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Abstract- The importance of automated vulnerability analysis 

techniques is growing as more software is developed. In this 

research, we present a deep learning-based method for learning 

assembly code in order to detect software flaws. Unlike previous 

research that relied on API function call sequences, our method 

begins by storing the assembly code in an immutable vector 

before using deep learning to learn the assembly language. 

When it comes to modeling assembly code, we choose 

Instruction2vec, which is efficient in vectorizing the code. We 

classify if the new functions have software weaknesses or not 

after learning the assembly code of the current functions using 

the vector provided by Instruction2vec. Many ways to detecting 

vulnerabilities using deep learning have been developed to solve 

vulnerabilities. Most learning-based approaches, on the other 

hand, discover vulnerabilities in source code rather than binary 

code. We present our method for detecting vulnerabilities in 

binary code in this paper. Our method builds deep learning 

models to discover vulnerabilities using binary code produced 

from the SARD dataset. 
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1. INTRODUCTION 

Detecting vulnerabilities in software systems before 

they are distributed to consumers is one of the most 

successful approaches to correcting issues. A wide number of 

ways to detecting vulnerabilities have been proposed over the 

years. Fuzzing [6], symbolic execution [2], taint analysis and 

machine learning [9] are among the approaches they employ. 

To corrupt computer systems, many real-world cyberattacks 

[1,7] leveraged software vulnerabilities. A vulnerability was 

to blame for the recent data breach that exposed the private 

information of 500 million Facebook users [1]. As a result, 

resolving vulnerabilities effectively and efficiently is crucial 

for cybersecurity.  

Learning-based approaches have been proven to 

have the potential for reliable vulnerability detection with 

recent advances in machine learning, particularly deep 

learning techniques [8]. Because the program source code 

contains a wealth of information about the programs, such as 

data types, variable names, function prototypes, and high-

level program constructs, the vast majority of them focus on 

open-source projects and extract features from the program 

source code for model training. 

 

2. APPROACHES ON DETECTING VULNERABILITIES 

 First, we must collect a binary code dataset, 

determine the granularity of our vulnerability detection, and 

construct a vulnerability detection process capability. Do we 

look for flaws in individual programs, functions, basic 

blocks, or program slices? 

How do we determine which code is susceptible and which is 

not? 

 Second, Deep learning systems, for example, require 

features to distinguish between vulnerable and non-

vulnerable code. What characteristics should we look for in 

binary code. 

 Our method generates a binary code dataset by 

compiling C/C++ programs from the SARD dataset, which is 

extensively used as a testbed for discovering source code 

vulnerabilities at the function level, the SARD dataset 

includes labels for susceptible and nonvulnerable code. We 

chose to discover vulnerabilities at the function level so that 

we could use the labels that came with the dataset right away. 

Unlike previous work that analyzes program code as a 

collection of words or tokens, our method exploits the 

semantic information contained in binary code assembly 

instructions as features to train machine learning and deep 

learning models. Instruction mnemonics, operand types, 

operand placements, and operand names are among these 

properties.  

 We utilize grid search to train an LSTM model with 

multiple values of hyperparameters on the dataset and 

compare the performance of the models to find the best 

hyperparameters. We use the hyperparameter values that 

yield the best results. 

 

3.NEURAL NETWORKS 

 As input to deep learning models, the vector arrays 

were transformed from two-dimensional vectors to three-

dimensional vectors.  

   

3.1 BLSTM 

 The Bidirectional Long Short-Term Memory model 

outperforms the LSTM model by a little margin. The decay 

kinematics of top-quark pairs created in high-energy proton-

proton collisions are presented as a probabilistic 

reconstruction utilizing machine learning. The four-momenta 

of the two top quarks created in the hard-scattering process 

are inferred using a deep neural network with a Bidirectional 

Long Short-Term Memory (BLSTM) at its core. It has a loss 

rate of 0.31, whereas LSTM has a loss rate of 0.32.  The 

accuracy rate of the BLSTM is 82 percent, which is greater 

than the accuracy rate of the LSTM model, which is 81 

percent. After Epoch 33, the BLSTM model begins to overfit, 

comparable to the LSTM model, which begins to overfit after 

Epoch 31. Beyond epoch 30, the learning rate was changed in 

the next model to reduce the overfitting impact.  
 

3.2 Hyperparameters 

To find the best hyperparameters for our deep 

learning models, we use two distinct base models. Long 

short-term memory (LSTM) is used in both base models, 

which has 256 neuron units and two hidden layers with a 

batch size of 32 for 100 epochs. The output layer was given 

the "Sigmoid" function. The binary cross-entropy loss is 
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chosen as the loss function since it can accelerate the learning 

and convergence process. The "Adam" optimizer is used in 

the models, and the learning rate is 0.001. Base model 1 

employs the "ReLu" activation function for the hidden layer, 

while base model 2 uses the "Tanh" activation function. 

After Epoch 31, Base Model 2 begins to be 

overfitted as the validation loss hits a minimum and remains 

constant while the training loss decreases. Base model 2 

("Tanh") performs somewhat better than base model 1 

("ReLu") because it has a greater accuracy rate and a lower 

loss rate. As a result, we've decided to build our neural 

networks using the "Tanh" activation function. 

After Epoch 40, the validation loss begins to 

increase while the training loss continues to decrease, 

indicating that base model 1 is overfitted. The greatest 

validation accuracy is 81.10 percent with the loss rate of 0.34 

\s(Epoch 40). (Epoch 40). 

 

       3.3 Gated Recurrent Unit 

Long Short-Term Memory and GRUs are quite 

similar. GRU, like LSTM, controls the flow of information 

through gates. In comparison to LSTM, they are quite new. 

This is why they outperform LSTM and have a more 

straightforward architecture. During this phase, the neural 

network was used to continuously build the model using 

GRU and Bidirectional Recurrent Neural Networks. Because 

GRU lacks an explicit memory unit, as well as a forget and 

update gate, it trains the model faster than LSTM, albeit at 

the expense of accuracy. The GRU has a simpler design than 

the LSTM, which minimizes the number of hyperparameters. 

The BGRU model outperforms the LSTM model by a little 

margin. 

Another intriguing feature of GRU is that, unlike 

LSTM, it lacks a distinct cell state (Ct). It only has one state: 

hidden (Ht). GRUs are easier to train because of their simpler 

architecture. It has a little lower accuracy rate (validation) 

than the BLSTM model, at 81 percent. 

 

3.4 Vulnerability Detection 

Our BLSTM model has 256 neuron units and two 

hidden layers, each with a batch size of 32 epochs. The 

model's accuracy curve is depicted in Figure 8. With an 

accuracy rate of 81 percent, the model performs well. In 

discovering insecure code, the BLSTM model has an F1 

score of 75% and a recall of 95%. It has a specificity of 75%. 

The macro average and weighted average results are nearly 

identical. This suggests that the model does a good job of 

distinguishing between susceptible and non-vulnerable code. 

 

3.5 Threshold Value for Binary Classification 

The previous models applied a 0.5 threshold to 

outputs in order to forecast the target class. If the outputs are 

less than or equal to 0.5, for example, they are categorized as 

class 0 outputs (Non-vulnerability functions). According to 

the prior models' performance, the models have some Type I 

and Type II mistakes, thus the threshold value must be 

adjusted to minimize the cost of Type 1 and Type 2 errors.  

In some cases, such as when using Precision-Recall 

Curves and ROC Curves, the optimal threshold for the 

classifier can be calculated directly. A grid search can be 

used in different situations to fine-tune the threshold and 

discover the best value. 

To construct the Neural Network outputs in the last 

layer, the Sigmoid activation function was applied to all 

preceding models. The outputs are decimal numbers ranging 

from 0 to 1, indicating whether the outputs are more likely to 

be categorized as class 0 or 1 depending on the threshold. 

 

4. DEEP LEARNING 

Wu et al. use the sequences of C library function 

calls as the dataset to create neural network models to 

forecast vulnerabilities [10]. They turn each sequence of C 

library function calls into a list of word tokens, then train 

three neural network models with the vectors: CNN, LSTM, 

and CNN-LSTM. Their analysis reveals that the neural 

network models outperform the MLP utilized by VDiscover 

by a significant margin. 

VulDeePecker trains neural networks to discover 

vulnerabilities using code gadgets, which are computer 

statements that are data or control reliant on one other. It 

retrieves relevant program slices as code gadgets and turns 

them into vectors using word2vec, focusing on library and 

API function calls. It then uses the vectors to create BLSTM 

models for vulnerability identification. VulDeePecker 

considerably lowers false positives when compared to 

previous machine learning-based studies, such as 

VulPecker[5]. 

 

5. MACHINE LEARNING 

Yamaguchi et al. extract information relevant to API 

function calls for all functions of a target program from the 

target program's source code, convert the extracted 

information into vectors, and use principal component 

analysis (PCA) on the vectors to identify the dominant API 

function usage pattern for each function in the target 

program. It predicts vulnerable functions by comparing the 

usage pattern of functions to that of a known vulnerable 

function. An example of a vulnerability is used by the authors 

to demonstrate the usefulness of the strategy. 

 

6.CONCLUSION 

In the field of cybersecurity, software vulnerability 

has long been an important but critical research topic. 

Machine learning (ML)-based approaches have recently 

sparked increased interest in software vulnerability detection 

research. The detection performance of existing ML-based 

approaches, on the other hand, has to be improved. The first 

is code representation for machine learning, while the second 

is a class imbalance between susceptible and nonvulnerable 

code. 

This study describes how we used deep learning to 

find vulnerabilities in binary code. The SARD dataset 

contains binary code compiled from C/C++ programs, and we 

leverage the semantic information on assembly instructions 

as features to train deep learning models. The BLSTM model 

outperforms the BGRU model in our evaluation. It detects 

vulnerabilities with an accuracy of 81 percent. The models 

perform effectively in categorizing both susceptible and 

nonvulnerable code, as evidenced by the close similarity of 

macro average and weighted average finding. 
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