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ABSTRACT - This is driven by the exponential increase in hyper-
realistic synthetic audio-known more colloquially as "deepfakes''-
which pose an enormous risk on everything from misinformation
and political manipulation to identity theft. Against this backdrop,
the following project proposes a web-based Deepfake Audio
Detector capable of classifying recordings with high precision as
"Real" or "Fake." In a deep learning approach, based on audio
forensics, the system will take in input files, MP3, or WAV, and
generate Log-Mel Spectrograms using the Librosa library. The
graphical representations of sound frequencies will be fed into a
Recurrent Neural Network with Long Short-Term Memory layers-
a chosen architecture for detecting subtle distortions in the time-
based pattern of human speech. The trained model will be deployed
as part of a user-friendly web interface provided through the Flask
framework. User analysis can be done online through a drag-and-
drop methodology. It thereby serves as an easy and effective way to
validate the integrity of digital media.

Keywords: Deepfake Detection, Audio Forensics, LSTM, Recurrent
Neural Networks, Mel-Spectrograms, Flask, Deep Learning.

1.INTRODUCTION

The rapid evolution of generative Artificial Intelligence has
flipped digital media on its head with the creation of hyper-
realistic synthetic audio, known as "deepfakes." While there are
reasonable uses of this voice cloning technology in things such
as entertainment and increasing accessibility, it has been
increasingly becoming a tool for malicious activity.
Cybercriminals and bad actors now use Al to impersonate public
figures for political manipulation, create fake emergency calls for
financial frauds, and spread disinformation that is nearly
indistinguishable from reality.

This creates a severe problem in modern cybersecurity, where
most of the deepfake detection tools are trained on English
language datasets predominantly. This leaves non-English-
speaking populations, especially linguistically diverse regions
like India, very prone to vernacular audio fraud.

To address this critical gap, this paper proposes a Deepfake
Audio Detection System that can identify Al-generated speech
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with high precision. Unlike generic detectors, this system is
specifically trained and tested on the diverse dataset of four major
Indian languages: Hindi, Marathi, Punjabi, and Bengali. The
model analyses the unique tonal and phonetic characteristics of
these regional languages and thus provides a more robust defense
against localized deepfake attacks.

Technically, the system employs a Recurrent Neural Network
architecture with Long Short-Term Memory layers. The system
processes audio input by first converting it into Log-Mel-
Spectrograms, which enables the model to pick up minute
frequency inconsistencies and temporal artifacts that often evade
human ears. This final model is deployed on a web application
created with Flask, through which any user can upload their audio
and immediately get verification whether the voice is "Real" or
"Fake."

This work highlights the application of Deep Learning in
audio forensics and presents reasons why the journey toward
linguistic inclusivity is essential to developing safer digital
spaces.

2. LITERATURE REVIEW

The area of audio forensics itself has undergone a change in
basic assumptions in fundamental assumptions-from the classical
machine learning classifiers such as GMMs to advanced deep
learning architectures that are able to extract complex
representations from raw audio. Early deep learning approaches,
such as by Chintha et al. [1], utilized CNNs to analyze audio.

While these previous methods mainly use spectrograms as
static images, subsequent research has argued that such methods
often fail to take into consideration the inherent temporal
dependencies of human speech. Addressing this limitation,
Hamza et al. [2] and Soudy et al. [3] demonstrated the superior
efficacy of Recurrent Neural Networks (RNNs) and LSTM
networks, which, by modelling the time-series nature of audio,
are able to detect temporal discontinuities characteristic of TTS
and voice conversion algorithms with greater efficiency. Lastly,
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from the perspective of feature extraction, results within the
ASVspoof challenges have consistently shown the robustness of
spectral features. For example, Korshunov and Marcel [4]
identified Log-Mel Spectrograms as one of the critical inputs for
discerning the presence of bona fide speech from spoofed
artifacts. The most important limitation, however, arises because,
as Ranjan et al. [5] have pointed out, nearly all prior research is
biased toward high-resource English datasets, such as TIMIT and
LJ Speech, hence their poor generalization to non-English tonal
languages when models are applied to them. Although recent
efforts have been made in developing deepfake detection
methods for Urdu [6] and Bengali [7] languages, there has not
been any unified approach for Indian vernaculars yet. In this
paper we will be presenting an attempt to bridge this especially
important gap in research by implementing an LSTM-based
detection system specifically trained on a multilingual dataset
encompassing Hindi, Marathi, Punjabi, and Bengali speakers,
thereby enhancing the detection robustness for under-represented
linguistic regions.

3. RELATED RESEARCH AND METHODOLOGY

The methodology that was adopted in this research involves a
structured pipeline for reliably detecting Deepfake audio using
RNN/LSTM. The complete process is divided into four major
stages: Data Collection, Audio Preprocessing, Feature
Extraction, Model Development and Training, and Evaluation.
Each stage in this process has been designed in such a way that it
standardizes the audio signals, extracts meaningful temporal
patterns from them, and enables the model to differentiate
between genuine and manipulated audio samples.

A. Data Collection Details:

It involves collecting a diverse dataset comprising two
categories of audio recordings, namely Real and Fake/Deepfake.
Real samples are gathered from publicly available speech
corpora, interview audios, podcast speech, and user-recorded
samples. The Fake samples are synthesized using state-of-the-art
speech synthesis and voice cloning technologies such as VITS,
Tacotron, and other Deepfake generators. To make the model
robust, the dataset is elaborated on with Indian languages, such
as Hindi, Marathi, Bengali, and Punjabi. Standard format audio
files are used for this project, including WAV and MP3 file
formats, each sample having its label corresponding to
authenticity. This multi-lingual and multi-accent audio inclusion
will help the model generalize well in real-world scenarios.

Category | Languag | Real | Fake | Tot | Source
es Samp | Samp | al Details
le le

Indian Hindi 50 50 100 | Kaggle
Languages (Real),
OpenA

Lfm

(Fake)
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Marathi | 50 50 100 | Kaggle
(Real),
OpenA
Lfm
(Fake)
Kaggle
(Real),
OpenA
Lfm
(Fake)
Kaggle
(Real),
OpenA
[.fm
(Fake)
Overall- 200 200 400 | 200
Dataset clip | from
S Kaggle
+ 200
Fake
via
OpenA
[.fm

Bengali | 50 50 100

Punjabi | 50 50 100

TABLE 1: Distribution of Real and Synthetic Audio Clips by Language

B. Preprocessing Audio

Any system that analyzes speech or detects deepfakes must
first perform audio preprocessing. It converts all audio samples
into a uniform machine-readable format, regardless of the
difference in speakers, languages, formats, length, and recording
conditions. It greatly improves the downstream model's accuracy
and resilience.

1. Sampling Rate Standardization Some audios have different
sampling rates, such as 8 kHz, 22.05 kHz, and 44.1 kHz,
depending on where they were acquired. All signals are then
resampled at a common rate of 16 kHz to make them
homogeneous. With a standardized sampling frequency, speech-
relevant frequencies between 0-8 kHz are retained;
computational complexity is reduced, and potential distortion due
to mixed sample rate inputs is addressed.

Since neural networks take fixed-length inputs, all the audio
clips are normalized to a duration of 2 seconds.

* Audio clips longer than 2 seconds are trimmed.

* If an audio clip is shorter, zero-padding is applied at the end
to keep its temporal consistency.

This fixed-size format ensures identical input dimensions
during training and testing.

3.Mel-Spectrogram Generation

The audio is first converted into a Mel-Spectrogram, which
represents raw waveform data in a time—frequency format
common in speech analysis. A Mel-Spectrogram is computed
using the following parameters.
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Parameter Value Description

Simple Rate 16Khz Standardized
frequency of all
signals

Duration 2 Second Fixed-length
input

FFT 1024 Window size for

Size(N_FFT) frequency
analysis

Hop Length 512 Step  between
successive FFT
windows

Mel Bands | 128 Resolution  of

(N_Mels) frequency
features

Final Shape (128x63x 1) Model-ready
input dimension

Table 2: Mel-Spectrogram Parameter Configuration
Why Mel-Spectrogram?

Mimics the human auditory perception scale
Extracts relevant speech cues

Reduces high-frequency noise

Provides compact feature representation for models

4.Log-Scaling of Spectrogram

The raw Mel-Spectrogram is further converted into a log-Mel
Spectrogram:
Log-Mel(x) = log (1 + x)

Log-scaling compresses large magnitude differences and
enhances low-amplitude components such as breath sounds,
micro-pauses, or synthesis artifacts—important cues for
deepfake detection.

5. Normalization
To maintain numerical stability and eliminate amplitude-based
variations, spectrogram values are normalized using min-max
scaling:

X — Xmin

xnorm - _
Xmax Xmin

Normalization ensures uniform feature ranges, accelerating
convergence during model training.

6. Output of preprocessing

The final processed feature is a 128 x 63 Mel-Spectrogram
matrix, reshaped as a single-channel image. This serves as the
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standardized input to the RNN/LSTM-based deepfake detection
model.

4. MODEL ARCHITECTURE

The core classification engine employed in this study is a
Recurrent Neural Network (RNN) utilizing Long Short-Term
Memory (LSTM) units Given this, LSTMs were chosen over
classical Convolutional Neural Networks because of their better
capacity for modelling temporal dependencies and sequential
patterns in audio data-a fundamental method for the detection of
the minute artifacts in time usually found in deepfake synthesis.
1) Input Transformation and Permutation

This pre-processed feature matrix enters the model in the shape
of (128, 63, 1), representing frequency bins and time steps,
respectively.

* Reshape & Permute: The input is first reshaped to remove the
channel dimension and then permuted (transposed) to shape (63,
128) because standard LSTMs expect the input in the form of
(Timesteps, Features)

This transformation will ensure that the model views the audio as
a sequence of 63-time steps, each containing a vector of 128
spectral features.

2) Sequential Processing (LSTM Layers)

The network consists of an architecture with two LSTM layers,
which are stacked to capture hierarchical temporal features:

e First LSTM Layer: The layer contains 64 memory units. It is
configured with return sequences=True, which means it outputs
a sequence of hidden states corresponding to each time step. This
preserves the temporal structure for the subsequent layer.

e Second LSTM Layer: The second layer consists of 32
memory  units. It s configured  with
return_sequences=False, serving as a "Many-to-One"
encoder. It compresses the entire temporal sequence into
a single fixed-length feature vector that summarizes the
audio clip's authenticity.

3) Regularization (Dropout)

To mitigate the risk of overfitting—a common challenge in deep
learning on limited datasets—Dropout layers with a rate of 0.3
(30%) are inserted after each LSTM and Dense layer. During
training, this randomly deactivates 30% of neurons, forcing the
network to learn robust, redundant feature representations rather
than relying on specific weights.

4) Classification Head (Dense Layers)

The feature vector from the LSTM block is passed through fully
connected (Dense) layers:

e Feature Extraction Layer: A Dense layer with 32
neurons utilizes the ReLU (Rectified Linear Unit)
activation function to introduce non-linearity.

e Output Layer: The final layer consists of a single
neuron using the Sigmoid activation function to
produce a probability score (P)

Prediction = {
Fake (1), ifP>0.5
Real (0), ifP<0.5
H
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Layer type Output Shape Parameter/Details

Input (128,63, 1) Log-Mel
Spectrogram

permute (63,128) Time-major
alignment

LSTM 1 (63, 64) Return Sequences
= True

Dropout (63, 64) Rate=0.3

LSTM 2 (32) Return Sequences
= False

Dropout (32) Rate =0.3

Dense (32) Activation =
ReLU

Dropout (32) Rate=0.3

Output (Dense) | (1) Activation=sigmo
id

Table 3. Synopsis of the Model

5. MODEL TRAINING AND OPTIMIZATION
STRATEGY:

To minimize prediction error, RNN optimizes all internal
parameters, including weights and biases, during the training
phase, which is the most crucial learning process. The
TensorFlow backend's Keras high-level API was used to build
the model. A fixed random seed was used for weight initialization
to guarantee the reproducibility of the results. A.
FORMULATION OF LOSS FUNCTION: Because this is to
classify audio into two categories, namely Real versus Fake, the
problem is posed as a two-class classification problem. We
employed the Binary Cross-Entropy Loss function. Unlike Mean
Squared Error (MSE), Cross-Entropy provides a convex error
surface for probability estimation, ensuring faster and more
stable convergence.

The loss function L for a batch of N samples is defined as:

L—i=1 ¥ N[yi-log(y"i)+(1-yi)-log(1-y"i)]

e y;=actual label (0 or 1)
e J;=predicted probability
e N=total number of samples

This is the standard Binary Cross-Entropy Loss
(also called Log Loss).

B. Optimization Algorithm

To minimize the loss function, we utilized the Adam
(Adaptive Moment Estimation) optimizer. Adam was selected
over classical Stochastic Gradient Descent (SGD) because it
computes adaptive learning rates for each parameter, combining
the advantages of Momentum and RMSProp. This is particularly
effective for spectrogram data in which gradients can be sparse.

. Initial Learning Rate: 0.001
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* Batch Size: 32 (Chosen to balance memory efficiency with
gradient stability).

C. Regularization and Callbacks

The deep learning models, especially LSTMs, are susceptible
to "overfitting," the phenomenon in which a model memorizes
the training noise. To avoid overfitting, the following strategies
were employed:

1. Dropout: A dropout rate of 0.3 was applied after LSTM
layers to randomly deactivate 30% of neurons during training and
thus force the network to learn robust features.

2. Early Stopping: Validation loss was tracked continuously.
If it did not improve for a total of ten consecutive epochs, the
training was automatically stopped, to avoid deterioration of the
model.

3. ReduceLROnPlateau: In case of plateaus in the validation
loss for 5 epochs, the learning rate was reduced by a factor of 0.5
to allow for finer tunning of model weights.

Training and Validation Loss

— Training Loss

06 —— Validation Loss

05

04

Loss

03

0.2

0.1

25 5.0 75 10.0 2.5 15.0 175 20.0
Epochs

Fig. 1. Training and Validation Loss Curve

The graph above (Fig. 1) illustrates the convergence
behaviours of the LSTM model during the training phase. The
Blue Line is the Training Loss, and the Red Line is the Validation
Convergence Phase: During the first few epochs- particularly
between the 1st and 10th epochs-both the training and validation
loss decrease together in a sharp manner. This suggests that the
model is learning deepfake audio's discriminatory features
without memorizing the data sudden drop in loss indicates that
the Adam optimizer works quite well.

1. Generalization Gap and Overfitting (Epoch 12+): A
split occurs around Epoch 12. While the validation loss
levels off and rises very slightly from 0.29 to 0.37, the
training loss keeps declining toward 0.08.

2. Such behaviour reflects the beginning of Overfitting,
where the model starts to fit the noise within the training
data rather than generalizing on new data. Justification
for Early Stopping: Graphically, it can be justified that
the Early Stopping mechanism. By halting training
when the validation loss ceased to improve (around the
minimum point at Epoch 11-12), the system preserved
the model weights at their optimal state, ensuring the
highest possible accuracy on unseen data.
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6. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed deepfake audio detection framework was
implemented using the TensorFlow/Keras deep learning library
in a Python environment. The core classification model is a
Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) units, designed to capture temporal
inconsistencies and spectral artifacts present in manipulated
audio.

The input to the network consists of log-Mel spectrogram
features with dimensions (128 X 63 X 1). The complete dataset
of four hundred audio samples was divided into 80% training and
20% validation, resulting in N = 80validation samples (40 Real
and 40 Fake). A Binary Cross-Entropy (BCE) loss function was
used during training, and the classification threshold was fixed at
T =0.5.

B. Evaluation Metrics
To quantitatively assess the performance of the system,
standard binary classification metrics were used: Accuracy,
Precision, Recall, and F1-Score. These metrics are defined as
follows:
e Accuracy: Ratio of correctly predicted samples to the
total samples.
e  Precision: Ratio of correctly predicted Fake samples to
all samples predicted as Fake.
e Recall: Ratio of correctly predicted Fake samples to all
actual Fake samples.
e Fl-Score: Harmonic mean of Precision and Recall,
providing a balanced measure.

C. Quantitative Results

The model was evaluated on the unseen validation dataset.
The final validation loss was 0.2324, indicating stability and
convergence during training. Table 1 summarizes the
performance metrics.

Metric Score %
Accuracy 90
Precision 88.10
Recall 92.50
F1-Score 90.24

Table 4: PERFORMANCE METRICS OF THE PROPOSED
MODEL

As shown, the model achieves a strong overall accuracy of
90.00%. The Recall (92.50%) is higher than Precision
(88.10%), which is desirable in security-driven applications
where minimizing False Negatives is critical

D. Confusion Matrix Analysis

A confusion matrix was generated to further analyze the
prediction outcomes. Table 5 presents the confusion statistics for
the validation set.
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Predicted Real Predicted Fake
Actual Real 35(TN) 5(FP)
Actual Fake 3(FN) 37(TP)

Table 5: CONFUSION MATRIX FOR THE VALIDATION
SET

E. Analysis of Results

The experimental evaluation demonstrates that the proposed
LSTM-based deepfake detection model achieves robust
performance on unseen audio data. A detailed analysis of the
quantitative results reveals the following key insights:

1. High Generalization Capability: The model achieved an
overall accuracy of 90.00% with a validation loss of 0.2324. The
low loss value indicates that the model has successfully
converged and learned to distinguish temporal features in the
spectrograms without significant overfitting.

2. Critical Importance of Recall: In the domain of deepfake
detection, Recall (Sensitivity) is often prioritized over Precision.
A missed deepfake (False Negative) poses a greater security risk
than a falsely flagged real audio (False Positive).

e  The model achieved a Recall of 92.50%, successfully
identifying 37 out of 40 synthetic clips.

e This high recall confirms that the system is highly
effective at screening potential threats, ensuring that the
vast majority of manipulated audio is flagged for
review.

3. Error Analysis: The Confusion Matrix (Table 5) provides a
granular view of the misclassifications:

o False Negatives (3 samples): Only 3 synthetic clips
were misclassified as real. These errors likely stem from
high-quality deepfakes where the spectral artifacts are
extremely subtle.

o False Positives (5 samples): The model incorrectly
flagged 5 real clips as fake. This is an acceptable trade-
off to maintain high sensitivity. These errors may be
attributed to background noise in the real recordings that
mimics the spectral patterns of GAN-generated
artifacts.

4. Performance Balance: The F1-Score of 90.24% indicates

a strong balance between Precision and Recall. Unlike

models that may bias heavily toward one class, the proposed

LSTM architecture demonstrates consistent performance

across both authentic and synthetic audio categories.

7. CONCLUSION

This research successfully demonstrates the efficacy of Recurrent
Neural Networks (RNNs) in automating deepfake audio
detection. By evaluating a specialized Long Short-Term Memory
(LSTM) architecture on Log-Mel spectrograms, the study
achieved exceptional diagnostic precision in distinguishing
between authentic and synthetic speech. The experimental results
highlighted the LSTM model as a superior classifier, attaining a
critical 92.50% Recall rate, ensuring that potential security
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threats are effectively flagged. The system further demonstrated
robust stability with an overall 90.00% accuracy and near real-
time processing capabilities. Ultimately, this project confirms
that deploying lightweight deep learning models offers a rapid,
accessible solution for digital security, empowering users to
combat misinformation through early and accurate verification.

REFERENCES

[1] M. Todisco et al., "ASVspoof 2019: Future Horizons in
Spoofed and Fake Audio Detection," in Proc. Interspeech 2019,
Graz, Austria, Sep. 2019, pp. 1008—1012.

[2] X. Liu et al., "ASVspoof 2021: Towards Spoofed and
Deepfake Speech Detection in the Wild," in [EEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
31, pp. 2507-2522, 2023.

[3] J. Yi et al., "Audio Deepfake Detection: A Survey," in
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 30, pp. 1-15, 2023.

[4] E. Khoury et al., "Audio Deepfake Detection Using Deep
Learning," in 2023 [EEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), Dalian,
China, 2023, pp. 104-108.

[5] A. Zhang, F. Jiang, and Z. Duan, "One-Class Learning
Towards Synthetic Voice Spoofing Detection," in /EEE Signal
Processing Letters, vol. 28, pp. 937-941, 2021.

[6] S. P. Chowdhury and A. Ross, "Hybrid CNN-RNN Models
for Enhanced Detection of Deepfake Audio Signatures," in 2024
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Seoul, Korea, 2024, pp. 1-5.

[7] V. B. S. S. K. M. K. Balachandran and R. Ravindran,
"Audio Deep Fake Detection With LSTM-RNN," in
International Journal of Current Science (IJCSPUB), vol. 15, no.
2, pp. 1522, Jun. 2025.

[8] Z. Zhang, S. Xu, and S. Cao, "Urban Sound Classification
using Long Short-Term Memory Neural Network," in Proc. 2019
Federated Conference on Computer Science and Information
Systems (FedCSIS), Leipzig, Germany, 2019, pp. 35-39.

[9] A. van den Oord et al., "WaveNet: A Generative Model
for Raw Audio," in Proc. 9th ISCA Speech Synthesis Workshop,
Sunnyvale, CA, USA, 2016, p. 125.

[10] L. Muda, M. Begam, and 1. Elamvazuthi, "Voice
Recognition Algorithms using Mel Frequency Cepstral
Coefficient (MFCC) and Dynamic Time Warping (DTW)
Techniques," in Journal of Computing, vol. 2, no. 3, pp. 138-143,
2010.

1JERTV 1415120304

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 14 Issue 12 , December - 2025

Page 6

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



