
Deep Learning to Detect Software Vulnerabilities

Gourav Bansal
Kurukshetra University

Abstract- The importance of automated vulnerability analysis

techniques is growing as more software is developed. In this

research, we present a deep learning-based method for learning

assembly code in order to detect software flaws. Unlike previous

research that relied on API function call sequences, our method

begins by storing the assembly code in an immutable vector

before using deep learning to learn the assembly language.

When it comes to modeling assembly code, we choose

Instruction2vec, which is efficient in vectorizing the code. We

classify if the new functions have software weaknesses or not

after learning the assembly code of the current functions using

the vector provided by Instruction2vec. Many ways to detecting

vulnerabilities using deep learning have been developed to solve

vulnerabilities. Most learning-based approaches, on the other

hand, discover vulnerabilities in source code rather than binary

code. We present our method for detecting vulnerabilities in

binary code in this paper. Our method builds deep learning

models to discover vulnerabilities using binary code produced

from the SARD dataset.

Keywords- Vulnerability, Binary Code, Vulnerability detection,

security, SARD dataset, Deep Learning, symmetric cryptographic

algorithms, API function calls.

1. INTRODUCTION

Detecting vulnerabilities in software systems before

they are distributed to consumers is one of the most

successful approaches to correcting issues. A wide number of

ways to detecting vulnerabilities have been proposed over the

years. Fuzzing [6], symbolic execution [2], taint analysis and

machine learning [9] are among the approaches they employ.

To corrupt computer systems, many real-world cyberattacks

[1,7] leveraged software vulnerabilities. A vulnerability was

to blame for the recent data breach that exposed the private

information of 500 million Facebook users [1]. As a result,

resolving vulnerabilities effectively and efficiently is crucial

for cybersecurity.

Learning-based approaches have been proven to

have the potential for reliable vulnerability detection with

recent advances in machine learning, particularly deep

learning techniques [8]. Because the program source code

contains a wealth of information about the programs, such as

data types, variable names, function prototypes, and high-

level program constructs, the vast majority of them focus on

open-source projects and extract features from the program

source code for model training.

2. APPROACHES ON DETECTING VULNERABILITIES

 First, we must collect a binary code dataset,

determine the granularity of our vulnerability detection, and

construct a vulnerability detection process capability. Do we

look for flaws in individual programs, functions, basic

blocks, or program slices?

How do we determine which code is susceptible and which is

not?

 Second, Deep learning systems, for example, require

features to distinguish between vulnerable and non-

vulnerable code. What characteristics should we look for in

binary code.

 Our method generates a binary code dataset by

compiling C/C++ programs from the SARD dataset, which is

extensively used as a testbed for discovering source code

vulnerabilities at the function level, the SARD dataset

includes labels for susceptible and nonvulnerable code. We

chose to discover vulnerabilities at the function level so that

we could use the labels that came with the dataset right away.

Unlike previous work that analyzes program code as a

collection of words or tokens, our method exploits the

semantic information contained in binary code assembly

instructions as features to train machine learning and deep

learning models. Instruction mnemonics, operand types,

operand placements, and operand names are among these

properties.

 We utilize grid search to train an LSTM model with

multiple values of hyperparameters on the dataset and

compare the performance of the models to find the best

hyperparameters. We use the hyperparameter values that

yield the best results.

3.NEURAL NETWORKS

 As input to deep learning models, the vector arrays

were transformed from two-dimensional vectors to three-

dimensional vectors.

3.1 BLSTM

 The Bidirectional Long Short-Term Memory model

outperforms the LSTM model by a little margin. The decay

kinematics of top-quark pairs created in high-energy proton-

proton collisions are presented as a probabilistic

reconstruction utilizing machine learning. The four-momenta

of the two top quarks created in the hard-scattering process

are inferred using a deep neural network with a Bidirectional

Long Short-Term Memory (BLSTM) at its core. It has a loss

rate of 0.31, whereas LSTM has a loss rate of 0.32. The

accuracy rate of the BLSTM is 82 percent, which is greater

than the accuracy rate of the LSTM model, which is 81

percent. After Epoch 33, the BLSTM model begins to overfit,

comparable to the LSTM model, which begins to overfit after

Epoch 31. Beyond epoch 30, the learning rate was changed in

the next model to reduce the overfitting impact.

3.2 Hyperparameters

To find the best hyperparameters for our deep

learning models, we use two distinct base models. Long

short-term memory (LSTM) is used in both base models,

which has 256 neuron units and two hidden layers with a

batch size of 32 for 100 epochs. The output layer was given

the "Sigmoid" function. The binary cross-entropy loss is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

362

www.ijert.org
www.ijert.org
www.ijert.org

chosen as the loss function since it can accelerate the learning

and convergence process. The "Adam" optimizer is used in

the models, and the learning rate is 0.001. Base model 1

employs the "ReLu" activation function for the hidden layer,

while base model 2 uses the "Tanh" activation function.

After Epoch 31, Base Model 2 begins to be

overfitted as the validation loss hits a minimum and remains

constant while the training loss decreases. Base model 2

("Tanh") performs somewhat better than base model 1

("ReLu") because it has a greater accuracy rate and a lower

loss rate. As a result, we've decided to build our neural

networks using the "Tanh" activation function.

After Epoch 40, the validation loss begins to

increase while the training loss continues to decrease,

indicating that base model 1 is overfitted. The greatest

validation accuracy is 81.10 percent with the loss rate of 0.34

\s(Epoch 40). (Epoch 40).

 3.3 Gated Recurrent Unit

Long Short-Term Memory and GRUs are quite

similar. GRU, like LSTM, controls the flow of information

through gates. In comparison to LSTM, they are quite new.

This is why they outperform LSTM and have a more

straightforward architecture. During this phase, the neural

network was used to continuously build the model using

GRU and Bidirectional Recurrent Neural Networks. Because

GRU lacks an explicit memory unit, as well as a forget and

update gate, it trains the model faster than LSTM, albeit at

the expense of accuracy. The GRU has a simpler design than

the LSTM, which minimizes the number of hyperparameters.

The BGRU model outperforms the LSTM model by a little

margin.

Another intriguing feature of GRU is that, unlike

LSTM, it lacks a distinct cell state (Ct). It only has one state:

hidden (Ht). GRUs are easier to train because of their simpler

architecture. It has a little lower accuracy rate (validation)

than the BLSTM model, at 81 percent.

3.4 Vulnerability Detection

Our BLSTM model has 256 neuron units and two

hidden layers, each with a batch size of 32 epochs. The

model's accuracy curve is depicted in Figure 8. With an

accuracy rate of 81 percent, the model performs well. In

discovering insecure code, the BLSTM model has an F1

score of 75% and a recall of 95%. It has a specificity of 75%.

The macro average and weighted average results are nearly

identical. This suggests that the model does a good job of

distinguishing between susceptible and non-vulnerable code.

3.5 Threshold Value for Binary Classification

The previous models applied a 0.5 threshold to

outputs in order to forecast the target class. If the outputs are

less than or equal to 0.5, for example, they are categorized as

class 0 outputs (Non-vulnerability functions). According to

the prior models' performance, the models have some Type I

and Type II mistakes, thus the threshold value must be

adjusted to minimize the cost of Type 1 and Type 2 errors.

In some cases, such as when using Precision-Recall

Curves and ROC Curves, the optimal threshold for the

classifier can be calculated directly. A grid search can be

used in different situations to fine-tune the threshold and

discover the best value.

To construct the Neural Network outputs in the last

layer, the Sigmoid activation function was applied to all

preceding models. The outputs are decimal numbers ranging

from 0 to 1, indicating whether the outputs are more likely to

be categorized as class 0 or 1 depending on the threshold.

4. DEEP LEARNING

Wu et al. use the sequences of C library function

calls as the dataset to create neural network models to

forecast vulnerabilities [10]. They turn each sequence of C

library function calls into a list of word tokens, then train

three neural network models with the vectors: CNN, LSTM,

and CNN-LSTM. Their analysis reveals that the neural

network models outperform the MLP utilized by VDiscover

by a significant margin.

VulDeePecker trains neural networks to discover

vulnerabilities using code gadgets, which are computer

statements that are data or control reliant on one other. It

retrieves relevant program slices as code gadgets and turns

them into vectors using word2vec, focusing on library and

API function calls. It then uses the vectors to create BLSTM

models for vulnerability identification. VulDeePecker

considerably lowers false positives when compared to

previous machine learning-based studies, such as

VulPecker[5].

5. MACHINE LEARNING

Yamaguchi et al. extract information relevant to API

function calls for all functions of a target program from the

target program's source code, convert the extracted

information into vectors, and use principal component

analysis (PCA) on the vectors to identify the dominant API

function usage pattern for each function in the target

program. It predicts vulnerable functions by comparing the

usage pattern of functions to that of a known vulnerable

function. An example of a vulnerability is used by the authors

to demonstrate the usefulness of the strategy.

6.CONCLUSION

In the field of cybersecurity, software vulnerability

has long been an important but critical research topic.

Machine learning (ML)-based approaches have recently

sparked increased interest in software vulnerability detection

research. The detection performance of existing ML-based

approaches, on the other hand, has to be improved. The first

is code representation for machine learning, while the second

is a class imbalance between susceptible and nonvulnerable

code.

This study describes how we used deep learning to

find vulnerabilities in binary code. The SARD dataset

contains binary code compiled from C/C++ programs, and we

leverage the semantic information on assembly instructions

as features to train deep learning models. The BLSTM model

outperforms the BGRU model in our evaluation. It detects

vulnerabilities with an accuracy of 81 percent. The models

perform effectively in categorizing both susceptible and

nonvulnerable code, as evidenced by the close similarity of

macro average and weighted average finding.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

363

www.ijert.org
www.ijert.org
www.ijert.org

REFERENCES
[1] 533 million Facebook users’ phone numbers and personal

data have been leaked online 2021.

https://www.businessinsider.com/stolen-data-of-533-
millionfacebook-users-leaked-online-2021-4.

[2] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J

Schwartz, Maverick Woo, and David Brumley. 2014. Automatic
exploit generation. Commun. ACM 57, 2 (2014), 74–84

[3] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay

Rawat, Josselin Feist, and Laurent Mounier. 2016. Toward Large-
Scale Vulnerability Discovery Using Machine Learning. In

Proceedings of the Sixth ACM Conference on Data and Application

Security and Privacy (CODASPY ’16). Association for Computing
Machinery, New York, NY, USA, 85âĂŞ96.

https://doi.org/10.1145/2857705.2857720

[4] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. 2017.
Software vulnerability analysis and discovery using machine-

learning and data-mining techniques: A survey. ACM Computing

Surveys (CSUR) 50, 4 (2017), 1–36IEEE, August 2016 [Online].
Available:

https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=

gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_q
w_A0NYJHFbg-LZt1CbmMvMOJox-

EV2Sm_ZDEChddIY6yuObfr8

[5] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie
Hu. 2016. VulPecker: An Automated Vulnerability Detection

System Based on Code Similarity Analysis. In Proceedings of the

32nd Annual Conference on Computer Security Applications
(ACSAC ’16). Association for Computing Machinery, New York,

NY, USA, 201âĂŞ213. https://doi.org/10.1145/2991079.2991102

[6] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope:
A checksumaware directed fuzzing tool for automatic software

vulnerability detection. In 2010 IEEE Symposium on Security and

Privacy. IEEE, 497–512.

[7] VMware Flaw a Vector in SolarWinds Breach? 2020.

https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-

solarwindsbreach/

[8] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang
Xiang. 2020. Software vulnerability detection using deep neural

networks: A survey. Proc. IEEE 108, 10 (2020), 1825–1848.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS020148
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 02, February-2022

364

https://www.businessinsider.com/stolen-data-of-533-millionfacebook-users-leaked-online-2021-4
https://www.businessinsider.com/stolen-data-of-533-millionfacebook-users-leaked-online-2021-4
https://doi.org/10.1145/2857705.2857720
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://doi.org/10.1145/2991079.2991102
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-solarwindsbreach/
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-solarwindsbreach/
www.ijert.org
www.ijert.org
www.ijert.org

