Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

Deep Learning to Detect Software Vulnerabilities

Gourav Bansal
Kurukshetra University

Abstract- The importance of automated vulnerability analysis
techniques is growing as more software is developed. In this
research, we present a deep learning-based method for learning
assembly code in order to detect software flaws. Unlike previous
research that relied on API function call sequences, our method
begins by storing the assembly code in an immutable vector
before using deep learning to learn the assembly language.
When it comes to modeling assembly code, we choose
Instruction2vec, which is efficient in vectorizing the code. We
classify if the new functions have software weaknesses or not
after learning the assembly code of the current functions using
the vector provided by Instruction2vec. Many ways to detecting
vulnerabilities using deep learning have been developed to solve
vulnerabilities. Most learning-based approaches, on the other
hand, discover vulnerabilities in source code rather than binary
code. We present our method for detecting vulnerabilities in
binary code in this paper. Our method builds deep learning
models to discover vulnerabilities using binary code produced
from the SARD dataset.

Keywords- Vulnerability, Binary Code, Vulnerability detection,
security, SARD dataset, Deep Learning, symmetric cryptographic
algorithms, API function calls.

1. INTRODUCTION

Detecting vulnerabilities in software systems before
they are distributed to consumers is one of the most
successful approaches to correcting issues. A wide number of
ways to detecting vulnerabilities have been proposed over the
years. Fuzzing [6], symbolic execution [2], taint analysis and
machine learning [9] are among the approaches they employ.
To corrupt computer systems, many real-world cyberattacks
[1,7] leveraged software vulnerabilities. A vulnerability was
to blame for the recent data breach that exposed the private
information of 500 million Facebook users [1]. As a result,
resolving vulnerabilities effectively and efficiently is crucial
for cybersecurity.

Learning-based approaches have been proven to
have the potential for reliable vulnerability detection with
recent advances in machine learning, particularly deep
learning techniques [8]. Because the program source code
contains a wealth of information about the programs, such as
data types, variable names, function prototypes, and high-
level program constructs, the vast majority of them focus on
open-source projects and extract features from the program
source code for model training.

2. APPROACHES ON DETECTING VULNERABILITIES
First, we must collect a binary code dataset,
determine the granularity of our vulnerability detection, and
construct a vulnerability detection process capability. Do we
look for flaws in individual programs, functions, basic
blocks, or program slices?
How do we determine which code is susceptible and which is
not?

Second, Deep learning systems, for example, require
features to distinguish between vulnerable and non-
vulnerable code. What characteristics should we look for in
binary code.

Our method generates a binary code dataset by
compiling C/C++ programs from the SARD dataset, which is
extensively used as a testbed for discovering source code
vulnerabilities at the function level, the SARD dataset
includes labels for susceptible and nonvulnerable code. We
chose to discover vulnerabilities at the function level so that
we could use the labels that came with the dataset right away.
Unlike previous work that analyzes program code as a
collection of words or tokens, our method exploits the
semantic information contained in binary code assembly
instructions as features to train machine learning and deep
learning models. Instruction mnemonics, operand types,
operand placements, and operand names are among these
properties.

We utilize grid search to train an LSTM model with
multiple values of hyperparameters on the dataset and
compare the performance of the models to find the best
hyperparameters. We use the hyperparameter values that
yield the best results.

3.NEURAL NETWORKS
As input to deep learning models, the vector arrays
were transformed from two-dimensional vectors to three-
dimensional vectors.

3.1BLSTM

The Bidirectional Long Short-Term Memory model
outperforms the LSTM model by a little margin. The decay
kinematics of top-quark pairs created in high-energy proton-
proton collisions are presented as a probabilistic
reconstruction utilizing machine learning. The four-momenta
of the two top quarks created in the hard-scattering process
are inferred using a deep neural network with a Bidirectional
Long Short-Term Memory (BLSTM) at its core. It has a loss
rate of 0.31, whereas LSTM has a loss rate of 0.32. The
accuracy rate of the BLSTM is 82 percent, which is greater
than the accuracy rate of the LSTM model, which is 81
percent. After Epoch 33, the BLSTM model begins to overfit,
comparable to the LSTM model, which begins to overfit after
Epoch 31. Beyond epoch 30, the learning rate was changed in
the next model to reduce the overfitting impact.

3.2 Hyperparameters

To find the best hyperparameters for our deep
learning models, we use two distinct base models. Long
short-term memory (LSTM) is used in both base models,
which has 256 neuron units and two hidden layers with a
batch size of 32 for 100 epochs. The output layer was given
the "Sigmoid" function. The binary cross-entropy loss is

IJERTV111S020148

www.ijert.org 362

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

chosen as the loss function since it can accelerate the learning
and convergence process. The "Adam" optimizer is used in
the models, and the learning rate is 0.001. Base model 1
employs the "ReLu" activation function for the hidden layer,
while base model 2 uses the "Tanh" activation function.

After Epoch 31, Base Model 2 begins to be
overfitted as the validation loss hits a minimum and remains
constant while the training loss decreases. Base model 2
("Tanh™) performs somewhat better than base model 1
("ReLu") because it has a greater accuracy rate and a lower
loss rate. As a result, we've decided to build our neural
networks using the "Tanh" activation function.

After Epoch 40, the validation loss begins to
increase while the training loss continues to decrease,
indicating that base model 1 is overfitted. The greatest
validation accuracy is 81.10 percent with the loss rate of 0.34
\s(Epoch 40). (Epoch 40).

3.3 Gated Recurrent Unit

Long Short-Term Memory and GRUs are quite
similar. GRU, like LSTM, controls the flow of information
through gates. In comparison to LSTM, they are quite new.
This is why they outperform LSTM and have a more
straightforward architecture. During this phase, the neural
network was used to continuously build the model using
GRU and Bidirectional Recurrent Neural Networks. Because
GRU lacks an explicit memory unit, as well as a forget and
update gate, it trains the model faster than LSTM, albeit at
the expense of accuracy. The GRU has a simpler design than
the LSTM, which minimizes the number of hyperparameters.
The BGRU model outperforms the LSTM model by a little
margin.

Another intriguing feature of GRU is that, unlike
LSTM, it lacks a distinct cell state (Ct). It only has one state:
hidden (Ht). GRUs are easier to train because of their simpler
architecture. It has a little lower accuracy rate (validation)
than the BLSTM model, at 81 percent.

3.4 Vulnerability Detection

Our BLSTM model has 256 neuron units and two
hidden layers, each with a batch size of 32 epochs. The
model's accuracy curve is depicted in Figure 8. With an
accuracy rate of 81 percent, the model performs well. In
discovering insecure code, the BLSTM model has an F1
score of 75% and a recall of 95%. It has a specificity of 75%.
The macro average and weighted average results are nearly
identical. This suggests that the model does a good job of
distinguishing between susceptible and non-vulnerable code.

3.5 Threshold Value for Binary Classification

The previous models applied a 0.5 threshold to
outputs in order to forecast the target class. If the outputs are
less than or equal to 0.5, for example, they are categorized as
class 0 outputs (Non-vulnerability functions). According to
the prior models' performance, the models have some Type |
and Type Il mistakes, thus the threshold value must be
adjusted to minimize the cost of Type 1 and Type 2 errors.

In some cases, such as when using Precision-Recall
Curves and ROC Curves, the optimal threshold for the
classifier can be calculated directly. A grid search can be

used in different situations to fine-tune the threshold and
discover the best value.

To construct the Neural Network outputs in the last
layer, the Sigmoid activation function was applied to all
preceding models. The outputs are decimal numbers ranging
from 0 to 1, indicating whether the outputs are more likely to
be categorized as class 0 or 1 depending on the threshold.

4. DEEP LEARNING

Wau et al. use the sequences of C library function
calls as the dataset to create neural network models to
forecast vulnerabilities [10]. They turn each sequence of C
library function calls into a list of word tokens, then train
three neural network models with the vectors: CNN, LSTM,
and CNN-LSTM. Their analysis reveals that the neural
network models outperform the MLP utilized by VDiscover
by a significant margin.

VulDeePecker trains neural networks to discover
vulnerabilities using code gadgets, which are computer
statements that are data or control reliant on one other. It
retrieves relevant program slices as code gadgets and turns
them into vectors using word2vec, focusing on library and
API function calls. It then uses the vectors to create BLSTM
models for wvulnerability identification. VulDeePecker
considerably lowers false positives when compared to
previous machine learning-based studies, such as
VulPecker[5].

5. MACHINE LEARNING
Yamaguchi et al. extract information relevant to API
function calls for all functions of a target program from the
target program's source code, convert the extracted
information into vectors, and use principal component
analysis (PCA) on the vectors to identify the dominant API
function usage pattern for each function in the target
program. It predicts vulnerable functions by comparing the
usage pattern of functions to that of a known wvulnerable
function. An example of a vulnerability is used by the authors

to demonstrate the usefulness of the strategy.

6.CONCLUSION

In the field of cybersecurity, software vulnerability
has long been an important but critical research topic.
Machine learning (ML)-based approaches have recently
sparked increased interest in software vulnerability detection
research. The detection performance of existing ML-based
approaches, on the other hand, has to be improved. The first
is code representation for machine learning, while the second
is a class imbalance between susceptible and nonvulnerable
code.

This study describes how we used deep learning to
find wvulnerabilities in binary code. The SARD dataset
contains binary code compiled from C/C++ programs, and we
leverage the semantic information on assembly instructions
as features to train deep learning models. The BLSTM model
outperforms the BGRU model in our evaluation. It detects
vulnerabilities with an accuracy of 81 percent. The models
perform effectively in categorizing both susceptible and
nonvulnerable code, as evidenced by the close similarity of
macro average and weighted average finding.

IJERTV111S020148

www.ijert.org 363

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 02, February-2022

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES
533 million Facebook users’ phone numbers and personal
data have been leaked online 2021.

https://www.businessinsider.com/stolen-data-of-533-
millionfacebook-users-leaked-online-2021-4.

Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J
Schwartz, Maverick Woo, and David Brumley. 2014. Automatic
exploit generation. Commun. ACM 57, 2 (2014), 74-84

Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay
Rawat, Josselin Feist, and Laurent Mounier. 2016. Toward Large-
Scale Vulnerability Discovery Using Machine Learning. In
Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy (CODASPY ’16). Association for Computing
Machinery, New York, NY, USA, 854A896.
https://doi.org/10.1145/2857705.2857720

Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. 2017.
Software vulnerability analysis and discovery using machine-
learning and data-mining techniques: A survey. ACM Computing
Surveys (CSUR) 50, 4 (2017), 1-36IEEE, August 2016 [Online].
Auvailable:
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=
gYCfDKXeuQoAAAAA:M7ZVVdAmCZIDah8vHkHPf4_WJIKT6_qg
w_AONYJHFbg-LZt1CbmMvMOJox-
EV2Sm_ZDEChdd|Y6yuObfr8

Zhen Li, Deqging Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie
Hu. 2016. VulPecker: An Automated Vulnerability Detection
System Based on Code Similarity Analysis. In Proceedings of the
32nd Annual Conference on Computer Security Applications
(ACSAC ’16). Association for Computing Machinery, New York,
NY, USA, 201aAS213. https:/doi.org/10.1145/2991079.2991102
Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope:
A checksumaware directed fuzzing tool for automatic software
vulnerability detection. In 2010 IEEE Symposium on Security and
Privacy. IEEE, 497-512.

(7]

(8]

VMware Flaw a Vector in SolarWinds Breach? 2020.
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-
solarwindsbreach/

Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang
Xiang. 2020. Software vulnerability detection using deep neural

networks: A survey. Proc. IEEE 108, 10 (2020), 1825-1848.

IJERTV111S020148

www.ijert.org

364

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


https://www.businessinsider.com/stolen-data-of-533-millionfacebook-users-leaked-online-2021-4
https://www.businessinsider.com/stolen-data-of-533-millionfacebook-users-leaked-online-2021-4
https://doi.org/10.1145/2857705.2857720
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://ieeexplore.ieee.org/abstract/document/7605062/?casa_token=gYCfDKXeuQoAAAAA:M7ZVVdmCZIDah8vHkHPf4_WJKT6_qw_A0NYJHFbg-LZt1CbmMvMOJox-EV2Sm_ZDEChddIY6yuObfr8
https://doi.org/10.1145/2991079.2991102
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-solarwindsbreach/
https://krebsonsecurity.com/2020/12/vmware-flaw-a-vector-in-solarwindsbreach/
www.ijert.org
www.ijert.org
www.ijert.org

