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Abstract—In this research article, an attempt has been made o? variance
to improve the performance of channel estimation in OFDM
systems with the help of deep neural network (DNN). A bi-
directional long short term memory (bi-LSTM) based DNN
model is proposed and trained using three commonly used
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Performance analysis and comparison of these algorithms has AWGN additive white gaussian noise

been carried out using least square (LS) and minimum mean
square error (MMSE) estimators with different size of inputs.
The findings have revealed that the proposed DNN model can be BPNN
used as channel estimator in OFDM systems without requiring
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X transmitted sequence vector ISI intersymbol intereference
Y received sequence vector LM Levenberg Marquardt
N number of subcarriers LS least square
H channel matrix LSTM long short term memory
| interference MMSE minimum mean square error
W additive white gaussian noise MSE mean square error
R correlation matrix OFDM orthogonal frequency division multiplexing
n OFDM symbol no. QAM quadrature amplitude modulation
k subcarrier no. QPSK quadrature phase shift keying
m first moment vector RMS proproot mean square propagation
% second moment vector RNN recurrent neural network
w weight SER symbol error rate
b bias SGD stochastic gradient descent
c cell state SNR signal to noise ratio
' forget gate l. INTRODUCTION
0 output gate

Orthogonal frequency division multiplexing (OFDM) is a
well-known modulation technique adopted in modern
wireless systems to assuage frequency selective fading in
wireless channels as it has the ability to mitigate the
intersymbol interference (ISI) produced by delay spread of

i input gate
h final output of LSTM cell
Greek Letter

a learning rate wireless channels. Channel estimation is one of the major

. issues in OFDM system since the response of the channel
B moving average vary rapidly with time due to the mobility of transmitter,
T pi receiver or scattering objects [1]. Lot of attempts have been
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made by several researchers to estimate the effect of channel
in OFDM system accurately. Conventional methods like LS
and MMSE are mostly used for pilot assisted channel
estimation [2]. In earlier works, it has been observed that LS
estimator shows inadequate performance, however, it does
not require any prior channel statistics while MMSE
estimator provides better performance than LS but at the cost
of higher complexity [3]-[5]. To reduce its complexity,
several techniques are introduced in the literature [6].
Recently, artificial neural networks (ANNs) have drawn
attention to estimate the channel with less complexity [7].
ANNSs consist of several neurons that operate in parallel. The
neurons are interconnected through weighted inputs and
provides the ability of learning, recalling and generalizing the
training data. Cui and Tellambura [8] have used radial basis
networks (a type of neural network) for estimating the
channel in OFDM systems. Backpropagation neural network
(BPNN) is a multilayer neural network which is used as a
channel estimator by Tasnipar et al. [9]. The authors have
reported that the performance of MMSE estimator is better
than that of LS and BPNN but with higher complexity.
Further, to improve the channel estimation performance,
genetic algorithm (GA) is combined with BPNN by Cheng et
al and they have reported that GA based BPNN is superior
than the conventional BPNN [10]. Some authors have also
proposed deep learning applications for channel estimation
[11]. Hao et al have proposed DL based structure for channel
estimation and signal detection in OFDM systems and they
have shown that deep learning models can work better than
traditional methods with enough pilots [12]. In [13], DL-
based channel estimation network (CENet) and channel
conditioned recovery net (CCRNet) are employed for joint
channel estimation and signal detection in OFDM systems.
The authors have demonstrated that both proposals provide
good generalization ability and robustness toward the channel
parameter variation.

In this research study, a deep neural network (DNN) model
is proposed for estimating the channel and its performance is
compared with the conventional channel estimators. Three
different optimization algorithms have been used for training
of proposed DNN to obtain the efficient estimator with lower
symbol error rate (SER). The proposed DNN is trained
offline due to the large number of network parameters
required for updation. Then the trained DNN is employed
online so that the required information can be recovered. The
simulation results have shown that proposed DNN
outperforms both LS and MMSE estimator with limited
number of subcarriers and pilots. Also, the results have
demonstrated that DNN based estimator using Adam
optimizer can be efficiently used in OFDM systems to boost
the transmission rate of the system.

Il. SYSTEM MODEL AND METHODOLOGY USED
A.  System Architecture

The block diagram of an OFDM system with DNN based
channel estimation is shown in Fig. 1.
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Fig. 1: DNN based OFDM system architecture

A binary data stream is first modulated using common
modulation technique such as Quadrature Phase Shift Keying
(QPSK) or Quadrature Amplitude Modulation (QAM). These
data symbols are converted into parallel streams. After
insertion of the pilot symbols, the data sequence X(K) is
transformed into time domain signal x(n) via IDFT block
[14], i.e.

N—-1
1 .
x(n) = \/—ﬁz X(k)e™ N 0<n<N-1 )
k=0

Cyclic prefix is used for mitigation of inter symbol
interference (I1SI). Then, the data sequence passes through the
channel with impulse response h(n) of length L.

Y (n) = x,(n)h(n) + w(n) ¥))

where, w(n) is the additive white gaussian noise (AWGN)
which gets added in the signal during transmission through
the channel. At the receiver, after removal of the cyclic
prefix, DFT block is used to transform signal back to the
frequency domain.
y(n) = CPremove{yf(n)} n=01,..,N—1 3)
Y(k) = DFT{y(n)} k=01,..,.N—1 (4)
Then, pilot signals are extracted and the estimated channel
response Hest(k) is obtained for the data sequence in the
channel estimation block.

Y (o) = XUOHUO) + 1(k) + W (k) (5)
Xest (k) = Y(k) (6)
H oor (K)

Once the transmitted signal is estimated, then it is
demodulated to get the desired information.

B. LS and MMSE Estimator
Least Square (LS) Estimation
The LS estimator is used to minimize the squared error
between the received and original signal without needing
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any prior knowledge of channel statistics. The LS
estimate of the channel is given by:

A=) ' xy = xly ™

where, X is the input sequence vector and Y is the
received sequence vector.

Minimum mean square error (MMSE) Estimation
The MMSE estimator is used to minimize the mean
square error (MSE) by exploiting the second order
statistics of the channel. The MMSE estimate of the
channel is defined by:

~

2 -1
~ O.Z
Hyyse = Ryfi (RHH + ;I) H (8)
X
where, H represents the actual channel response.

C. Deep Neural Network (DNN) Architecture

The structure of proposed deep neural network (DNN)
with five significant layers is presented in this section.
The neural network with large number of layers is
termed as deep neural network (DNN). The proposed
DNN for estimating the channel consists of sequence
input layer followed by bi-LSTM, fully connected,
SoftMax and classification layer. The bi-LSTM layer is
formed using two independent recurrent neural networks
(RNNs) that can learn long-standing associations
between the time steps of data sequence. In this layer, 20
hidden units are used. Input size is varied in accordance
with the number of subcarriers and fully connected layer
of four classes is included.

As bi-LSTM layer is composed of bidirectional RNNs
which allow the network to have both forward and
backward knowledge of the sequence at each time step.
It provides the opportunity to save the information from
both past and future. Fig. 2. represents the structure of
the bidirectional LSTM layer.

Output - Ye—1 Yt Ye+1.
Backward
— — —
S hia hy h t+1
Layer
Forward N N = .
hi_q hy N b 7
Layer
Inputs Ti—1 T Le41

Fig. 2: Structure of bidirectional LSTM

A single cell of an LSTM network is shown in Fig. 3 which
consists of an input, output and forget gate. The following
relations are used to implement the LSTM cell [15]:

fo=0(Wphy+Wpox, +by) )
i = o(Wyhe_y + Wyx, + b;) (10)

& = tanh(Wy,h,_y + Wyx, + b;) (11)
¢ = f,Acy +1,AC, (12)

o, =W, h. 1 +W,x. +b,) (13)
h, = o,tanh (c,) (14)

where, Wi, Wr, Win, Wi, V7t Wer, Won, Woy and by, b,
bz b, denote the weights and biases respectively.

U is the sigmoid function. f;, ¢, ir and o; represent the forget
gate, cell state, input gate and output gate.

©

Hidden

Label2

o Input

Fig. 3: Single LSTM cell

I1l.  DNN BASED CHANNEL ESTIMATION

The proposed DNN is trained offline which takes the
received data as its input and produces the transmitted data at
its output. The channel model used is the narrowband
Rayleigh fading channel. The training data is generated for a
single user OFDM system in which the OFDM frame consists
of pilot and transmitted symbols that are randomly generated.
The received OFDM frame is recovered and considered as
input to the DNN model. To minimize the error between the
trained output and the original transmitted data, the proposed
DNN model is trained using three different optimization
algorithms. The performance of the proposed estimator is
analyzed using these three optimizers and compared with the
traditional methods of channel estimation. The following
three optimizers used are stochastic gradient descent with
momentum (SGDm), root mean square propagation
(RMSprop) and adaptive moment estimation (Adam).
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A. Stochastic gradient descent (SGD)

This is the common optimization algorithm used for faster
convergence of neural networks. It exploits few samples that
are stochastically selected from the whole dataset to perform
every iteration. SGD is computationally less expensive even
it requires more iterations to reach the global minimum than
gradient descent [16], [17]. In this article, SGD with
momentum (SGDm) is used to improve the convergence
speed.

In SGDm, a moving average of gradient is computed
to update the network parameters. The first moment vector
(m) and the network parameters () at iteration ‘t” are updated
as follows [16], [17]:

me = fpm._, + (1 — plgrad(0,_,) (15)

0p =0, —am (16)

where the term B controls the moving average. The
default value of B is 0.9. a is the learning rate and 6 denotes
the network parameters (weights and biases) to be updated.

B. Root mean square propagation (RMSprop)

This algorithm is also based on gradient descent
algorithm. RMSprop considers the moving average of the
squares of the recent gradients instead of using all. It has the
ability to reduce the loss function continuously to reach the
minimum throughout the training process.

In RMSprop, the second moment vector (v) and the
network parameters are updated using the following relations
[16], [17]

v, = By + (1 — fgrad(6,_,)* 17

9md(9t_1)) (18)
VUt e

where, the term € is very small and used for numerical
stability.

91.:91._1—6((

C. Adaptive moment estimation (Adam)

This algorithm is very popular as it combines the benefits of
RMSprop and momentum. This provides faster optimization
as it uses adaptive learning rates to update the network
parameters and is preferred for training of deep neural
networks. Using Adam optimizer, the network parameters are
updated as follows [16], [17]:

m, =pm,  + (1 - B)grad(9, ,) (19)
v, = v, + (1 - ﬁ)grad(@t_l)z (20)
M= (21)

1-p)

P = — ' (22)
a-5)

i, ) (23)
VUt E

where, B1 and B, denote the exponentially weighted averages
(moving averages) for SGDm and RMSprop respectively. "«

and V: are the bias corrected values of corresponding m; and
Vi.

Bt = Ht_l_(x(

IV. OBSERVATIONS, RESULTS AND DISCUSSIONS

In this research study, the proposed DNN is trained according
to the generated data sets and used for estimating the channel.
For different signal to noise ratios (SNRs), symbol error rates
(SERs) obtained from conventional methods like LS and
MMSE, and proposed DNN are compared for different
optimization algorithms.

The dataset for training and validation is generated for a
single subcarrier. The received OFDM packet consist of data
symbols that are interleaved with the pilot symbols. Table |
depicts the simulation parameters of OFDM system whereas,
the training parameters for the proposed DNN are shown in

Table I1.
TABLE I: OFDM simulation parameters

Parameter Particular
Number of subcarriers 64, 256
Modulation type QPSK

Guard interval type Cyclic prefix (CP)

Length of pilot sequence 16

Noise model Additive white
Gaussian noise
(AWGN)

Channel model Rayleigh fading
channel

Number of transmitted symbol 10000

TABLE II: Proposed DNN training parameters

Parameter Particular

Input size 256, 1024

Fully connected layers 4

BIiLSTM layer size 20 hidden neurons
Minibatch Size 300

Number of epochs 1000

Loss function crossentropyex

Optimizers Adam, RMSprop, SGDm

A comparative analysis is done for evaluating the
performance of three estimators at different subcarriers.
When only 64 subcarriers are used, the proposed DNN
outperforms the conventional methods at all signal to noise
ratios as shown in Fig. 4, 5 and 6. If the performance of three
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optimization algorithms is considered, then it can be
concluded that Adam optimizer performs very well for the
developed model and employed dataset.
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Fig. 4: SER performance for 64 subcarriers with SGDm optimizer
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Fig. 7: SER performance for 256 subcarriers with Adam optimizer

shows the better performance than LS estimator and
comparable performance to the MMSE estimator at lower
SNR values. The LS estimator has the poor performance as it
requires no prior channel information but the MMSE
estimator has excellent performance at more subcarriers as it
involves the second order statistics of the channel. Also, the
developed DNN model is able to reduce SER with growing
SNR without requiring any prior information of channel
statistics, which makes it propitious for channel estimation in
OFDM systems.
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Fig. 8: SER performance for 256 subcarriers with RMSprop optimizer
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Fig. 9: SER performance for 256 subcarriers with SGDm optimizer

A. Performance of Optimization algorithms

Optimization algorithms, also known as optimizers, play a
crucial role to train and improve the performance of deep
neural networks (DNNs).The performance of these
optimizers can be analyzed in terms of developed model and
generated dataset to obtain the efficient estimator. The SER
performance of commonly used optimizers viz. SGDm,
RMSprop and Adam on the proposed DNN is shown in Fig.
10 and 11. It can be easily observed from these figures that
Adam optimizer outperforms RMSprop and SGDm
optimizers. Depending on the number of subcarriers, the
same optimization algorithms differ in performance and the
SGDm optimizer shows the inferior performance. It is
observed that the proposed DNN trained with Adam
optimizer gives the excellent performance among the three
optimization algorithms as shown in Table Ill. Therefore, the
combination of DNN and Adam optimizer can be preferred in

OFDM communication systems for efficient channel
It can be observed from Fig. 7, 8, and 9, as the number of  estimation.
subcarriers gets increased to 256, the proposed estimator
IJERTV10IS110124 www.ijert.org 296
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Fig. 11: Performance comparison of three optimizers for 256 subcarriers

TABLE I11: SER performance for 64 subcarriers (256 input size)

Optimizers SER
SNR(20dB)  SNR (25 dB)
Adam 0.4 0.006
RMSprop 0.6 0.06
SGDm 0.7 0.05

V. CONCLUSIONS

The current study addresses the development of a deep
neural network (DNN) using bidirectional LSTM neural
network to improve the performance of channel estimation in
OFDM systems. Different learning algorithms viz. SGDm,
RMSprop and Adam have been used for optimization of
proposed DNN. The effectiveness of the proposed DNN
model is investigated for different input size (or different
number of subcarriers) and a comparative analysis is
performed with the traditional methods like LS and MMSE
estimators using three optimizers. The obtained results reveal
that the performance of LS and MMSE estimator lacks the
performance of proposed estimator for 64 subcarriers (256
input size). Out of three optimizers, Adam optimizer shows
the excellent performance as it achieves the SER value of
0.006 at 25dB (SNR) while it is 0.06 and 0.05 for RMSprop

and SGDm optimizers respectively, therefore, it can be
concluded that the proposed DNN model trained with Adam
optimizer can be efficiently used as a channel estimator in
OFDM communication systems.
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