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ABSTRACT - This is driven by the exponential increase in hyper-
realistic synthetic audio-known more colloquially as "deepfakes"-
which pose an enormous risk on everything from misinformation 
and political manipulation to identity theft. Against this backdrop, 
the following project proposes a web-based Deepfake Audio 
Detector capable of classifying recordings with high precision as 
"Real" or "Fake." In a deep learning approach, based on audio 
forensics, the system will take in input files, MP3, or WAV, and 
generate Log-Mel Spectrograms using the Librosa library. The 
graphical representations of sound frequencies will be fed into a 
Recurrent Neural Network with Long Short-Term Memory layers-
a chosen architecture for detecting subtle distortions in the time-
based pattern of human speech. The trained model will be deployed 
as part of a user-friendly web interface provided through the Flask 
framework. User analysis can be done online through a drag-and-
drop methodology. It thereby serves as an easy and effective way to 
validate the integrity of digital media. 
 
Keywords: Deepfake Detection, Audio Forensics, LSTM, Recurrent 
Neural Networks, Mel-Spectrograms, Flask, Deep Learning. 
 

1.INTRODUCTION 
 

The rapid evolution of generative Artificial Intelligence has 
flipped digital media on its head with the creation of hyper-
realistic synthetic audio, known as "deepfakes." While there are 
reasonable uses of this voice cloning technology in things such 
as entertainment and increasing accessibility, it has been 
increasingly becoming a tool for malicious activity. 
Cybercriminals and bad actors now use AI to impersonate public 
figures for political manipulation, create fake emergency calls for 
financial frauds, and spread disinformation that is nearly 
indistinguishable from reality. 

This creates a severe problem in modern cybersecurity, where 
most of the deepfake detection tools are trained on English 
language datasets predominantly. This leaves non-English-
speaking populations, especially linguistically diverse regions 
like India, very prone to vernacular audio fraud. 

To address this critical gap, this paper proposes a Deepfake 
Audio Detection System that can identify AI-generated speech 

with high precision. Unlike generic detectors, this system is 
specifically trained and tested on the diverse dataset of four major 
Indian languages: Hindi, Marathi, Punjabi, and Bengali. The 
model analyses the unique tonal and phonetic characteristics of 
these regional languages and thus provides a more robust defense 
against localized deepfake attacks. 

Technically, the system employs a Recurrent Neural Network 
architecture with Long Short-Term Memory layers. The system 
processes audio input by first converting it into Log-Mel-
Spectrograms, which enables the model to pick up minute 
frequency inconsistencies and temporal artifacts that often evade 
human ears. This final model is deployed on a web application 
created with Flask, through which any user can upload their audio 
and immediately get verification whether the voice is "Real" or 
"Fake." 

 
This work highlights the application of Deep Learning in 

audio forensics and presents reasons why the journey toward 
linguistic inclusivity is essential to developing safer digital 
spaces. 

 
2. LITERATURE REVIEW 

 
The area of audio forensics itself has undergone a change in 

basic assumptions in fundamental assumptions-from the classical 
machine learning classifiers such as GMMs to advanced deep 
learning architectures that are able to extract complex 
representations from raw audio. Early deep learning approaches, 
such as by Chintha et al. [1], utilized CNNs to analyze audio. 

While these previous methods mainly use spectrograms as 
static images, subsequent research has argued that such methods 
often fail to take into consideration the inherent temporal 
dependencies of human speech. Addressing this limitation, 
Hamza et al. [2] and Soudy et al. [3] demonstrated the superior 
efficacy of Recurrent Neural Networks (RNNs) and LSTM 
networks, which, by modelling the time-series nature of audio, 
are able to detect temporal discontinuities characteristic of TTS 
and voice conversion algorithms with greater efficiency. Lastly, 
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from the perspective of feature extraction, results within the 
ASVspoof challenges have consistently shown the robustness of 
spectral features. For example, Korshunov and Marcel [4] 
identified Log-Mel Spectrograms as one of the critical inputs for 
discerning the presence of bona fide speech from spoofed 
artifacts. The most important limitation, however, arises because, 
as Ranjan et al. [5] have pointed out, nearly all prior research is 
biased toward high-resource English datasets, such as TIMIT and 
LJ Speech, hence their poor generalization to non-English tonal 
languages when models are applied to them. Although recent 
efforts have been made in developing deepfake detection 
methods for Urdu [6] and Bengali [7] languages, there has not 
been any unified approach for Indian vernaculars yet. In this 
paper we will be presenting an attempt to bridge this especially 
important gap in research by implementing an LSTM-based 
detection system specifically trained on a multilingual dataset 
encompassing Hindi, Marathi, Punjabi, and Bengali speakers, 
thereby enhancing the detection robustness for under-represented 
linguistic regions. 

 
3. RELATED RESEARCH AND METHODOLOGY 

 
The methodology that was adopted in this research involves a 

structured pipeline for reliably detecting Deepfake audio using 
RNN/LSTM. The complete process is divided into four major 
stages: Data Collection, Audio Preprocessing, Feature 
Extraction, Model Development and Training, and Evaluation. 
Each stage in this process has been designed in such a way that it 
standardizes the audio signals, extracts meaningful temporal 
patterns from them, and enables the model to differentiate 
between genuine and manipulated audio samples. 

 
A. Data Collection Details: 
 It involves collecting a diverse dataset comprising two 

categories of audio recordings, namely Real and Fake/Deepfake. 
Real samples are gathered from publicly available speech 
corpora, interview audios, podcast speech, and user-recorded 
samples. The Fake samples are synthesized using state-of-the-art 
speech synthesis and voice cloning technologies such as VITS, 
Tacotron, and other Deepfake generators. To make the model 
robust, the dataset is elaborated on with Indian languages, such 
as Hindi, Marathi, Bengali, and Punjabi. Standard format audio 
files are used for this project, including WAV and MP3 file 
formats, each sample having its label corresponding to 
authenticity. This multi-lingual and multi-accent audio inclusion 
will help the model generalize well in real-world scenarios. 

 
Category  Languag

es 
Real 
Samp
le 

Fake 
Samp
le 

Tot
al 

Source 
Details  

Indian 
Languages 

Hindi 50 50 100 Kaggle 
(Real), 
OpenA
I.fm 
(Fake) 

 Marathi 50 50 100 Kaggle 
(Real), 
OpenA
I.fm 
(Fake) 

 Bengali 50 50 100 Kaggle 
(Real), 
OpenA
I.fm 
(Fake) 

 Punjabi 50 50 100 Kaggle 
(Real), 
OpenA
I.fm 
(Fake) 

Overall-
Dataset 

_ 200 200 400 
clip
s 

200 
from 
Kaggle 
+ 200 
Fake 
via 
OpenA
I.fm 

 
TABLE 1: Distribution of Real and Synthetic Audio Clips by Language 
 
B. Preprocessing Audio 
Any system that analyzes speech or detects deepfakes must 

first perform audio preprocessing. It converts all audio samples 
into a uniform machine-readable format, regardless of the 
difference in speakers, languages, formats, length, and recording 
conditions. It greatly improves the downstream model's accuracy 
and resilience. 

1. Sampling Rate Standardization Some audios have different 
sampling rates, such as 8 kHz, 22.05 kHz, and 44.1 kHz, 
depending on where they were acquired. All signals are then 
resampled at a common rate of 16 kHz to make them 
homogeneous. With a standardized sampling frequency, speech-
relevant frequencies between 0-8 kHz are retained; 
computational complexity is reduced, and potential distortion due 
to mixed sample rate inputs is addressed. 

Since neural networks take fixed-length inputs, all the audio 
clips are normalized to a duration of 2 seconds. 

• Audio clips longer than 2 seconds are trimmed. 
• If an audio clip is shorter, zero-padding is applied at the end 

to keep its temporal consistency. 
This fixed-size format ensures identical input dimensions 

during training and testing. 
 
3.Mel-Spectrogram Generation 
The audio is first converted into a Mel-Spectrogram, which 

represents raw waveform data in a time–frequency format 
common in speech analysis. A Mel-Spectrogram is computed 
using the following parameters. 
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Parameter Value Description 
Simple Rate 16Khz 

Standardized 
frequency of all 
signals 

 

Duration 2 Second  Fixed-length 
input 

FFT 
Size(N_FFT) 

1024 Window size for 
frequency 
analysis 

Hop Length 512 Step between 
successive FFT 
windows 

Mel Bands 
(N_Mels) 

128 Resolution of 
frequency 
features 

Final Shape (128 x 63 x 1) Model-ready 
input dimension 

Table 2: Mel-Spectrogram Parameter Configuration 

Why Mel-Spectrogram? 

 Mimics the human auditory perception scale 
 Extracts relevant speech cues 
 Reduces high-frequency noise 
 Provides compact feature representation for models 

4.Log-Scaling of Spectrogram 

The raw Mel-Spectrogram is further converted into a log-Mel 
Spectrogram: 

Log-Mel
 
Log-scaling compresses large magnitude differences and 
enhances low-amplitude components such as breath sounds, 
micro-pauses, or synthesis artifacts—important cues for 
deepfake detection. 
 
5. Normalization 
To maintain numerical stability and eliminate amplitude-based 
variations, spectrogram values are normalized using min-max 
scaling: 

norm

 
Normalization ensures uniform feature ranges, accelerating 
convergence during model training. 
 
6. Output of preprocessing 
The final processed feature is a 128 × 63 Mel-Spectrogram 
matrix, reshaped as a single-channel image. This serves as the 

standardized input to the RNN/LSTM-based deepfake detection 
model. 

4. MODEL ARCHITECTURE 
 

The core classification engine employed in this study is a 
Recurrent Neural Network (RNN) utilizing Long Short-Term 
Memory (LSTM) units Given this, LSTMs were chosen over 
classical Convolutional Neural Networks because of their better 
capacity for modelling temporal dependencies and sequential 
patterns in audio data-a fundamental method for the detection of 
the minute artifacts in time usually found in deepfake synthesis. 
1) Input Transformation and Permutation 
This pre-processed feature matrix enters the model in the shape 
of (128, 63, 1), representing frequency bins and time steps, 
respectively. 
• Reshape & Permute: The input is first reshaped to remove the 
channel dimension and then permuted (transposed) to shape (63, 
128) because standard LSTMs expect the input in the form of 
(Timesteps, Features) 
This transformation will ensure that the model views the audio as 
a sequence of 63-time steps, each containing a vector of 128 
spectral features. 
2) Sequential Processing (LSTM Layers) 
The network consists of an architecture with two LSTM layers, 
which are stacked to capture hierarchical temporal features: 
• First LSTM Layer: The layer contains 64 memory units. It is 
configured with return sequences=True, which means it outputs 
a sequence of hidden states corresponding to each time step. This 
preserves the temporal structure for the subsequent layer. 

 Second LSTM Layer: The second layer consists of 32 
memory units. It is configured with 
return_sequences=False, serving as a "Many-to-One" 
encoder. It compresses the entire temporal sequence into 
a single fixed-length feature vector that summarizes the 
audio clip's authenticity. 

3) Regularization (Dropout) 
To mitigate the risk of overfitting—a common challenge in deep 
learning on limited datasets—Dropout layers with a rate of 0.3 
(30%) are inserted after each LSTM and Dense layer. During 
training, this randomly deactivates 30% of neurons, forcing the 
network to learn robust, redundant feature representations rather 
than relying on specific weights. 
4) Classification Head (Dense Layers) 
The feature vector from the LSTM block is passed through fully 
connected (Dense) layers: 

 Feature Extraction Layer: A Dense layer with 32 
neurons utilizes the ReLU (Rectified Linear Unit) 
activation function to introduce non-linearity. 

 Output Layer: The final layer consists of a single 
neuron using the Sigmoid activation function to 
produce a probability score (P) 

Prediction = { 
 Fake (1), if P > 0.5 
 Real (0), if P ≤ 0.5 
} 
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Layer type Output Shape Parameter/Details 
Input (128, 63, 1) Log-Mel 

Spectrogram 
permute (63,128) Time-major 

alignment 
LSTM 1 (63, 64) Return Sequences 

= True 
Dropout (63, 64) Rate = 0.3 
LSTM 2 (32) Return Sequences 

= False 
Dropout (32) Rate = 0.3 
Dense (32) Activation = 

ReLU 
Dropout  (32) Rate=0.3 
Output (Dense) (1) Activation=sigmo

id 
 

Table 3. Synopsis of the Model 
 

5. MODEL TRAINING AND OPTIMIZATION 
STRATEGY: 

 
 To minimize prediction error, RNN optimizes all internal 

parameters, including weights and biases, during the training 
phase, which is the most crucial learning process. The 
TensorFlow backend's Keras high-level API was used to build 
the model. A fixed random seed was used for weight initialization 
to guarantee the reproducibility of the results. A. 
FORMULATION OF LOSS FUNCTION: Because this is to 
classify audio into two categories, namely Real versus Fake, the 
problem is posed as a two-class classification problem. We 
employed the Binary Cross-Entropy Loss function. Unlike Mean 
Squared Error (MSE), Cross-Entropy provides a convex error 
surface for probability estimation, ensuring faster and more 
stable convergence. 

The loss function L for a batch of N samples is defined as: 
L=−i=1∑N[yi log(y^i)+(1−yi) log(1−y^i)] 

 = actual label (0 or 1) 
 = predicted probability 
 = total number of samples 

This is the standard Binary Cross-Entropy Loss 
(also called Log Loss). 

B. Optimization Algorithm 
To minimize the loss function, we utilized the Adam 

(Adaptive Moment Estimation) optimizer. Adam was selected 
over classical Stochastic Gradient Descent (SGD) because it 
computes adaptive learning rates for each parameter, combining 
the advantages of Momentum and RMSProp. This is particularly 
effective for spectrogram data in which gradients can be sparse. 

• Initial Learning Rate: 0.001 

• Batch Size: 32 (Chosen to balance memory efficiency with 
gradient stability). 

C. Regularization and Callbacks 
The deep learning models, especially LSTMs, are susceptible 

to "overfitting," the phenomenon in which a model memorizes 
the training noise. To avoid overfitting, the following strategies 
were employed: 

1. Dropout: A dropout rate of 0.3 was applied after LSTM 
layers to randomly deactivate 30% of neurons during training and 
thus force the network to learn robust features. 

2. Early Stopping: Validation loss was tracked continuously. 
If it did not improve for a total of ten consecutive epochs, the 
training was automatically stopped, to avoid deterioration of the 
model. 

3. ReduceLROnPlateau: In case of plateaus in the validation 
loss for 5 epochs, the learning rate was reduced by a factor of 0.5 
to allow for finer tunning of model weights. 

 

 
Fig. 1. Training and Validation Loss Curve 

 
The graph above (Fig. 1) illustrates the convergence 

behaviours of the LSTM model during the training phase. The 
Blue Line is the Training Loss, and the Red Line is the Validation 
Convergence Phase: During the first few epochs- particularly 
between the 1st and 10th epochs-both the training and validation 
loss decrease together in a sharp manner. This suggests that the 
model is learning deepfake audio's discriminatory features 
without memorizing the data sudden drop in loss indicates that 
the Adam optimizer works quite well. 

1.  Generalization Gap and Overfitting (Epoch 12+): A 
split occurs around Epoch 12. While the validation loss 
levels off and rises very slightly from 0.29 to 0.37, the 
training loss keeps declining toward 0.08. 

2. Such behaviour reflects the beginning of Overfitting, 
where the model starts to fit the noise within the training 
data rather than generalizing on new data. Justification 
for Early Stopping: Graphically, it can be justified that 
the Early Stopping mechanism. By halting training 
when the validation loss ceased to improve (around the 
minimum point at Epoch 11-12), the system preserved 
the model weights at their optimal state, ensuring the 
highest possible accuracy on unseen data. 
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6. EXPERIMENTAL EVALUATION 
 

A. Experimental Setup 
The proposed deepfake audio detection framework was 

implemented using the TensorFlow/Keras deep learning library 
in a Python environment. The core classification model is a 
Recurrent Neural Network (RNN) with Long Short-Term 
Memory (LSTM) units, designed to capture temporal 
inconsistencies and spectral artifacts present in manipulated 
audio. 

The input to the network consists of log-Mel spectrogram 
features with dimensions . The complete dataset 
of four hundred audio samples was divided into 80% training and 
20% validation, resulting in validation samples (40 Real 
and 40 Fake). A Binary Cross-Entropy (BCE) loss function was 
used during training, and the classification threshold was fixed at 

. 
 
B. Evaluation Metrics 
To quantitatively assess the performance of the system, 

standard binary classification metrics were used: Accuracy, 
Precision, Recall, and F1-Score. These metrics are defined as 
follows: 

 Accuracy: Ratio of correctly predicted samples to the 
total samples. 

 Precision: Ratio of correctly predicted Fake samples to 
all samples predicted as Fake. 

 Recall: Ratio of correctly predicted Fake samples to all 
actual Fake samples. 

 F1-Score: Harmonic mean of Precision and Recall, 
providing a balanced measure. 

 
C. Quantitative Results 
The model was evaluated on the unseen validation dataset. 

The final validation loss was 0.2324, indicating stability and 
convergence during training. Table I summarizes the 
performance metrics. 

 
Metric Score % 
Accuracy 90 
Precision  88.10 
Recall 92.50 
F1-Score 90.24 

 
Table 4: PERFORMANCE METRICS OF THE PROPOSED 

MODEL 
As shown, the model achieves a strong overall accuracy of 

90.00%. The Recall (92.50%) is higher than Precision 
(88.10%), which is desirable in security-driven applications 
where minimizing False Negatives is critical 

D. Confusion Matrix Analysis 
A confusion matrix was generated to further analyze the 

prediction outcomes. Table 5 presents the confusion statistics for 
the validation set. 

 

 Predicted Real  Predicted Fake 
Actual Real 35(TN) 5(FP) 
Actual Fake 3(FN) 37(TP) 

 
Table 5: CONFUSION MATRIX FOR THE VALIDATION 

SET 
 
E. Analysis of Results 
The experimental evaluation demonstrates that the proposed 

LSTM-based deepfake detection model achieves robust 
performance on unseen audio data. A detailed analysis of the 
quantitative results reveals the following key insights: 

1. High Generalization Capability: The model achieved an 
overall accuracy of 90.00% with a validation loss of 0.2324. The 
low loss value indicates that the model has successfully 
converged and learned to distinguish temporal features in the 
spectrograms without significant overfitting. 

2. Critical Importance of Recall: In the domain of deepfake 
detection, Recall (Sensitivity) is often prioritized over Precision. 
A missed deepfake (False Negative) poses a greater security risk 
than a falsely flagged real audio (False Positive). 

 The model achieved a Recall of 92.50%, successfully 
identifying 37 out of 40 synthetic clips. 

 This high recall confirms that the system is highly 
effective at screening potential threats, ensuring that the 
vast majority of manipulated audio is flagged for 
review. 

3. Error Analysis: The Confusion Matrix (Table 5) provides a 
granular view of the misclassifications: 

 False Negatives (3 samples): Only 3 synthetic clips 
were misclassified as real. These errors likely stem from 
high-quality deepfakes where the spectral artifacts are 
extremely subtle. 

 False Positives (5 samples): The model incorrectly 
flagged 5 real clips as fake. This is an acceptable trade-
off to maintain high sensitivity. These errors may be 
attributed to background noise in the real recordings that 
mimics the spectral patterns of GAN-generated 
artifacts. 

4. Performance Balance: The F1-Score of 90.24% indicates 
a strong balance between Precision and Recall. Unlike 
models that may bias heavily toward one class, the proposed 
LSTM architecture demonstrates consistent performance 
across both authentic and synthetic audio categories. 

 
7. CONCLUSION 

 
This research successfully demonstrates the efficacy of Recurrent 
Neural Networks (RNNs) in automating deepfake audio 
detection. By evaluating a specialized Long Short-Term Memory 
(LSTM) architecture on Log-Mel spectrograms, the study 
achieved exceptional diagnostic precision in distinguishing 
between authentic and synthetic speech. The experimental results 
highlighted the LSTM model as a superior classifier, attaining a 
critical 92.50% Recall rate, ensuring that potential security 
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threats are effectively flagged. The system further demonstrated 
robust stability with an overall 90.00% accuracy and near real-
time processing capabilities. Ultimately, this project confirms 
that deploying lightweight deep learning models offers a rapid, 
accessible solution for digital security, empowering users to 
combat misinformation through early and accurate verification. 
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