Degree of Approximation of function belonging to Lip (α, r) functions by Product Summability Method

Ripendra Kumar, B.K. Singh \& Aditya Kumar Raghuvanshi

Department of Mathematics
IFTM University, Moradabad, (U.P.) India, 244001

Abstract

In this paper author have been determined the degree of approximation of certain functions belonging to $\operatorname{Lip}(\alpha, r)$ class by $(C, 1)(E, q)$ means of its Fourier series.

1 Definitions and notations

Let $f(t)$ be periodic functions with period 2π and integrable in the Lebesgue sense. The fourier series $f(t)$ is given by

$$
\begin{equation*}
f(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cdot \cos n t+b_{n} \cdot \sin n t\right) \tag{1}
\end{equation*}
$$

A function $f \in \operatorname{Lip}(\alpha, r)$ for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{1 / r}=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1, t>0 \tag{2}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by trigonometrical polynomial t_{n} of order n is defined by Zygmund [1]

$$
\begin{equation*}
\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}(x)-f(x)\right|: x \in R\right\} \tag{3}
\end{equation*}
$$

If $(E, q)=E_{n}^{q}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n} q^{n-k} \cdot s_{k} \rightarrow s$ as $n \rightarrow \infty$. Then an infinite series $\sum_{k=0}^{\infty} u_{k}$ with the partial sums s_{n} is said to be summable (E, q) to the definite number s. (Hardy [4]).

Ripendra Kumar, B.K. Singh \& Aditya Kumar Raghuvanshi

The series $\sum_{k=0}^{\infty} u_{k}$ is said to be $(C, 1)$ summable to s. If $(C, 1)=\frac{1}{(n+1)} \sum_{k=0}^{n} s_{k} \rightarrow$ s as $n \rightarrow \infty$. The $(C, 1)$ transform of the (E, q) transform defines the $(C, 1)(E, q)$ transform of the partial sums s_{n} of the series $\sum_{k=0}^{\infty} u_{k}$.

Thus if

$$
\begin{equation*}
(C E)_{n}^{q}=\frac{1}{(n+1)} \sum_{k=0}^{n} E_{k}^{q} \rightarrow s \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

where E_{n}^{q} denotes the (E, q) transform of s_{n}, then the series $\sum_{k=0}^{\infty} u_{k}$ is said to be summable $(C, 1)(E, q)$ means or simply summable $(C, 1)(E, q)$ to s. We shall use following notation:

$$
\phi(t)=f(x+t)+f(x-t)-2 f(x)
$$

2 Main Theorem

In this paper we have generalized the theorem of S. Lal [12].
Theorem 2.1. If $f: R \rightarrow R$ is 2π periodic, Lebesgue integrable on $[-\pi, \pi]$ and belonging to the Lipschitz (α, r) class then the degree of approximation of f by the $(C, 1)(E, q)$ product means of its Fourier series satisfies for $n=0,1,2,3, \ldots$

$$
\left\|(C E)_{n}^{q}(x)-f(x)\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right) \text { for } 0<\alpha<1 \text { and } r>1
$$

3 Lemmas

For proof of our theorem, we shall use the following lemmas [12].
Lemma 1. Let

$$
M_{n}(t)=\frac{1}{2 \pi(n+1)} \sum_{k=0}^{n}\left[\frac{1}{(q+1)^{k}} \sum_{r=0}^{k}\binom{k}{r} q^{k-r} \frac{\sin \left(r+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right]
$$

then

$$
M_{n}(t)=O(n+1) \text { for } 0<t<\frac{1}{n+1}
$$

Lemma 2.

$$
M_{n}(t)=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1}<t<\pi
$$

Degree of Approximation of function belonging to $\operatorname{Lip}(\alpha, r)$ functions by ...

4 Proof of the Theorem

The $\mathrm{n}^{\text {th }}$ partial sum $s_{n}(x)$ of the series (1) at $t=x$ is written as

$$
s_{n}(x)=f(x)+\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \cdot \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

So that (E, q) means of the series (1) are

$$
\begin{aligned}
E_{n}^{q}(x) & =\frac{1}{(q+1)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} s_{k}(x) \\
& =f(x)+\frac{1}{2 \pi(q+1)^{n}} \int_{0}^{\pi} \frac{\phi(t)}{\sin \left(\frac{t}{2}\right)}\left(\sum_{k=0}^{n}\binom{n}{k} \sin \left(k+\frac{1}{2}\right) t\right) d t .
\end{aligned}
$$

Therefore $(C, 1)(E, q)$ means of the series (1) are

$$
\begin{align*}
(C E)_{n}^{q}(x) & =\frac{1}{(n+1)} \sum_{k=0}^{n} E_{k}^{q}(x) \quad(n=0,1,2,3, \ldots) \\
& =f(x)+\frac{1}{2 \pi(n+1)} \sum_{k=0}^{n}\left\{\frac{1}{(q+1)^{k}} \int_{0}^{\pi} \frac{\phi(t)}{\sin \left(\frac{t}{2}\right)}\left(\sum_{r=0}^{k}\binom{k}{r} q^{k-r} \sin \left(r+\frac{1}{2}\right) t d t\right)\right\} \\
& =f(x)+\int_{0}^{\pi} \phi(t) \cdot M_{n}(t) d t \tag{5}
\end{align*}
$$

where

$$
M_{n}(t)=\frac{1}{2 \pi(n+1)} \sum_{k=0}^{n}\left[\frac{1}{(q+1)^{k}} \sum_{r=0}^{k}\binom{k}{r} q^{k-r} \frac{\sin \left(r+\frac{1}{2}\right) t}{\sin (t / 2)}\right]
$$

so

$$
\begin{align*}
(C E)_{n}^{q}(x)-f(x) & =\int_{0}^{\pi} \phi(t) \cdot M_{n}(t) d t \\
& =\left(\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right) \phi(t) \cdot M_{n}(t) d t \\
& =I_{1}+I_{2} \tag{6}
\end{align*}
$$

Now

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{1}{n+1}} \phi(t) \cdot M_{n}(t) d t \\
\left|I_{1}\right| & \leq\left(\int_{0}^{\frac{1}{n+1}}[\phi(t)]^{r} d t\right)^{\frac{1}{r}} \cdot\left(\int_{0}^{\frac{1}{n+1}}\left[M_{n}(t)\right]^{s} d t\right)^{\frac{1}{s}}, \text { using Hölder's inequality }
\end{aligned}
$$

Ripendra Kumar, B.K. Singh \& Aditya Kumar Raghuvanshi

$$
\begin{aligned}
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha}}\right) \cdot\left(\int_{0}^{\frac{1}{n+1}}(n+1)^{s} d t\right)^{\frac{1}{s}} \\
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha}}\right) \cdot\left[\frac{(n+1)^{s}}{n+1}\right]^{\frac{1}{s}} \\
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha}}\right) \cdot\left(\frac{1}{(n+1)^{\frac{1-s}{s}}}\right) \\
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{s}-1}}\right) \quad \because \frac{1}{r}+\frac{1}{s}=1 \\
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha-\left(1-\frac{1}{s}\right)}}\right) \quad \\
& \left|I_{1}\right| \leq O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
\end{aligned}
$$

Next

$$
\begin{aligned}
& I_{2}=\int_{\frac{1}{n+1}}^{\pi} \phi(t) \cdot M_{n}(t) d t \\
& \left|I_{2}\right|=\left|\int_{\frac{1}{n+1}}^{\pi} \phi(t) \cdot M_{n}(t) d t\right| \\
& \left|I_{2}\right| \leq\left(\int_{\frac{1}{n+1}}^{\pi}(\phi(t))^{r} d t\right)^{\frac{1}{r}}\left(\int_{\frac{1}{n+1}}^{\pi}\left(M_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}} \\
& \left|I_{2}\right| \leq O\left(\frac{1}{(n+1)^{\alpha}}\right)\left(\int_{\frac{1}{n+1}}^{\pi} \frac{1}{t^{s}} d t\right)^{\frac{1}{s}} \\
& \left|I_{2}\right| \leq O\left(\frac{1}{(n+1)^{\alpha}}\right)\left[\frac{1}{n+1}\right]^{\frac{1-s}{s}} \\
& \left|I_{2}\right| \leq O\left(\frac{1}{(n+1)^{\alpha+\frac{1-s}{s}}}\right) \\
& \left|I_{2}\right| \leq O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{s}-1}}\right) \\
& \left|I_{2}\right| \leq O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right)
\end{aligned}
$$

Degree of Approximation of function belonging to $\operatorname{Lip}(\alpha, r)$ functions by ...

Then from (6) and the above inequalities we have

$$
\left\|t_{n}-f\right\|_{\infty}=\sup \left\{\left|t_{n}(x)-f(x)\right|: x \in R\right\}=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{r}}}\right), 0<\alpha<1, r>1 .
$$

This completes the Proof of the theorem.

5 Corollary

If $r \rightarrow \infty$ then degree of approximation of a function $f \in \operatorname{Lip\alpha }$ is given by

$$
\left\|(C E)_{n}^{q}(x)-f(x)\right\|_{\infty}=O\left((n+1)^{-\alpha}\right) \text { for } 0<\alpha<1
$$

which reduces to the theorem of S. Lal [12].

References

[1] Zygmund, A.; Trigonometric series $2^{\text {nd }}$ Ed. Cambridge Univ. Press, (1959) 114-115.
[2] Rhodes, B.E.; On degree of approximation of functions belonging to Lipschitz Class (2003).
[3] Sahney, B.N.and Goel, D.S.; On the degree of approximation of continuous function, Rachi Univ. Maths J, 4 (1973), 50.
[4] Hardy, G.H.; Divergent Series, Oxford, at the Clarendon Press, 1949.
[5] Alexits, G.; Convergence Problems of Orthogonal Series. Pergamon Press London (1961).
[6] Qureshi, K.; On degree of approximation of function belonging to the Lip α class, Indian Jour. of pure appl. Math., 13 (1982) 8, 898.
[7] Qureshi, K. and Nema, H.K.; A class of function and their degree of approximation, Ganita, 41 (1990) 1, 37.
[8] Qureshi, K.; On degree of approximation of a periodic function f by almost Nörlund means, Tamkang Jour. Math. 12, (1981) 1,35.
[9] Lal, S. and Yadav, K.N.S.; On the degree of approximation of function belonging to Lipschitz Class, Bull. Cal. Math. Soc., 93 (2001) 3, 191-196.
[10] Chandra, Prem; On degree of approximation of functions belonging to Lipschitz class, Nanta Math. 8 (1975), 88.

Ripendra Kumar, B.K. Singh \& Aditya Kumar Raghuvanshi

[11] Lal, S. and Kushwaha, J.K.; Approximation of Conjugate of functions belonging to the generalized Lipschitz class by lower triangular matrix means, Int. Journal of Math. Analysis, 3(2009) 21, 1031-1041.
[12] Lal, S. and Kushwaha, J.K.; Degree of approximation of Lipschitz function by product summability method, Int. Mathematical Forum, 4, 2009, no. 43, 2101-2107.
[13] Sarangi Sunita et al.; Degree of approximation of Fourier series by Housdörff and Nörlund Product means, Journal of Computation and Modelling, Vol. 3, no. 1, 2013, 145-152.

