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Abstract—Beside there are lot of papers about parametric
robot calibration, there is lack of research focused on the last
step of the parametric calibration procedure — compensation. In
this paper, an iterative numerical compensation algorithm is
described in detail. In the case when the robot’s movement is
controlled using its machine coordinates in order to compensate
the robot’s errors, the issue is if such changes in machine
coordinates eventually cause some unwanted changes or
constraints violations in the feed or acceleration profile.
Derivative analysis of compensated machine coordinates for
robot motion typical in composite industry use case, showed
there are not any violations of the constraints raised out of
velocity, acceleration or jerk limitations, for all robot’s axes
derivative
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. INTRODUCTION
In composite industry, the robot accuracy is one of the
most important factors needed in the technological process.
Any deviation from the given pose (position and orientation)
of the robot tool could cause some product defect. In
composite manufacturing, AFP (Automated fiber placement)
or ATL (Automated tape laying) head, with very complex

mechanical structure is used as a robot tool.

Most common defects in AFP/ATL technologies are gaps
between fibers/tapes out of predefined tolerance, overlap of
consecutive tapes, laminate wrinkling, local buckling of the
first ply etc. More details about composite product defects,
their sources and comprehensive analysis of such defects’
types are given in Jordaens & Steensels [1].

One can conclude, an improvement in the robot accuracy
is one of the key factors in reducing composite product
defects, despite it not the only factor. To avoid composite
product defects, entire process should be controlled in real
time, including defect detection and robot accuracy control.

Most common approach in robot accuracy improvement is
parametric calibration. Most comprehensive review of robot
accuracy improvement state of the art is given in Abderrahim
et al [2]. They define the robot calibration as “a process by
which manipulator real parameters’ values affecting its

accuracy are established through direct or indirect
measurement and used to improve its accuracy by modifying
the positioning software”.

Up to some modifications, the parametric calibration
procedure follows these steps:

1.  Establish kinematics model

2. Measurement

3. Robot’s parameters identification
4.  Compensation

Additionally, non-geometric sources of errors as
temperature, links’ stiffness, loads etc, in a similar manner
could be included in the parametric calibration procedure.

Optotrac measurement system used to determine the tool
position only and the Krypton K600 system with three linear
CCD cameras developed by Metris company as well are
described in [2]. Position accuracy is improved reducing the
position error from 3.25mm to 0.29mm and the orientation
error from 5.43mrad to 0.35mrad, for a robot with load of
158kg.

All the researches related to the robot’s parametric
calibration mainly follow the 4 steps procedure described
above. There are some variations in type of metrological
equipment, choices of sample of measured poses in the robot’s
workspace and whether nongeometric parameters are included
or not.

Nguyen et al. [3] for example, have developed a model to
calibrate 27 DH robot parameters, measuring set of positions
that follow circle path. Their results are experimentally
confirmed on Hyundai HA-06 robot, reducing the average
volumetric positional error from 3.657mm before the
calibration, to 0.129mm after the calibration. Orientation error
expressed by the Euler angles is reduced from [0.3300,
0.6720, 1.4000] in average, to [0.0090, 0.0170, 0.0130] after
the calibration.

Similar research is conducted by Santolaria et al. [4],
taking specific choice of measurement points made by Circle
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Point Analysis approach. This approach advances are having
clear geometric and physical meaning of the errors, since the
robot tool is forced to describe circle movement, employing
one particular robot’s axes at a time. They have used active
target in order to achieve greater ranges measurements, but
that increase the uncertainties. Some results can be found in
[4] for the experiments made on Kuka KR 5 sixx R650 robot.
One can conclude beside most clear result in geometric
representation of measured errors, improvement in total
volumetric error reduction is significantly worse — 33%-40%
compared to 70-90% of improvement achieved by the models
that perform parameters optimization in formal manner,
without consideration of their physical meaning.

Very accurate contact sensor in combination to specially
designed artefact of 3 spheres is used to calibrate 25 robot
parameters in the research presented by Joubair & Bonev [5].
The details of parametric calibration algorithm to identify 36
geometric parameters of KUKA 480 R3330 robot could be
found in [6]. Only positional errors are taken into
consideration and 2 levels of algorithm validation are
provided — using simulation and experimentally.

Zhou & Kang [7] go step beyond, including non-
geometrical parameters in the optimization procedure, using
genetic algorithm. They emphasize the stiffness of the robot’s
links as key reason why geometric parameters calibration does
not provide maximal accuracy improvement across entire
workspace, especially in a case of complex tool as significant
load. Experimental verification shows average positional error
reduction to 0.091mm. Compared to results in [3], including
non-geometrical parameters in robot calibration procedure
significantly improve the robot accuracy.

Comparison between geometric and non-geometric robot
calibration is given in Joubair er al. [8]. The experimental data
given there refer to Fanuc LR Mate 200 iC robot with both of
approaches and using more than 7000 measurement points.
Average positional error before calibration is 0.622mm. After
the geometric calibration it is reduced to 0.250mm and after
including stiffness of the last 5 robot’s axes, it is reduced t0
0.142mm. Tool orientation is not taken into consideration and
an important note is given that only 200 measurement points
are sufficient to identify all the robot parameters. More details
how to include non-geometric parameters in the mathematical
model are given by Kamil et al. [9]. In this research, different
loads are used in order to experiment the impact of stiffness
parameters. Experimental data refer to ABB IRB 1600 robot
and the maximal positional error is 0.960mm if stiffness
parameters are used, compared to 2.571mm if just geometric
parameters are used.

In our research, we have designed parametric robot
calibration algorithm including 30 geometric parameters based
on the kinematic model built as screw theory model [10] and 5
stiffness parameters. This approach is experimentally
confirmed on machine configuration consists of KUKA
KR500 robot with ATL head manufactured by Mikrosam
company. The average positional error is reduced from
2.040mm before the calibration, to 0.580mm after the

orientation accuracy are obtained, reducing the total

orientation error from 0.1470 to 0.0950 in average.

Making literature review, one can notice less information
are provided for the step for in typical parametric calibration
procedure — compensation. Usually, calibrated parameters are
sent to the robot controller and there is lack of technical
details how are they used to compensate the robot’s errors.
This issue is especially important from robot’s kinematic and
dynamic analysis point of view, in the case when the robot’s
movement is controlled using its machine coordinates in order
to compensate the robot’s errors. Interpolation also has some
impact on the robot accuracy and some fluctuations could
eventually lead to unwanted jumps in the velocity or
acceleration profiles, for some of the robot axes.

In the following section, our iterative numerical
compensation algorithm is elaborated in detail. In the section
3, derivative analysis of the machine coordinates is provided.
Conclusions are given in the last section.

Il. ITERATIVE NUMERICAL COMPENSATION ALGORITHM

Let Pqesirea e @ given pose vector of the 6R robot tool and
its scalar components with respect to the reference coordinate
system (RCS) are:

P =|X.Y,z,AB
desired [xv.z.a ’C]LCS @

The first three coordinates of the desired pose Pgesired refer
to the position of tool center point (TCP) in millimeters, and
the last three coordinates are Euler angles in degrees, and they
refer to the tool orientation with respect to RCS. This format
of desired pose in transformed to homogeneous 4x4 matrix for
the purpose of easy calculations:

x 'x % Px
n | o p
T=| Y Yy ¥y 'y 2
n | o p
z z 1 'z
0 0 0 1

In order to determine appropriate machine coordinates for
the given pose, the inverse kinematics algorithm based on the
Paden-Kahan subproblems could be applied. Details of
algorithmic approach of the generalized form of these
subproblems are given in Dimovski et al [10]. Using this
approach, 8 solutions of machine coordinates are usually
determined, so trajectory planning algorithm is used to choose
the most optimal one. For 6R industrial robot used in this
research, 6 machine coordinates respective to 6 rotational axes
are obtained:

95,i'96,i]T ©)

There are at least two reasons why this approach is
idealized and mostly theoretical. First, nominal robot
parameters are user, and second assumptions like last 3 axes
of rotation are concurrent — they intersect at a single point in

Oidear = LLi*%,i1%,i" %,

call_brz_itlon. Orlentaglon dewatl?lns Iare included n tne 3D space. In reality, there are always some deviations of such
optimization  procedure as well. Improvements in the idealized assumptions. The point is — such deviations are
IJERTV9IS110143 www.ijert.org 708

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 91ssue 11, November-2020

quantified in the calibration procedure, so calibrated
parameters should be used instead of nominal ones.

No matter what kind of calibration algorithm is applied,
the new set of calibrated parameters is obtained, and they
differ from the nominal parameters. Also, these calibrated
values of the parameters cannot be simply substituted in the
same inverse kinematics procedure, since changing the
parameters values, the assumptions of parallelism,
orthogonally and concurrency are not valid anymore.

Because of that, iterative numerical compensation
algorithm is designed in order to calculate compensated
machine coordinates appropriate to the given desired pose
Paesired, USINg the new set of calibrated values of the robot
parameters.

= 4
G)compensatei gl,c’ 62,C’ 03,C' 94,c’ 95,c’ 06, c]r “)

This algorithm is based on the Newton method. This
approach’s fundamentals are given by Curry [11]. In the
contemporary  applied  mathematics  literature, more
specifically papers refer to optimization problems, some
details of the Newton method, its application and variety of
modifications and implementations could be found, like in
[12], [13].

The desired pose coordinates Pgesired are input in this
algorithm, as well as the ideal machine coordinates ®igeal, Used
as initial guess. The algorithm actually iteratively makes
deviation reduction in order to get as closer as possible to the
desired pose Pgesired, in the pose space, to some predefined
tolerance ¢ that also comes as input in the algorithm. One
additional input value is needed — iterative step 6 as a measure
of machine coordinates changes in each iteration.

In the first iteration, machine coordinates are set to the
initial guess values:

! o (5)
compensatel ideal

The forward kinematics algorithm with calibrated values
of the parameters is called in the next step and its output is
used to determine deviation from the desired pose Pgesired-
Such deviations are calculated and transformed into the pose
space in order to obtain 6 scalar components of the deviations
vector:

FX:[AX,AY,AZ,AA,AB,AC]T (6)
The vector Fy; determines the contribution of i-th machine
coordinate in pose coordinates changes. Next, the differences
Fx,i -F, @)
are calculated for every i = 1,2,3,4,5,6. These 6 vectors with
length 6 are organized as 6x6 matrix and that matrix divided
by the iterative step 6 is actually Jacobian matrix J.
1
(C) are then
compensatel

corrected by Jacobian inverse multiplied by the vector Fx:

The machine coordinates

2 ol 11
compensatel _®compensatel J Fx ®)

2
compensatel
input in the second iteration. Completely the same procedure
is applied until the objective function defined as a square of
the magnitude of the vector F, become small enough, within
the tolerance . That means iteration procedure stops when the
condition:

The result of the first iteration © is used as

2
IF " <= ©)
is satisfied.
In this research, described iterative algorithm is

implemented using the tolerance value of £=10" and
iterative step value of §=10"%. In most cases the iterative

numerical compensation algorithm converges after 3-5
iterations.
Method for calculating the compensated machine

coordinates after parametric robot calibration procedure, for
given particular point Pgesired in the pose space is described in
detail above. In practice, when 6R industrial robot, or even
more complex machine configuration is used in composite
tape laying is controlled by machine coordinates, usually an
array of desired poses comes as input and G-code of machine
coordinates should be produced in order to send it to the
controller. That G-code is produced in some offline procedure
such that for every desired pose, the described iterative
numerical compensation algorithm is called in order to
calculate appropriate compensated machine coordinates
O compensated, 0@Sed on calibrated values of the robot parameters,
no matter what kind of parametric calibration procedure is
performed to derive such calibrated robot parameters.

Beside the given desired poses, additionally machine
configuration trajectory planning is very important in
composite manufacture, since large number of machine
coordinate vectors need to be interpolated through the G-code
points and tool path has to be controlled and highly accurate
along all the path. In online interpolation procedure, but in
offline as well, the iterative numerical compensation
algorithm calculations need to be performed very fast, and in
the online case in real time.

Challenge is additional check if such changes in the
machine coordinates due to compensation cause unwanted
changes in feed, acceleration or jerk for each of the robot or
machine configuration drivers and eventually violation of their
limitations.

I1l.  DERIVATIVE ANALYSIS OF THE MACHINE
COORDINATES AS A FUNCTION OF TOTAL AXES
DISPLACEMENT

In order to check if some unwanted changes and violation
of feed, acceleration or jerk constraints occurs, the array of
compensated coordinates vectors is analyzed against
appropriate uncompensated coordinates vectors.
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Tool path defined as line in 3D physical space, with length
of approximately 1500mm is the use case analyzed in this
research. Since the tool path is straight line, theoretically it
could be defined using G-code of only 2 points. But, in this
case, the interpolation between these points is completely left
to the controller and the tool orientation is not controlled as
well. That is inadmissible, especially in the case of robot
usage in composite tapes laying, since then following the
predefined position and orientation of the tool along all the
path is extremely important. In the practice, additional number
of poses is offline programmed, usually taking uniform
Euclidian distance travel of the tool center point.

In this use case, the straight line is divided to 297 points at
a uniform distance of 5mm and positions and orientations are
determined for each of these points as in equation (1). Taking
the nominal robot parameters and calling the standard Paden-

Kahan inverse kinematics procedure, ®'dea vector of
|

machine coordinates is calculated, for each of 297 poses. This
way, the G-code of uncompensated machine coordinates is
created.

The same 297 poses are used calling the iterative
numerical compensation algorithm, described in the previous
section, in order to obtain another G-code of compensated
machine coordinates, concerned to the same path, the tool
should follow.

Tool poses refer to the Pose Space and Euclidian distances
used to generate such uniformly distributed poses along the
tool path refer to the physical 3D space where the robot
motion is done. That does not mean each of the robot axes
would perform uniform displacement. Controlling the robot
motion sending the machine coordinates to the robot
controller, the focus of interest is moved to the Machine
Space. In the case of 6R industrial robot used in this research
it is 6D machine space. Beside between any 2 successive
points in the G-code, the tool always should travel 5mm
displacement, in general, every robot axis should perform
different displacement if any. As a consequence, velocities of
the robot axes are different in different point of time. In this
case, trajectory planning is left to the controller and it applies
its own algorithms to interpolate several values taking into
account to not violate the machine configuration dynamics.

In order to take full control of each robot axis motion,
some algorithm of the look-ahead class of algorithms should
be applied, so after the complete trajectory planning every
machine coordinate would be expressed as function of time t.
Analysis of the performances for some of these algorithms can
be found in [14]. Application of such trajectory planning
algorithm to express the robot machine coordinates with
respect to time t is out of the scope of this particular research.

One of the most important researches in the area of
machine configuration trajectory planning, considering the
feed optimization is elaborated by Sencer et al. [15].
Nomenclature used in this paper is especially useful and it
allows making clear distinction between trajectory planning as
a function with respect to total vector displacement s of the
axes in the machine space and optimization of the velocities of
each of the axes expressing the axis displacement as a

function with respect to the time t. Even more, feed,
acceleration and jerk constraints for each machine
configuration axis is expressed with respect to total vector
displacement s, allowing trajectory planning, optimizing the
feed and in this case, allowing a simple analysis if there are
any constraints violations, before trajectory planning is done.

More details how such constraints could be derived are
given by Altintas & Kaan [16].

Starting from 297 vectors of machine coordinates given
with appropriate G-code, total vector displacement of the
robot axes is calculated using Euclidian metric in 6D machine
space. The total axes vector displacement s is uniformly
divided to 2900 parts, and for every appropriate value of s,
interpolated values of each machine coordinate is obtained by
linear interpolation:

A(s)=[6,(5).6,(5).65(5). 6,(5). 65(5). 65 ()] (10)
The velocity of the axis i is denoted by (i=1,2,3,4,5,6):

. de.
0 =—L 11
iy 11)
The acceleration of the axis i is denoted by:
. d?e
6 = ! 12
=5 (12)
The jerk of the axis i is denoted by:
. de
6 =—1 13
e (13)

Consequently, the vectors of velocity, acceleration and
jerk are denoted by ¢(s), ¢(s) and ¢(s) respectively.
Evaluation of these functions can be done only after the
trajectory planning. In fact, they are used in trajectory
planning optimization - machine configuration motion
program, minimizing the total time needed to pass entire path
and keeping all feed, acceleration and jerk constraints
satisfied.

Equation (10) determines an array of values for i-th
machine coordinate (i=1,2,3,4,5,6), for each of 2900 values of
total vector displacement s of the robot axes.

Numerical procedure for approximation of the first, second
and third derivative with respect to the total vector
displacement s are applied. These derivatives are denoted as
follows:

. =% (14)
d?e,

isst— F (15)
d’e,

isss dSsI (16)

This way, vectors containing the first, second and third
derivative of the 6 robot axes positions with respect to total
vector displacement s are obtained:
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0.(5)= [0, ()6, (). 65 ()] 17)
0 (5)= [0 (5), 0, oo () By o (S)] (18)
0ss(S)= [91,555 (5)0y066(S) s O s s (19)

If the maximal values of each axis velocity are given, the
normalized partial derivatives could be expressed:
v Hi,s (S)

Qis = (20)
V

i,max

The velocity (feed) maximal allowed values, for each
robot axis, for particular value of total vector displacement s,
are determined by:

. _ 1 )
K maX(S)_ maX;_ 3456 iqi\l,s(sj} @

Derivation of the equation (21), as well as acceleration and
jerk constraints derivation details could be found in [6].

The equation (20) actually determines the first derivatives
constraints of the functions 6, (s), raised out of velocity

limitations. The first derivatives have to satisfy the constraints
as well raised out of the acceleration and jerk limitations.

a _ Hi,s(s)
Qs = ai'—max (22)
q, - HJ—(S) 23)

In total, there are 3 constraints for the first derivatives of
the functions @, ,(s). In the equations (22) and (23), notations

;o and j; . are acceleration and jerk limitations for i-th
axis respectively.

Similarly, the second derivative of the functions 6, (s)

with respect to the total vector displacement of the robot axes
has to satisfy the following 2 constraints raised out of
acceleration and jerk limitations respectively, for each robot
axis:

a gl,ss(s)
| (24)
j _gi,ss(s)
" e
(25)

The third derivative of the functions 6, ;(s) with respect to

the total vector displacement of the robot axes has to satisfy 1
constraint raised out of jerk limitations, for each robot axis:

i,max

(26)

J
qi,sss -

According to that, the maximal allowed feed values,
satisfying the maximal acceleration and jerk limitations, for

each robot axis, as a function with respect to total vector
displacement s are determined by:

. B 1
Sar maX(S) = \/max aaass iqia’ss (51} (27)

5, max(s) =, - (28)
max i=1,2,3,4,5,6 iqi,sss (S]}

Visual analysis of the first, second and third derivative of

the machine coordinate 6, referred to A; robot’s axis is shown

on Fig. 1. First four diagrams show the displacement 61(3)

and its derivatives 6,(s), 6, (s) and 6, () with respect to

1,ss8
s, taking s [0.41.5]rad . Taking wider range of the total
vector displacement s allows an analysis of the changes of
appropriate functions, how frequent such changes happen, are
there any unwanted fluctuations and if there is some
significant ~ difference  between  compensated  and
uncompensated values. If there are some violations of the
limitations raised out of velocity, acceleration and jerk of the
robot’s first axis, could be noticed as well.

Blue graphs refer to the uncompensated values and the red
ones to the compensated values of the machine coordinate 6,
of the robot’s axis A;, for all diagrams.

One can conclude there are not significant deviations
between uncompensated and compensated values; especially
there are not such deviations that may cause limitations
violation. The red graphs are slightly shifted compared to the
blue ones, without significant increase or decrease of the
maximal or minimal values in the observed interval.

First diagram simply shows the machine coordinate 91(5)
as a function with respect to s.

Second diagram shows the first derivative Hl,s(s) and as

well the constraints raised out of velocity limitations of the
appropriate robot’s axis, shown as dotted green line; the
constraints raised out of acceleration limitations of the
appropriate robot’s axis, shown as dotted magenta line; and
the constraints raised out of jerk limitations of the appropriate
robot’s axis, shown as dotted cyan line. One can conclude
there are not violations of all the constraints at all.

Third diagram shows the second derivative 6, ,(s) and as

well the constraints raised out of acceleration and jerk
limitations of the robot’s axis Az, shown in similar manner —
using magenta and cyan dotted line respectively.

Finally, the fourth diagram shows the third derivative
6’1,353(5) and the constraints raised out of jerk limitations of the
robot’s axis A;, shown as dotted cyan line.

This analysis shows there are not limitations violations
neither for first, second or third derivative on the observed
interval.

In order to capture the more frequent changes of the
presented function, the interval s [0.710;,0.725]rad is used
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in last four diagrams to zoom the diagrams from the previous
four diagrams.

IV. CONCLUSION

Parametric calibration algorithm is designed and is
experimentally confirmed on machine configuration consists
of KUKA KR500 robot with ATL head manufactured by
Mikrosam company. As result, the average positional error is
reduced from 2.040mm before the calibration, to 0.580mm
after the calibration and the total orientation error is reduced
as well from 0.147° to 0.095° in average.

In order to include identified robot parameters in the robot
control, using machine coordinates, iterative numerical
compensation algorithm is designed and explained in detail.

The issue if some unwanted changes would appear as
result of machine coordinates changes, derivative analysis of
the machine coordinates as a function of total axes
displacement is provided. As use case, typical robot motion in
composite industry is used and derivative analysis showed
there are not any constraints violations neither related to
velocity, acceleration or jerk limitations of the robot axes.
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