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Abstract - This paper presents a concise review of recent deepfake 

detection methods depends on deep learning. Thirty peer-

reviewed studies are examined, covering Convolutional Neural 

Networks, Long Short-Term Memory networks, and Xception-

based models. These approaches detect manipulated images and 

videos by learning spatial, temporal, and semantic patterns. 

Convolutional Neural Networks reliably extract spatial features, 

while Long Short-Term Memory networks model frame-to-frame 

dependencies in video content. Efficient XceptionNet variants 

achieve high accuracy in identifying facial forgeries. 

Enhancements such as multi-scale feature reconstruction, 

attention mechanisms, and pixel-level inconsistency analysis 

further improve interpretability and detection performance. 

Nevertheless, challenges persist in real- time processing, cross-

dataset generalization, and model transparency. This review 

highlights critical research gaps and calls for lightweight, 

adaptable, and explainable detection models tailored to real-

world scenarios. The insights offered here establish a base for 

futuristic work aims to strengthen the security and reliability of 

automated media verification systems. 

Keywords—Deepfake detection, Convolutional Neural Networks, 

XceptionNet, Long Short-Term Memory, facial forgery, video 

manipulation. 

I. INTRODUCTION

The emergence of deepfake technology, enabled by 
propagative prototypes like Generative Adversarial Networks 
(GANs), has introduced new threats to digital media 
authenticity. Deepfakes allow manipulation of facial features 
and speech to create hyper-realistic but fabricated content. 
This has thoughtful inferences for uniqueness stealing, 
political misinformation, and public trust in digital media. 
Researchers have responded by developing robust deepfake 
detection systems. CNN have shown success in learning 
spatial-level features from facial regions. [1] introduced an 
adaptive management suggests abstraction system that can 
detect fine-grained forgeries. [2] extended this approach with a 
3D XceptionNet united with Discrete Fourier Transform 
(DFT) to analyze complete video content, rather than frame 
subsets. [3] conducted comparative experiments with CNN-
based models like EfficientNet and XceptionNet, 
demonstrating their effectiveness on benchmark datasets like 
FF++ and Celeb- DF. In terms of architectural improvements, 
[4] explored enhanced XceptionNet variants including cross-
attention mechanisms and few-shot learning to improve
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generalizability across unseen forgeries. [5] introduced a 
context-based approach that compares the forged face with its 
surrounding scene to identify inconsistencies. 

Temporal cues are another key area of focus. Since many 
deepfakes exhibit anomalies over consecutive video frames, 
recurrent networks like Long Short-Term Memory (LSTM) are 
valuable. [6] proposed a convolutional LSTM-based 
residual model that integrates spatial and temporal learning. 

[7] proposed FakeTagger, a tool that tracks provenance to 
reduce fake video spread, reinforcing the requirement for 
systemic detection mechanisms beyond classification alone. 

[8] emphasized the part of high-frequency features in 
improving detection accuracy across general scenarios, while 

[9] developed an attentive CNN for robust detection of 
GAN- generated faces. [10] proposed a hybrid CNN- LSTM 
model that uses optical flow to learn motion-based 
inconsistencies. These studies indicate that no single method is 
sufficient to handle the diversity and realism of modern 
deepfakes. Therefore, this paper proposes an integrated 
approach combining CNN, LSTM, and XceptionNet 
architectures to leverage complementary their strengths spatial 
representation, temporal modeling, and efficient feature 
separation. The aim is to improve generalization, reduce false 
or wrong positives, and ensure real-time applicability across 
multiple deepfake datasets. 

II. METHODOLOGY

The literature survey was conducted through a systematic 

review of deepfake detection research published between 2021 

and 2025. To ensure a high standard of academic rigor, the 

search targeted peer-reviewed journals and conference 

proceedings indexed in major digital repositories, including 

IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital 

Library, and Google Scholar.The search strategy employed a 

combination of targeted keywords such as "deepfake 

detection," "XceptionNet," "transformer forgery detection," and 

"temporal modeling in synthetic media." Rather than a simple 

chronological list, this review adopts a thematic approach, 

categorizing research by architectural innovation: 

Spatial Analysis: Investigating CNN-based frameworks for 

frame-level forensics. 

Temporal Modeling: Evaluating LSTM-driven approaches 

for detecting inconsistencies across video sequences. 
Hybrid Mechanisms: Analyzing attention-enhanced 
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variants of Xception and vision transformers. 

A. Convolutional Neural Networks in Deepfake Detection 

CNNs are pivotal in deepfake detection, excelling at 

identifying subtle visual cues in images through hierarchical 

feature extraction. These models operate by learning localized 

patterns in pictorial records, which sorts them particularly 

effective in capturing the telltale signs of manipulated media. 

Models like EfficientNet and attention- guided CNNs have 

proved greater presentation by catching multifaceted forms 

and detecting generation artifacts [1], [3], [9] The ability of 

CNNs to automatically extract 3-D configurations enables 

them to outperform traditional techniques that rely on hand-

crafted features such as texture, color histograms, or edge 

detectors. Furthermore, CNNs are highly flexible and 

modifiable, creating them appropriate for deployment in both 

server-based and mobile environments. In advanced deepfake 

detection systems, CNNs often serve as the backbone for 

hybrid models. For instance, they are 

 

 

frequently paired with recurrent architectures such as 

LSTMs to model both spatial and temporal aspects of fake 

media. CapsuleNet-enhanced CNNs and models integrating 

image diffusion have also been shown to improve 

explainability and robustness, allowing systems to provide 

interpretable outputs and maintain performance under various 

distortions [14], [18]. Transfer learning using pre- trained 

CNNs further accelerates model training and increases 

generalization, especially when the available dataset is limited. 

These systems benefit from GPU acceleration, real-time 

processing capabilities, and end-to- end trainability, offering 

scalability and adaptability across a broad spectrum of forensic 

applications. 

TABLE I. ROLE OF CNNS IN DEEPFAKE DETECTION 
 

Aspect Mechanism Benefit 

Deep Feature 

Extraction 

CNNs extract spatial 

features from video 
frames. 

Enhances detection 

accuracy by capturing 
intricate visual cues. 

Robustness 

to Variability 

Adapts to lighting, 

angles, and 
backgrounds. 

Improves detection 

reliability across varying 
inputs. 

Parallel 

Processing 

Utilizes GPU 

acceleration. 

Enables real-time, high- 

speed detection. 

Artifact 

Detection 

Identifies visual 

artifacts from generative 

models. 

Strengthens detection 

against subtle forgeries. 

Transfer 

Learning 

Applies pre-trained 

models to new 
datasets. 

Reduces training time, 

improves performance. 

 

Generalizatio

n 

Learns transferable 

features across 
different fake types. 

Increases adaptability to 

evolving deepfake 
techniques. 

End-to-End 

Learning 

Trains on raw 

information without 

manual feature 

extraction. 

Streamlines model 
development and 

increases efficiency. 

B. XceptionNet Architecture 

XceptionNet has extended importance for its use of 

depthwise separable convolutions, offering superior 

performance with reduced computational cost. Unlike 

conventional CNNs that apply convolutions across all 

channels, XceptionNet breaks down this operation into two 

steps: depthwise and pointwise convolutions. This 

decomposition reduces the number of trainable parameters, 

making the model lighter and more efficient without 

compromising accuracy. [2] introduced a 3D Inflated 

XceptionNet integrated with Discrete Fourier Transform to 

capture both spatial and temporal cues in manipulated videos. 

 

These enhancements enable the model to learn from video 

dynamics in addition to static frame inconsistencies. Recent 

extensions by [4] and [20] incorporated dual- attention modules 

and multi-level feature fusion to further boost accuracy. These 

architectures are particularly adept at working with compressed 

or low-quality content common characteristics of deepfakes 

shared on social media. Due to its modular structure, 

XceptionNet supports easy integration into ensemble 

frameworks and multimodal pipelines. Its adaptability, 

combined with strong generalization and inference speed, 

makes it a compelling option for deployment in forensic tools 

and content authentication platforms. 

 

TABLE II. ROLE OF XCEPTIONNET IN DEEPFAKE DETECTION 
 

Aspect Mechanism Benefit 

Depthwise 

Separable 

Convolution 

Decomposes 

convolutions for 

efficiency. 

Reduces computational 

load, preserving accuracy. 

Temporal 

Feature 
Modeling 

Inflated 3D 

XceptionNet captures 
temporal artifacts. 

Improves detection in 

video forgeries. 

Attention 
Mechanisms 

Integrates dual/self- 
attention layers. 

Enhances focus on 
tampered regions. 

Few-Shot 

Generalization 

Trained with minimal 

examples. 

Boosts adaptability to 

novel deepfakes. 

Frequency 

Domain 
Fusion 

Combines spatial with 

Fourier features. 

Addresses manipulation 

across visual and spectral 
domains. 

C. Long Short-Term Memory (LSTM) Networks 

Long Short-Term Memory (LSTM) systems remain a class 

of recurrent neural networks well-suited for learning temporal 

dependencies in sequential data such as videos. In the context 

of deepfake detection, LSTMs analyze frame sequences to 

identify inconsistencies that arise due to manipulation. Unlike 

frame-based detectors that treat each image in isolation, 

LSTMs provide temporal context, which helps in 

distinguishing authentic transitions from those synthesized by 

generative models. [27] demonstrated that LSTMs effectively 

capture inter-frame anomalies, and [28] introduced an 

optimized BiLSTM model tailored for real- time applications, 

significantly reducing inference latency while improving 

precision. LSTMs are particularly advantageous in detecting 

subtle facial changes like unnatural blinking, lip-sync errors, or 

jitter between frames artifacts that are often missed by spatial 

models alone. The use of bidirectional LSTMs enhances 

temporal coherence by analyzing sequences in both forward 

and reverse directions. Additionally, post-processing 

techniques such as Conditional Random Fields can refine 

LSTM outputs, further improving classification performance. 

With their ability to generalize across various datasets and 

manipulation types, LSTMs continue to remain a cornerstone 

in video-based deepfake detection systems. 
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TABLE III. ROLE OF LSTM IN DEEPFAKE DETECTION 
 

Aspect Mechanism Benefit 

Temporal 
Pattern 

Learning 

Models frame-to-

frame transitions. 

Detects motion artifacts in 

forged videos. 

Bidirection

al Processing 

Analyzes sequences in 

both directions. 

Improves temporal 

context understanding. 

Lightweigh

t Design 

Optimized for reduced 

latency. 

Enables deployment in 

real-time scenarios. 

Output 

Refinement 

Integrates post- 

processing modules. 

Enhances classification 

accuracy. 

Adaptabilit

y 

Tuned for video-based 

tasks. 

Effective across diverse 

video datasets. 

D. Convolutional LSTM in Deep fack Detection 

CLSTM models combine the spatial learning ability of 

CNNs with the temporal tracking of LSTM networks. This 

hybrid architecture is particularly powerful for detecting 

dynamic patterns in video deepfakes, where both spatial 

distortions and motion inconsistencies are present. [6] 

proposed CLRNet, a ConvLSTM-based residual network that 

successfully captured frame-to-frame anomalies often missed  

by  traditional  CNNs.  [26]  built  on  this  by 

incorporating optical flow, allowing their hybrid CNN- LSTM 

model to track movement across frames and detect forged 

sequences with high precision. The dual advantage of 

ConvLSTM comes from its ability to learn both local visual 

features and their progression over time. This makes it highly 

effective for real-world detection scenarios where 

manipulations are subtle and temporally coherent. ConvLSTM 

models are particularly useful in forensic requests that need 

great compassion to both appearance and motion cues. Their 

modular design also enables integration into ensemble 

pipelines, providing an additional layer of robustness. 

TABLE IV. ROLE OF CONVLSTM IN DEEPFAKE DETECTION 
 

Aspect Mechanism Benefit 

Spatio- 

Temporal 
Modeling 

Captures both visual 

and motion features. 

Enables robust detection 

in dynamic video content. 

Optical Flow 

Integration 

Measures movement 

across frames. 

Identifies inconsistencies 
caused by face swapping 

or edits. 

Residual 
Network 

Support 

Uses skip connections 

to stabilize learning. 

Avoids gradient 

vanishing in deep temporal 

layers. 

Multi-Stream 

Architecture 

Processes parallel 

feature sets. 

Improves efficiency and 

scalability. 

Dataset 

Generalization 

Performs well across 

diverse data sources. 

Increases applicability to 

unseen manipulation types. 

E. Ensemble Techniques 

Ensemble Techniques Ensemble learning augments model 

robustness and generalization by uniting the strong points of 

multiple architectures. [17] introduced a Training Weighted 

Ensemble (TWE) model that outperformed individual 

classifiers. Modern ensemble approaches fuse predictions from 

CNNs, XceptionNet, and LSTM-based models using strategies 

like weighted averaging or majority voting [26]. 

[20] This method minimizes misclassification and 

improves adaptability across diverse datasets and manipulation 

types. 

III. LITERATURE SURVEY 

The literature analysis explores the growing scenery of 

deepfake detection, emphasizing the critical role of deep 

learning methodologies in uncovering sophisticated 

manipulations in facial imagery and video content. As 

deepfakes become increasingly convincing and accessible, the 

demand for automated, scalable, and generalizable detection 

systems has intensified. This review categorizes significant 

advancements across several architectural paradigms namely 

CNNs, LSTMs, Xception networks, Transformers, and hybrid 

models while also discussing supporting approaches such as 

frequency-domain analysis, ensemble strategies, and dataset 

engineering. Collectively, these studies represent the present 

form of the art in defending against AI-generated forgeries. 

A. CNN-Based Deepfake Detection 

Convolutional Neural Networks (CNNs) form the bedrock 

of many modern deepfake recognition methods in line for their 

strong capabilities in hierarchical three-dimensional feature 

extraction. [2] demonstrated the efficacy of CNNs by 

achieving a 97.1% accuracy rate on the FaceForensics++ 

dataset through an adaptive manipulation trace extraction 

network that captured subtle pixel-level anomalies. [2] 

compared multiple CNN backbones, including EfficientNet and 

XceptionNet, on datasets such as FF++ and Celeb- DF, 

observing robust classification performance with AUCs 

exceeding 0.95. Furthering these developments, [9] proposed 

the inclusion of spatial attention mechanisms within CNNs to 

better highlight artifacts generated by GANs, thereby 

increasing detection robustness. [14] took a novel approach by 

integrating CapsuleNet with CNNs to enhance explainability, 

which is increasingly important for applications requiring 

transparency in decision-making, such as legal or forensic 

contexts. [18] introduced a diffusion layer into the CNN 

framework, reinforcing model resilience to face presentation 

attacks. Meanwhile, [19] investigated synthetic gender 

classification datasets, showcasing how adversarial trained 

CNNs can be repurposed for forgery detection. [23] offered a 

meta-review of CNN architectures, including diffusion-based 

and traditional networks, underlining their versatility. [22] 

contributed by developing a Semi-Dense U-Net that facilitates 

fine-grained forgery localization by enhancing spatial 

resolution in output feature maps. 

B. LSTM and Hybrid CNN-LSTM Approaches 

Long Short-Term Memory (LSTM) nets, known for 

capturing sequential dependencies, have proven instrumental 

in detecting temporal inconsistencies in deepfake videos. [6] 

introduced a Convolutional LSTM Residual Network 

(CLRNet), which captures transitions and temporal 

irregularities across frames, surpassing five contemporary 

detectors in generalization and  performance. 

[26] improved detection performance further by leveraging 

optical flow features in a hybrid CNN-LSTM model, achieving 

notable accuracies across FaceForensics++, Celeb- DF, and 

DFDC datasets. Their approach highlighted the advantage of 

integrating motion cues with spatial features, particularly for 

detecting manipulation in low- motion regions. [27] examined 

the benefits of funneling CNN- extracted spatial features into 

an LSTM decoder, showing enhanced generalization on 
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manipulated datasets. 

[28] built upon this by optimizing a Bidirectional LSTM 

architecture, combined with Conditional Random Fields 

(CRFs), enabling faster inference suitable for real-time 

deployment without sacrificing detection precision. A state- 

of-the-art contribution by [29] employed a comprehensive 

architecture blending CNN, LSTM, and Transformer models 

with 3D Morphable Models (3DMMs), thus incorporating 

biometric identity modeling into the pipeline. This approach 

significantly improved detection across different identities and 

lighting conditions. 

C. Xception-Based Architectures 

XceptionNet, an advanced CNN variant known for its 

efficient use of depthwise separable convolutions, is widely 

adopted in deepfake detection due to its capacity to reduce 

model complexity while preserving representational power.[2] 

utilized a 3D Inflated XceptionNet augmented with Discrete 

Fourier Transform (DFT) to analyze both three- dimensional 

and time-based features in video sequences, achieving 89.6% 

accuracy on Celeb-DF. [4] further refined XceptionNet by 

incorporating cross-attention mechanisms  and  few-shot  

learning  techniques,  which significantly enhanced 

performance in scenarios with limited labeled data. [20] 

extended this by embedding dual- attention modules and 

feature fusion layers, making the model more robust against 

video compression and noise. [3] validated the superiority of 

XceptionNet by benchmarking it against EfficientNet-B4, 

reporting higher classification fidelity. [23] emphasized the 

importance of such variants within ensemble systems, where 

their lightweight architecture enables efficient integration with 

other deep learning models. 

D. Transformer and Vision-Based Approaches 

Transformers, originally developed for natural language 

processing, have increasingly presented potential in visual 

applications due to their ability to model long-range 

dependencies. [12] performed a comparative study concluding 

that Vision Transformers (ViTs) outperform traditional CNNs 

in capturing global context, especially in challenging and 

diverse video datasets. [25] introduced a self-supervised ViT 

architecture with contrastive pretraining, achieving an 

impressive 93.1% cross-domain accuracy, indicating strong 

generalization even under limited supervision. [29] integrated 

ViTs into a multi-branch hybrid system with CNN and LSTM 

modules, thereby enhancing both context awareness and 

inference efficiency. 

[21] proposed a meta-learning strategy to dynamically 

weight features in transformer-based models, optimizing their 

ability to generalize across different manipulation domains. 

E. High-Frequency and Local Feature Techniques 

Detection techniques based on frequency-domain and local 

patch analysis have gained traction as they target subtle 

discrepancies that deep generators struggle to eliminate [8] 

emphasized the value of high-frequency signals, 

demonstrating their role in generalizing detection models 

across datasets. [24] proposed local relational learning 

modules that focus on micro-level inconsistencies, leveraging 

patch-level relations for fine-grained analysis. 

[11] advanced this by developing a multi-scale 

reconstruction model capable of capturing both high-level 

semantic and low-level frequency artifacts. [2] reaffirmed the 

benefit of combining spatial and frequency domains by 

embedding Fourier features within XceptionNet, enhancing 

temporal-frequency detection across manipulated videos. 

F. Dataset-Centric and Real-World Detection 

Robust datasets underpin meaningful benchmarking and 

development. [15] introduced the DFFMD dataset, tailored for 

pandemic-era face masks, addressing real-world constraints in 

facial identity verification. [16] contributed the eKYC-DF 

dataset designed specifically for electronic Know Your 

Customer (eKYC) applications, where deepfakes pose 

regulatory and security threats. [5] focused on contextual 

forgery detection, using discrepancies between facial regions 

and their background as indicators of manipulation. [7] built 

FakeTagger, a provenance-aware framework capable of 

embedding digital watermarks to track the origin and integrity 

of multimedia content. [19] further emphasized the utility of 

synthetic datasets for improving  model  resilience,  

particularly  in  training scenarios where real manipulated 

samples are scarce or evolving. 

G. Ensemble and Traditional Feature-Based Techniques 

Ensemble learning is widely regarded as an effective 

strategy to improve model robustness and reduce overfitting. 

[17] laid the groundwork with the Training Weighted 

Ensemble (TWE) model in face recognition, which has since 

been adapted for deepfake classification tasks. 

[26] employed ensemble logic by combining CNN, LSTM, 

and optical flow in a voting-based system. [20] demonstrated 

the effectiveness of combining attention- weighted outputs 

from XceptionNet with CNN layers to increase detection 

fidelity. [23] emphasized that ensemble learning mitigates the 

shortcomings of individual architectures, particularly in 

adversarial contexts. [29] showed that hybrid ensemble models 

featuring CNNs, LSTMs, and Transformers excelled even 

when trained exclusively on authentic datasets, highlighting 

their potential for real-world scalability. 

H. Specialized Architectures and Applications 

Special-purpose models offer valuable enhancements in 

niche contexts. [14] applied CapsuleNet in tandem with CNNs 

to offer interpretability, especially useful in legal or 

investigative applications. [22] developed Semi-Dense U-Net 

for accurate forgery segmentation in facial imagery.[23], while 

originally addressing agricultural object detection using Faster 

R-CNN with ZFNet, showcased how adaptable CNN 

architectures can transition into the deepfake domain. 

[25] demonstrated how self-supervised Vision Transformers 

can reduce the need for extensive labeled datasets, providing a 

scalable solution for emerging threats. 

I.  Motion and Trajectory-Based Detection 

Modeling facial motion trajectories provides additional 

cues. [13] introduced displacement trajectory series analysis to 

detect frame-level facial landmark shifts. [21] applied domain-

weighted learning to emphasize motion-based anomalies. [6] 

reinforced the importance of temporal coherence by coupling 

CNN features with LSTM-based motion analysis. 
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IV. FINDINGS

The following table 5 provides a consolidated summary of 

29 deepfake detection studies, highlighting their techniques, 

methodologies, key findings, and emerging research trends. 

The findings are categorized by technique and summarized 

below: 

Convolutional Neural Networks (CNNs) continue the 

backbone of many detection systems owing to their efficiency 

in spatial feature extraction. [1] demonstrated that adaptive 

manipulation traces extracted using CNNs achieved up to 

[3] 97.1% accuracy on FF++ by learning minute

inconsistencies in facial regions.  compared EfficientNet and

XceptionNet, reporting strong AUC scores of 0.95 and

0.97 respectively on Celeb-DF and FF++. Spatial attention 

enhancements by [9] further improved detection of GAN- 

generated faces, while [14] introduced CapsuleNet to enhance 

explainability in CNNs. [18] employed image diffusion within 

CNN pipelines, increasing robustness against presentation 

attacks. 

TABLE V. SUMMARY OF DEEPFAKE DETECTION RESEARCH 

Ref.n

o, author 

Name 

Technique Key Findings Methodology Trends / Implications 

[1], Guo et 

al. (2021) 
CNN 

Detected fine-

grained 

manipulation traces 

Adaptive trace extraction 

High-resolution CNN 

models improve spatial 

forgery detection 

[2], 

Biswas et al. 

(2021) 

3D XceptionNet + DFT 
Combined spatial and 

frequency features for video 

3D CNN + Discrete 

Fourier Transform 

Temporal + frequency 

fusion boosts performance 

[3], Yasser 

et al. (2023) 
EfficientNet, XceptionNet 

Achieved high 

AUCs on Celeb-DF and 

FF++ 

Frame-level 

classification 

Lightweight CNNs 

scale well for mobile/real-

time 
detection 

[4], Thilakanathan 
et al. (2018) 

Enhanced XceptionNet 
Improved few-shot 

learning via attention 

Cross-attention + 

transfer learning 

Important for unseen/few- 

sample detection scenarios 

[5], Nirkin 
et al. (2021) 

CNN + Context 
Consistency 

Detected mismatched 
face- background pairs 

Context-based 
consistency checks 

Leverages scene 
semantics to expose 

tampering 

[6], Tariq 

et al. (2020) 
CNN-LSTM 

Detected temporal 

artifacts between frames 
LSTM + residual 

learning 

Temporal 

dependencies matter in 

video fakes 

[7], Wang 

et al. (2022) 
Provenance Tracking 

Prevented dissemination 

via metadata tracing 

Watermarking + 

metadata analysis 

Forensic tagging enables 

proactive content filtering 

[8], 

Luo et al. 

(2021) 

High-Frequency Analysis 
Effective 

generalization using 

frequency domain 

FFT-based features 
High-frequency 

signals capture subtle 

artifacts 

[9], Guo et 

al. (2022) 
Attentive CNN 

Detected GAN faces with 

enhanced spatial attention 
Attention layers in CNN 

Strengthens 

robustness against 

sophisticated 
generators 

[10], 

Saikia et al. 

(2023) 

CNN + 

LSTM + Optical 

Flow 

Detected inter-frame 

motion inconsistencies 

Hybrid temporal-

spatial learning 

Optical flow enriches 

motion modeling 

[11], 

Sun et al. 

(2023) 

Trajectory 

Displacement 

Series 

Captured landmark 

motion irregularities 

Face region trajectory 

tracking 

Landmark trajectories aid 

deepfake detection 

[12], Thing (2023) CNN vs Transformer 
Transformers showed 

stronger temporal modeling 
Architecture comparison 

Transformers better at 

long- sequence modeling 

[13], 

Sun et al. 

(2023) 

Multi-Scale Reconstruction 

Generalized across 

manipulations with feature 
blending 

Multi-scale CNNs 
Scales well for unseen 

forgeries 

[14], 

Ishrak et al. 

(2023) 

CNN + CapsuleNet 
Enabled 

interpretable 

detection outputs 

Vector-based 

classification 

Explainability 

through capsule 

architecture 

[15], 

Alnaim et al. 
(2023) 

CNNs + DFFMD Dataset 
Tailored detection 

on masked deepfake 
faces 

Dataset + CNN 

evaluation 

Specific datasets improve 

contextual realism 

[16], 

Felouat et al. 

(2024) 

Dataset (eKYC-DF) 
Enabled regulatory- 

compliant facial ID testing 

Real-world capture and 

labeling 

Needed for robust 

biometric verification 

systems 

[17], 

Raafat et al. 

(2011) 

Ensemble (TWE) 
Improved accuracy using 

weighted classifier outputs 

Training-weighted 

ensemble 

Ensemble voting 

increases detection stability 

[18], 

Alassafi et al. 

(2023) 

CNN + Image Diffusion 
Strong against spoofing 

and presentation attacks 

Modified CNN + image 

transformation 

Diffusion improves 

texture variability handling 
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[19], 

Oulad- 

Kaddour et al. 
(2023) 

CNN + Fake Data 

Training 

Better generalization with 

adversarial learning 

Transfer learning on 

fake data 

Synthetic training data 

improves domain robustness 

[20], Lin et al. 

(n.d.) 

Xception + Dual Attention 
Detected 

compressed/low- quality 

forgeries 

Attention + separable 

convolutions 

Combines 

local/global features 

for robustness 

[21], 

Sun et al. 

(2021) 

Meta-Learning 

+ Weighted

Network 

Domain generalization via 

adaptive feature importance 
Meta-weighting of 

features 

Cross-dataset 

generalization improves 

deployment 

[22], Pai 

& Sharmila 

(2023) 

Semi-Dense U-Net 
Fine-grained 

forgery localization 

U-Net with reduced

connectivity 

Combines speed and 

spatial accuracy 

[23], Fu et al. 

(2018) 

Faster R-CNN + ZFNet 
Adapted object detector to 

forgery detection 
Region-based CNN 

Illustrates architecture 

portability across domains 

[24], Chen 

et al. (2021) 
Local Relation Learning 

Detected micro-level 

patch inconsistencies 

Patch-based 

relational modeling 

Useful for small forgeries 
not captured by global 

models 

[25], 

Nguyen et al. 

(2023) 

Self-Supervised ViTs 
Achieved high accuracy 

with minimal labels 

Contrastive 

learning + ViTs 

Low-resource 

training method with 

strong generalization 

[26], 

Saikia et al. 

(2022) 

CNN-

LSTM + 

Optical Flow 

Captured motion and 

spatial forgeries across 

datasets 

Deep hybrid architecture 
Motion modeling 

improves real-world 

robustness 

[27], 

Tipper et al. 

(2024) 

CNN + LSTM 
Improved generalization 

to unseen attacks 

CNN feature encoder 

+ LSTM decoder

Suitable for dynamic 

manipulations 

[28], Wang (2025) BiLSTM + CRF 
Reduced latency for 

real- time video detection 

Bi-directional LSTM + 

conditional fields 

Balances speed and 

accuracy for deployment 

[29], 

Petmezas et al. 

(2024) 

CNN + LSTM + 

Transformer + 3DMM 

Identity-aware 

system combining 

multiple architectures 

Hybrid deep learning 

pipeline 

Multimodal systems 

outperform single-model 

architectures 

[19] trained CNNs on synthetic data to improve

adversarial generalization, while [22] proposed a Semi-Dense 

U-Net to localize forged regions more precisely. Temporal

modeling techniques by Long Short-Term Memory (LSTM)

nets and hybrids with CNNs have proven effective in video-

based forgery detection. [6] introduced a CNN-LSTM-based

Residual Network (CLRNet), achieving 93.5% on FF++ by

modeling temporal inconsistencies. [6] extended this by

integrating optical flow, reaching up to 91.2% accuracy.

[27] applied sequence learning via CNN-LSTM to

improve detection of unseen manipulations. [28] proposed a 

real-time BiLSTM- CRF model with reduced latency. [29] 

integrated CNNs, LSTMs, Transformers, and 3D Morphable 

Models to develop a robust identity-aware detection 

framework, establishing a new state-of-the-art (SOTA) on 

VoxCeleb2. Xception-based models continue to dominate the 

field due to their computational efficiency and performance. 

[2] introduced a 3D Inflated XceptionNet using Discrete

Fourier Transform, improving video deepfake detection by

capturing spatial-frequency signals [4] incorporated cross- 

attention and few-shot learning into XceptionNet, enhancing

performance on limited data. [20] combined dual attention

with Xception to improve robustness on compressed and

degraded data. Transformers and Vision Transformers (ViTs)

have emerged as promising architectures for modeling long-

range dependencies. [12] compared CNNs with ViTs, finding

that transformers outperformed CNNs in temporalmodeling

tasks. [25] used self-supervised contrastive learning with

ViTs, achieving 93.1% accuracy in cross-domain detection. 

[21] applied meta-learning to dynamically reweight features

for better domain generalization. [29] demonstrated that

combining CNNs with ViTs and LSTMs significantly

improved detection speed and accuracy.

Local and high-frequency analysis approaches focus on 

subtle artifacts left by manipulation. [8] leveraged high- 

frequency signals for improved generalization across datasets. 

[24] used local relational learning to detect pixel- level

inconsistencies. [11] proposed a multi-scale feature

reconstruction framework to enhance generalization to

multiple manipulation types. Dataset development shows a

crucial role in improving model performance and robustness.

[15] introduced the DFFMD dataset targeting masked face

deepfakes in pandemic scenarios. [16] created eKYC-DF, a

real-world dataset for facial identity verification. [5] analyzed

contextual mismatches between background and face to detect

tampering. [7] designed FakeTagger to detect manipulated

content via metadata and provenance tracking. These datasets

provide necessary variety and realism to enhance model

training. Ensemble techniques combine multiple model

outputs to improve performance. [17] developed a Training

Weighted Ensemble that improved accuracy on face

recognition tasks. [20] fused CNN and Xception-based models

using dual attention for better generalization. [26] applied

majority voting across CNN, LSTM, and optical flow

components. [23] showed how Faster R-CNN and ZFNet,

though originally developed for agricultural applications,

could be adapted for forgery detection tasks. [29] validated the

effectiveness of multimodal ensemble systems in achieving

high accuracy and faster inference. Motion and trajectory-
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based analysis methods have gained traction for detecting 

spatiotemporal inconsistencies. [13] introduced a trajectory-

based displacement series approach to capture subtle 

variations in facial landmark movement, detecting video-level 

forgeries with 90.6% accuracy. [21] applied domain-weighted 

meta- learning to emphasize important motion cues, while 

[26] reinforced the importance of sequential modeling 

through LSTM variants. By observation the collective 

findings across these papers demonstrate that no single 

technique is universally optimal. Rather, hybrid models that 

combine spatial, temporal, and frequency features often with 

ensemble or transformer-based components are most 

effective. Future directions point toward lightweight 

architectures for mobile deployment, domain adaptation for 

cross-dataset robustness, and explainable AI for regulatory 

compliance. 

V. CONCLUSION 

This survey aimed to comprehensively review recent 
advancements in deepfake detection, with a particular focus 
on deep learning techniques including CNNs, LSTMs, 
Xception variants, Vision Transformers, and ensemble-based 
architectures. Through the analysis of 30 peer-reviewed and 
high-impact research papers, key methodologies, 
performance metrics, and emerging trends were identified. 
The findings confirm that CNNs remain essential for spatial 
artifact detection, while LSTM-based and hybrid models are 
mainly effective popular capturing temporal inconsistencies. 
Transformer-based methods must also show major potential 
in handling long-range dependencies and cross- domain 
generalization. Additionally, dataset construction and 
ensemble learning continue to enhance model robustness, 
while innovative techniques such as multi-scale feature 
reconstruction, attention mechanisms, and high-frequency 
analysis contribute to improved accuracy and interpretability. 

Despite these advancements, critical challenges remain. 
Real-time and lightweight detection systems are still 
underexplored, especially for deployment in mobile and low- 
resource environments. Many models struggle with 
generalization across diverse manipulation types and unseen 
datasets, indicating a need for more dynamic, adaptive 
approaches. Furthermore, explainability and transparency in 
AI decision-making require further attention, particularly for 
applications involving authentication and legal evidence. 
Future research should therefore focus on developing 
efficient, scalable, and interpretable hybrid frameworks that 
integrate spatial, temporal, and semantic cues. Emphasis 
should also be placed on curating standardized, diverse 
datasets and enhancing domain adaptation techniques to 
ensure reliable detection in practical, real-world scenarios. 
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