                    (6) 

The vector Fx,i determines the contribution of i-th machine 

coordinate in pose coordinates changes. Next, the differences 

x
F

ix
F −

,
     (7) 

are calculated for every i = 1,2,3,4,5,6. These 6 vectors with 

length 6 are organized as 6x6 matrix and that matrix divided 

by the iterative step  is actually Jacobian matrix J. 

The machine coordinates 
1

dcompensate
  are then 

corrected by Jacobian inverse multiplied by the vector Fx: 

x
FJ

dcompensatedcompensate


−
−=

112      (8) 

The result of the first iteration 
2

dcompensate
  is used as 

input in the second iteration. Completely the same procedure 

is applied until the objective function defined as a square of 

the magnitude of the vector Fx become small enough, within 

the tolerance . That means iteration procedure stops when the 

condition: 


2

x
F      (9) 

is satisfied. 

In this research, described iterative algorithm is 

implemented using the tolerance value of 1510−=  and 

iterative step value of 810−= . In most cases the iterative 

numerical compensation algorithm converges after 3-5 

iterations.  

Method for calculating the compensated machine 

coordinates after parametric robot calibration procedure, for 

given particular point Pdesired in the pose space is described in 

detail above. In practice, when 6R industrial robot, or even 

more complex machine configuration is used in composite 

tape laying is controlled by machine coordinates, usually an 

array of desired poses comes as input and G-code of machine 

coordinates should be produced in order to send it to the 

controller. That G-code is produced in some offline procedure 

such that for every desired pose, the described iterative 

numerical compensation algorithm is called in order to 

calculate appropriate compensated machine coordinates 

compensated, based on calibrated values of the robot parameters, 

no matter what kind of parametric calibration procedure is 

performed to derive such calibrated robot parameters.   

Beside the given desired poses, additionally machine 

configuration trajectory planning is very important in 

composite manufacture, since large number of machine 

coordinate vectors need to be interpolated through the G-code 

points and tool path has to be controlled and highly accurate 

along all the path. In online interpolation procedure, but in 

offline as well, the iterative numerical compensation 

algorithm calculations need to be performed very fast, and in 

the online case in real time.  

Challenge is additional check if such changes in the 

machine coordinates due to compensation cause unwanted 

changes in feed, acceleration or jerk for each of the robot or 

machine configuration drivers and eventually violation of their 

limitations. 

III. DERIVATIVE ANALYSIS OF THE MACHINE 

COORDINATES AS A FUNCTION OF TOTAL AXES 

DISPLACEMENT 

In order to check if some unwanted changes and violation 

of feed, acceleration or jerk constraints occurs, the array of 

compensated coordinates vectors is analyzed against 

appropriate uncompensated coordinates vectors. 
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Tool path defined as line in 3D physical space, with length 

of approximately 1500mm is the use case analyzed in this 

research. Since the tool path is straight line, theoretically it 

could be defined using G-code of only 2 points. But, in this 

case, the interpolation between these points is completely left 

to the controller and the tool orientation is not controlled as 

well. That is inadmissible, especially in the case of robot 

usage in composite tapes laying, since then following the 

predefined position and orientation of the tool along all the 

path is extremely important. In the practice, additional number 

of poses is offline programmed, usually taking uniform 

Euclidian distance travel of the tool center point.  

In this use case, the straight line is divided to 297 points at 

a uniform distance of 5mm and positions and orientations are 

determined for each of these points as in equation (1). Taking 

the nominal robot parameters and calling the standard Paden-

Kahan inverse kinematics procedure, 
ideal

  vector of 

machine coordinates is calculated, for each of 297 poses. This 

way, the G-code of uncompensated machine coordinates is 

created.  

The same 297 poses are used calling the iterative 

numerical compensation algorithm, described in the previous 

section, in order to obtain another G-code of compensated 

machine coordinates, concerned to the same path, the tool 

should follow.  

Tool poses refer to the Pose Space and Euclidian distances 

used to generate such uniformly distributed poses along the 

tool path refer to the physical 3D space where the robot 

motion is done. That does not mean each of the robot axes 

would perform uniform displacement. Controlling the robot 

motion sending the machine coordinates to the robot 

controller, the focus of interest is moved to the Machine 

Space. In the case of 6R industrial robot used in this research 

it is 6D machine space. Beside between any 2 successive 

points in the G-code, the tool always should travel 5mm 

displacement, in general, every robot axis should perform 

different displacement if any. As a consequence, velocities of 

the robot axes are different in different point of time. In this 

case, trajectory planning is left to the controller and it applies 

its own algorithms to interpolate several values taking into 

account to not violate the machine configuration dynamics. 

In order to take full control of each robot axis motion, 

some algorithm of the look-ahead class of algorithms should 

be applied, so after the complete trajectory planning every 

machine coordinate would be expressed as function of time t. 

Analysis of the performances for some of these algorithms can 

be found in [14]. Application of such trajectory planning 

algorithm to express the robot machine coordinates with 

respect to time t is out of the scope of this particular research.  

One of the most important researches in the area of 

machine configuration trajectory planning, considering the 

feed optimization is elaborated by Sencer et al. [15]. 

Nomenclature used in this paper is especially useful and it 

allows making clear distinction between trajectory planning as 

a function with respect to total vector displacement s of the 

axes in the machine space and optimization of the velocities of 

each of the axes expressing the axis displacement as a 

function with respect to the time t. Even more, feed, 

acceleration and jerk constraints for each machine 

configuration axis is expressed with respect to total vector 

displacement s, allowing trajectory planning, optimizing the 

feed and in this case, allowing a simple analysis if there are 

any constraints violations, before trajectory planning is done.  

More details how such constraints could be derived are 

given by Altintas & Kaan [16]. 

Starting from 297 vectors of machine coordinates given 

with appropriate G-code, total vector displacement of the 

robot axes is calculated using Euclidian metric in 6D machine 

space. The total axes vector displacement s is uniformly 

divided to 2900 parts, and for every appropriate value of s, 

interpolated values of each machine coordinate is obtained by 

linear interpolation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) Tsssssss 654321 ,,,,, =q      (10) 

The velocity of the axis i is denoted by (i=1,2,3,4,5,6): 

dt

d i
i


 =      (11) 

The acceleration of the axis i is denoted by: 

2

2

dt

d i
i


 =         (12) 

The jerk of the axis i is denoted by: 

3

3

dt

d i
i


 =         (13) 

Consequently, the vectors of velocity, acceleration and 

jerk are denoted by ( )sq , ( )sq  and ( )sq  respectively. 

Evaluation of these functions can be done only after the 

trajectory planning. In fact, they are used in trajectory 

planning optimization - machine configuration motion 

program, minimizing the total time needed to pass entire path 

and keeping all feed, acceleration and jerk constraints 

satisfied.  

Equation (10) determines an array of values for i-th 

machine coordinate (i=1,2,3,4,5,6), for each of 2900 values of 

total vector displacement s of the robot axes. 

Numerical procedure for approximation of the first, second 

and third derivative with respect to the total vector 

displacement s are applied. These derivatives are denoted as 

follows: 

ds

d i
si


 =,         (14) 

2

2

, ,
ds

d i
ssi


 =       (15) 

3

3

,
ds

d i
sssi


 =      (16) 

This way, vectors containing the first, second and third 

derivative of the 6 robot axes positions with respect to total 

vector displacement s are obtained: 
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( ) ( ) ( ) ( ) Tsss ssss ,6,2,1 ,...,, =sq    (17) 

( ) ( ) ( ) ( ) Tssssss ssss ,6,2,1 ,...,, =ssq      (18) 

( ) ( ) ( ) ( ) Tsssssssss ssss ,6,2,1 ,...,, =sssq      (19) 

If the maximal values of each axis velocity   are given, the 

normalized partial derivatives could be expressed: 

( )

max,

,

,

i

siv

si
v

s
q


=         (20) 

The velocity (feed) maximal allowed values, for each 

robot axis, for particular value of total vector displacement s, 

are determined by: 

( )
( ) sq

ss
v

sii

V

,6,5,4,3,2,1max

1
max

=

=   (21) 

Derivation of the equation (21), as well as acceleration and 

jerk constraints derivation details could be found in [6]. 

The equation (20) actually determines the first derivatives 

constraints of the functions ( )ssi, , raised out of velocity 

limitations. The first derivatives have to satisfy the constraints 

as well raised out of the acceleration and jerk limitations. 

( )

max,

,

,

i

sia

si
a

s
q


=         (22) 

( )

max,

,

,

i

sij

si
j

s
q


=         (23) 

In total, there are 3 constraints for the first derivatives of 

the functions ( )ssi, . In the equations (22) and (23), notations 

max,ia  and max,ij  are acceleration and jerk limitations for i-th 

axis respectively. 

Similarly, the second derivative of the functions ( )ssi,  

with respect to the total vector displacement of the robot axes 

has to satisfy the following 2 constraints raised out of 

acceleration and jerk limitations respectively, for each robot 

axis: 

( )

max,

,

,

i

ssia

ssi
a

s
q


=        

 (24) 

( )

max,

,

,

i

ssij

ssi
j

s
q


=        

 (25) 

The third derivative of the functions ( )ssi,  with respect to 

the total vector displacement of the robot axes has to satisfy 1 

constraint raised out of jerk limitations, for each robot axis: 

( )

max,

,

,

i

sssij

sssi
j

s
q


=        (26) 

According to that, the maximal allowed feed values, 

satisfying the maximal acceleration and jerk limitations, for 

each robot axis, as a function with respect to total vector 

displacement s are determined by: 

( )
( ) sq

ss
a

ssii

A

,6,5,4,3,2,1max

1
max,

=

=     (27) 

( )
( ) 3

,6,5,4,3,2,1max

1
max,

sq
ss

j

sssii

J

=

=      (28) 

Visual analysis of the first, second and third derivative of 

the machine coordinate 1, referred to A1 robot’s axis is shown 

on Fig. 1. First four diagrams show the displacement ( )s1  

and its derivatives ( )ss,1 , ( )sss,1  and ( )ssss,1  with respect to 

s, taking  rads 5.1;4.0 . Taking wider range of the total 

vector displacement s allows an analysis of the changes of 

appropriate functions, how frequent such changes happen, are 

there any unwanted fluctuations and if there is some 

significant difference between compensated and 

uncompensated values. If there are some violations of the 

limitations raised out of velocity, acceleration and jerk of the 

robot’s first axis, could be noticed as well. 

Blue graphs refer to the uncompensated values and the red 

ones to the compensated values of the machine coordinate 1 

of the robot’s axis A1, for all diagrams.  

One can conclude there are not significant deviations 

between uncompensated and compensated values; especially 

there are not such deviations that may cause limitations 

violation. The red graphs are slightly shifted compared to the 

blue ones, without significant increase or decrease of the 

maximal or minimal values in the observed interval. 

First diagram simply shows the machine coordinate ( )s1  

as a function with respect to s.  

Second diagram shows the first derivative ( )ss,1  and as 

well the constraints raised out of velocity limitations of the 

appropriate robot’s axis, shown as dotted green line; the 

constraints raised out of acceleration limitations of the 

appropriate robot’s axis, shown as dotted magenta line; and 

the constraints raised out of jerk limitations of the appropriate 

robot’s axis, shown as dotted cyan line. One can conclude 

there are not violations of all the constraints at all. 

Third diagram shows the second derivative ( )sss,1  and as 

well the constraints raised out of acceleration and jerk 

limitations of the robot’s axis A1, shown in similar manner – 

using magenta and cyan dotted line respectively. 

Finally, the fourth diagram shows the third derivative 

( )ssss,1  and the constraints raised out of jerk limitations of the 

robot’s axis A1, shown as dotted cyan line. 

This analysis shows there are not limitations violations 

neither for first, second or third derivative on the observed 

interval. 

In order to capture the more frequent changes of the 

presented function, the interval  rads 725.0;710.0  is used 
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in last four diagrams to zoom the diagrams from the previous 

four diagrams. 

IV. CONCLUSION

Parametric calibration algorithm is designed and is 

experimentally confirmed on machine configuration consists 

of KUKA KR500 robot with ATL head manufactured by 

Mikrosam company. As result, the average positional error is 

reduced from 2.040mm before the calibration, to 0.580mm 

after the calibration and the total orientation error is reduced 

as well from 0.147o to 0.095o in average. 

In order to include identified robot parameters in the robot 

control, using machine coordinates, iterative numerical 

compensation algorithm is designed and explained in detail.  

The issue if some unwanted changes would appear as 

result of machine coordinates changes, derivative analysis of 

the machine coordinates as a function of total axes 

displacement is provided. As use case, typical robot motion in 

composite industry is used and derivative analysis showed 

there are not any constraints violations neither related to 

velocity, acceleration or jerk limitations of the robot axes. 
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Fig.   1  First, second and third derivative analysis of the machine coordinate 1 with respect to s
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