
  

 

 

  
 

Deploying De-Duplication on Ext4 File System 

Usha  A. Joglekar
1
, Bhushan M. Jagtap

2
, Koninika B.  Patil

3, 

1. Asst. Prof., 2, 3 Students 
 

Department of Computer Engineering 

Smt. Kashibai Navale College of Engineering 

Pune, India 

 

 

Abstract 
 

Memory space has become one of the most important 

and costly resources today in both personal as well as 

corporate areas. Amount of data to be stored is 

increasing rapidly as number of people using 

computing devices has increased. For effectively 

improving memory utilization, Data Deduplication has 

come under the spotlight. In deduplication, a single 

unique copy of data is stored in memory and all other 

copies refer to the address of this original data. The 

urgent need now is to make data deduplication more 

mainstream and integrate it with file systems of popular 

operating systems using inline deduplication. Our focus 

is on EXT4 File System for Linux, as Linux is one of 

the most widely used open source operating system. 

Also, since bit level deduplication lays severe overhead 

on the processor, chunk level deduplication is the most 

suitable for our task. 

 

1. Introduction  

 
Data storage techniques have gained attention lately 

due to exponential growth of digital data. Not just data, 

but backup and distributed databases with separate 

local memories give rise to several copies of the same 

data. Large databases not only consume a lot of 

memory, but they can lead to unnecessarily extended 

periods of downtime. It becomes an enormous task to 

handle the database; and backup and restoration also 

bogs down the CPU. 

Since we cannot compromise on backup space, we 

must make sure that there are no duplicate files in the 

data itself. Prevention of further transmission of 

multiple copies of data is necessary for which we need 

data deduplication.  

For example, a typical email server containing 

hundred instances of the same file of size about 1MB. 

Every time we take back up of the email platform, all 

hundred instances have to be saved again, requiring 

100MB more of storage space. 

Data Deduplication is a specific form of 

compression where redundant data is eliminated, 

typically to improve storage utilization[4] so, all the 

duplicate data is deleted, leaving a single copy of data 

which is referenced by all the files containing it.  

 

 
 

Figure 1.Deduplication concept 
 

Figure 1,shows two files, File 1 and File 2, which 

contain one repeating block of data. A block containing 

GHI is present in both files. So, the deduplication 

process replaces the GHI block in File 2 with a pointer 

to the same block in File 1.   

Data deduplication is not the same as data 

compression. In data compression, a function is applied 

for replacing a larger, frequently repeating pattern with 

a smaller pattern. Even though storage space is 

lessened, it will still contain redundant patterns. Data 

3471

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11159



  

 

 

  
 

deduplication on the other hand, searches for redundant 

patterns and saves only one instance of it. 

 

 

2. Classification of Deduplication 

 
Deduplication is a vast topic and can be classified in 

various ways as discussed below. 

 

2.1. Level of Deduplication 

 
Deduplication can take place at various levels 

depending on the granularity of the operation. We can 

have very high level deduplication in the form of File 

Level deduplication, or extremely fine Deduplication at 

very low level in the form of Byte Level deduplication. 

An intermediate between the two is block level 

deduplication. 

In File level deduplication, duplicate files are 

eliminated and replaced by a pointer to the original file. 

It is also known as Single Instance storage. 

It can be achieved by comparing each file to all the 

other files present in memory.   

Block Level Deduplication makes file level 

deduplication finer by dividing each file into clocks or 

chunks. If any of these blocks are repeated in memory, 

they will be removed and replaced by a pointer. It is 

also known as sub file level deduplication. 

Byte level deduplication is even more refined than 

block level but it requires far more processing. The data 

stream is analysed byte by byte and any recurring bytes 

are simply given references to the original byte instead 

of storing it again. 

 

2.2. Post Process and Inline Deduplication 

 
Post process deduplication carries out deduplication 

after the data has already been stored in memory. Here 

the need for hash calculations is removed, but when the 

memory is almost full, it may lead to problems as 

duplicate data may be present until deduplication is 

done. 

Before the data is written to disk, we check whether 

it is already present or not. Thus we ensure that 

duplicate data is never present in disk and we are not 

wasting precious memory space. 

 

2.3. Source and Target Deduplication 

 
Source Deduplication refers to when deduplication 

is carried out at source itself. Before sending the data to 

the destination we ensure that no duplicate or repeating 

data is present in the data. On the other hand, in Target 

deduplication, we carry out deduplication in the same 

place where we finally store the data, that is, in the 

destination. 

 

3. System Architecture 

 
Data Deduplication consists of several sub 

processes such as chunking, fingerprinting, indexing 

and storing. For managing these processes, there are 

logical components.  

 

 
 

Figure 2.System Architecture 
 

3.1. User Interface 

 
This is the operating system interface with the help 

of which the user reads, writes, modifies or deletes 

files. 

 

3.2. File Manager 

 
The File Manager manages namespace, so that file 

name in each namespace is unique. It also manages 

metadata. 

 

3.3. Deduplication Task Manager 

 
Before deduplication can be done, we need to divide 

the file into chunks and then ID each chunk using a 

hash function. Next, these ID‟s or fingerprints are 

stored in a table. Each time we call the deduplication 

task manager, we check in a table, known as Hash 

Store, if our current fingerprint matches any of the 

previously stored fingerprints. The Hash store consists 

of all of the fingerprints which are stored in it right 

from the first block which is stored in memory. 

 

3472

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11159



  

 

 

  
 

3.4. Store Manager 

 
Deduplication exploits three different storage 

components, File Store, Hash Store and Chunk Store. 

These stores are managed and updated by the Store 

Manager.  

 

4. General Working 

 
Whenever a user wants to create, modify or delete 

any file, we need to invoke inline deduplication 

process.  

Since we are using target deduplication, we carry 

out deduplication exactly where the data is being store, 

in memory. 

Once we have obtained the data stream being 

modified, Deduplication Task Manager intervenes and 

takes over control of the data stream, instead of directly 

writing it to memory. 

This data stream is separated into chunks or blocks 

of equal size and using a hash function, we find the 

hash value or fingerprint.  

Next, check if this fingerprint is present in the hash 

store. If we find a match then already a block having 

the same contents is present in memory and we do not 

need to write the same block again. We must simply 

store a reference to this block in the File Store. 

However, if a match is not found in the Hash Store, 

then we need to write this block to memory, update this 

fingerprint in the Hash Store and give a reference of 

this block in the File Store in the appropriate position. 

 

5. Chunking 

 
We can carry out deduplication at three levels as we 

have seen, that is, File Level, Block Level and Bit 

Level. Block level deduplication is more employable in 

the practical sense. The more important discussion is 

about the size of each block and whether it should be of 

fixed or variable size. Generally block size is taken to 

be 512 bits or a multiple of 512 as conventional hash 

algorithms work to this tune. As the data stream enters, 

we can mark the boundaries at the end of every 512 bits 

so that from the next bit, the next block of 512 bits will 

start. We can thus segregate the data stream into 

distinct well defined blocks. 

There are two ways in which we can chunk the data, 

by Fixed Size Chunking (FSC) or Content Defined 

Chunking (CDC). Fixed Size Chunking is simpler; the 

data stream is divided into equal sized chunks of data. 

But any changes made in these chunks will cause all of 

the following chunks to shift by that number of bits, 

due to the „avalanche‟ effect. So even if a previous 

match in the blocks was found, even a single bit change 

will prevent matching of a 99% similar block. On the 

other hand, if we use CDC, which sets the boundaries 

of the chunk according to how much of the data 

coincides, dynamically, we will spend a lot of time and 

processing power as the complexity of the operation 

increases greatly. 

As shown in Figure 3(b), a data stream ABCDEF is 

divided into two blocks of equal sizes, ABC and DEF. 

When we add Z after C, in FSC, the hash value of the 

entire sequence will change. Even if DEF is present in 

the following sequence, we will not be able to identify 

it as a duplicate block.  If we use VSF as shown in 

Figure 3(a), we can allocate a separate block to „Z‟ and 

DEF will remain a separate block so that hash value 

will remain same and deduplication of data will be 

identified. 

 
 

Figure 3 .Problems in fixed size chunking (FSC) 

 

Using a sliding window of 512 bits, we will have to 

shift it bit by bit for the entire data stream.  

 

6. Hashing 

 
Rather than handling the entire original sequence, 

we compress each chunk using a hash function giving 

us a much smaller, handy fingerprint. It helps make 

comparison and storage simpler. We can use any 

conventional hash function or algorithm such as MD5 

or SHA for creating the fingerprint.  

The MD5 algorithm is capable of reducing a string 

of 512 bits to 128 bits. Since the compressed 

fingerprint is much smaller than the original, chances 

are that two different strings may give the exact same 

fingerprint. This is known as collision and in MD5, the 

probability of collision is 2
-64

.SHA1 is more secure in 

this regard than MD5. It reduces the original string of 

512 bits to 160 bits, therefore reducing the probability 

3473

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11159



  

 

 

  
 

of collision to 2
-80

, which is much less than that of 

MD5. However, MD5 gives better throughput in terms 

of system performance and is faster and costs less than 

SHA, just about a third. 

MD5 and SHA algorithms consist of many rounds 

and steps of encryption making it complicated so as to 

reduce the possibility of a collision occurring. Different 

functions of logical, arithmetic and shift operations are 

performed on the block of data.  

Both MD5 as well as SHA1 suffer from certain 

drawbacks as mentioned above and the way to go 

forward would be to design a deduplication specific 

Hash Algorithm which will combine the benefits of 

both SHA1 and MD5 and will be more suitable for our 

work. 

 

7. Indexing 

 
Once we have created fingerprints for all of the 

chunks, we can check if our current chunk is already 

present in memory or not.  

First of all let us understand what storage structures or 

„stores‟ are being used.  

 

7.1 Chunk store 

 
The actual unique data blocks are present in the 

chunk store. These chunks may be a part of many 

different files and only one copy is maintained which is 

referenced by all the files containing it. 

 

7.2 Hash Store 

 
Hash store contains the compressed fingerprints of 

the corresponding chunks stored in the Hash Store. It is 

these fingerprints which are compared when searching 

for a duplicate data block. 

 

7.3 File Store 

 
The File Store is a logical table consisting of all the 

files. Each file is broken into chunks. A reference to 

each chunk is stored in the file store. In the Linux file 

system, it is known as the inode table. 

Indexing deals with the searching of hash store for a 

matching fingerprint.  

 

8. Update stores 

 
As said above, the stores need to be updated 

whenever a modification is made to any file. If a match 

is found in the Hash store, then only the File Store 

needs to be updated.  

If the matching Hash is not found then this new 

fingerprint is added in the Hash Store, the new block is 

written to the memory and its address is stored in the 

appropriate place in the File Store. 

 

9. Future Scope 
 

One of the major drawbacks of Data Deduplication 

is that a significant amount of time is lost in chunking 

and fingerprinting, as well as indexing. This degrades 

system performance. 

For this purpose, we can use pipelining and 

parallelism, especially in multicore systems[1][2]. We 

can use parallel processing using the multiple available 

cores simultaneously. Since the chunking and hashing 

are independent of each other. Even the chunking and 

hashing of adjacent blocks is not interdependent. Hence 

all of these operations can be conducted concurrently. 

The results of all these can be combined at the Indexing 

stage, where we require the results of all the stages 

serially so that we do not miss out on the blocks which 

we even carry out parallely. If efficient use of 

parallelism is made then it will be easier to integrate 

deduplication on the computer as it will reduce runtime 

overheads and prevent the processor from diverting all 

of its resources to deduplication process. All popular 

Operating Systems should employ deduplication 

process before the actual writing of data can take place 

so as to make best use of memory.   

Also, the hashing function should be specific to 

deduplication. We can combine advantages of existing 

hashing algorithms to make a new one which gives 

high performance as well as minimizes the risk of 

collision.  

Thus deduplication has a lot of scope in future and 

should be converted into a basic functionality available 

and inbuilt in all new age systems. 

 

10. Conclusion 

 
Data deduplication is more of a necessity than a 

mere tool to make maximum usage of memory. It is 

simple to implement and it‟s only drawback, of 

consuming too much of processing power, can be 

overcome with the help of parallelism and pipelining. 

All operating systems should have inbuilt facility for 

deduplication, in all file systems. 

 

 

 

 

3474

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11159



  

 

 

  
 

11. Mathematical model 

 
We now provide a model of the system in terms of 

the Set Theory 

1. Let „S‟ be the de-duplication system 

S = {. . . 

2. Identify the inputs F,M where F is File and M is 

Metadata 

S = {F, M. . . 

F = {i | ‟i‟ is collection of row data} 

M = {t |„t‟ is a collection of information, i.e. inodes of 

the file} 

3. The output is identified as O 

S = {F, M, O. . . 

O = {„O‟|O is metadata i.e. inode structure of file} 

4. The processor is identified as P 

S = {F, M, O . . . 

P = {S1, S2, S3, S4} 

5. S1 is the set of chunking module activity and 

associated data 

S1 = {S1in, S1p, S1op} 

S1in= {f |‟f‟ is valid stream of bytes} 

S1p= {f |‟f‟ is chunking function to convert S1in to 

S1op} 

S1p (S1in) = S1op 

S1op = {t |„t‟ is output generated by chunking algorithm 

i.e. chunks of data} 

6. S2 is the set for fingerprinting activities and 

associated data 

S2 = {S2in, S2p, S2op} 

S2in= {t |„t‟ is valid chunk of data} 

S2 p= {t |„t‟ is the set of functions for fingerprinting} 

S2p (S2in) = S2op 

S2op = {t |„t‟ is finger print of the S2in1} 

7. S3 is the set of data modules for searching the hash 

store and related activities 

S3 = {S3in1, S3in2, S3p, S3op} 

S3in1 = {t |„t‟ is valid fingerprint of chunk} 

S3in2 = {t |„t‟ is hash store} 

S3p = {t |„t‟ is set of functions for searching fingerprints 

in hash store} 

S3p (S3in) = S3op 

S3op = {t |„t‟ is valid fingerprint indicating presence or 

absence of chunk} 

8. S4 is the set of modules and activities to update the 

store 

S4 = {S4in, S4p, S4op} 

S4in = {(t1, t2, t3)} | „t1‟ is the valid chunk value, t2 is 

the fingerprint of t1, t3 isthe search flag associated with 

t1} 

S4p = {t |„t‟ is the set of functions for updating chunk, 

hash and file metadataStore} 

S4p (S4in) = S4op 

S4op= {t|„t‟ is the metadata, i.e. inode of updated 

cluster} 

9. Identify the failure cases as F‟ 

S = {F, M, O, F‟. . . 

Failure occurs when 

F‟ = {Φ} 

F‟ = {p | „p‟ is collision of fingerprints} 

F‟ = {p | „p‟ does not have fingerprint in hash store} 

10. Identify success cases (terminating case) as „e‟ 

S = {F, M, O, F‟, E. . . 

Success is defined as 

E = {p |‟p‟, i.e. successfullyupdated hash, chunk, file 

store} 

11. Identified initial condition as S0 

S= {F, M, O, F‟, E, S0} 

Initial condition for deduplication is there should be 

redundant data present inChunk store and respective 

fingerprint of chunks must be present in hash store, i.e., 

S2in2≠ {Φ} if chunk store is not null. 

 

12. References  

 
[1] Keren Jin, Ethan L. Miller,“The Effectiveness of 

De-duplication on Virtual Machine Disk 

Images”,SYSTOR 2009, Haifa, Israel, May 2009. 

[2] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min 

Fu, and Zhongtao Wang,"P-Dedupe: 

ExploitingParallelism in DataDe-duplication 

System",IEEE Seventh International Conference 

on Networking, Architecture, and Storage. 2012 

[3] M. Lillibridge, K. Eshghi, D. Bhagwat, V. 

Deolalikar, G. Trezise, and P. Camble, “Sparse 

indexing: large scale, inline deduplication 

usingsampling and locality,” in Proccedings of the 

7th conference on Fileand storage technologies. 

USENIX Association, 2009, pp. 111–123. 

[4] http://en.wikipedia.org/wiki/Data_de-duplication 

[Online; accessed 28- September -2013] 

[5] http://www.herongyang.com/Cryptography/index.h

tml[Online;accessed 5- October -2013] 

[6] http://moinakg.wordpress.com/tag/pcompress[Onli

ne; accessed 5- October -2013] 

[7] http://blog.mcpc.com/?Tag=data%20deduplication

[Online; accessed 5- October -2013] 

3475

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11159


