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Abstract: The fast development of malware and the growing sophistication of cyber threats have made the older signature-based detection 

systems incapable of the contemporary cybersecurity systems. The deep learning based methods have become a potent alternative over 

the past few years because they have the capacity to automatically discover discriminative representations on huge and heterogeneous 

data sets. Nevertheless, due to high detection rates, deep learning models have been criticized because of their black box decision-making 

mechanisms, which restricts their deployment in sensitive and regulated settings. The present paper is the systematic and in-depth review 

of deep-learning malware-detection techniques, specifically the integration of explainable artificial intelligence to make them more 

transparent and trustworthy. The paper examines malware analysis paradigms, deep learning architectures, benchmark datasets, and 

evaluation metrics and explainability methods that are widely used in the literature. In addition, important issues in real-world 

deployment are also analyzed, such as adversarial robustness, scalability, concept drift, and the accuracy versus interpretability trade-

off. Through the synthesis of recent trends in research and open research challenges, this review will point out the important directions 

of creating robust, interpretable, and deployable malware detection systems that is appropriate as a tool in real-world cybersecurity. 
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1. INTRODUCTION 

The accelerated digital transformation of contemporary society has considerably amplified the magnitude, difficulty, and 

interconnectedness of computing systems, and by implication, raised vulnerability to cyber threats. As one of these threats, malware, 

malicious software intended at causing disruption, obtaining sensitive information or accessing it without authorization, has been 

called one of the most important and significant issues in the field of cybersecurity that has consistently remained a challenge. The 

modern malware families have sophisticated features, including polymorphism, metamorphism, encryption, and awareness to the 

environment, which allow them to avoid the traditional security systems. Due to this, malware detection has been getting harder 

with traditional signature and rule based methods that highly depend on prior knowledge of any known threat and cannot be used 

effectively against zero-day attacks. 

Deep learning (DL), a branch of machine learning, has been developed as a paradigm shift in malware detection because it addresses 

most of the limitations of conventional machine learning techniques. Deep neural networks are self-taught at learning hierarchical 

representations of features in raw or minimally processed data, and because of this, do not require any significant amount of hand-

crafted feature engineering. Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM) networks, Graph Neural Networks (GNNs), and Transformer-based models have proven to be better in a variety 

of malware detection tasks. These models have been effectively used on all kinds of data representations such as executable binaries, 

bytecode images, sequences of API calls, control-flow graphs and network traffic logs (Janiesch, Zschech and Heinrich, 2021). 

CNN-based models are especially efficient in the case when binaries of malware are converted to image-like forms, which encode 

spatial patterns that are associated with malicious behavior. RNNs and LSTMs are good sequence-based models and are useful in 

modeling time related information in dynamic analysis data, including API call traces and system call sequences. Later on, GNNs 

were proposed to detect structural association of malware in the form of function call graphs and control-flow graphs to provide 

more semantic insight. Transformer architectures, which take advantage of self-attention mechanisms, have also advanced the field 

of malware detection by learning long-range dependencies and make it scalable to large datasets. 

Explainable Artificial Intelligence (XAI) is one of the promising technologies that could be used to resolve the transparency issues 

related to deep learning models. XAI methods are designed to offer human interpretable explanations of model predictions by giving 
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influential features, emphasizing decision paths, or by visualizing the learned representations. In malware detection, explainability 

allows analysts to reverse-trace predictions into particular behavioral patterns, code fragments or structural parts, which increases 

the confidence of automated systems. Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations 

(SHAP), Gradient-weighted Class Activation Mapping (Grad-CAM) and attention visualization are among the techniques that have 

been rapidly embraced to explain DL-based malware classifiers (Sadeghi R. et al., 2024). 

On the basis of these observations, this paper includes a systematic and comprehensive survey of deep learning methods of malware 

detection with a focus on explainability and deployment issues. The paper summarizes the latest developments in malware analysis 

methodology, deep learning models, benchmark datasets, evaluation processes, and XAI systems. This work is expected to be of 

crucial benefit to researchers and other practitioners interested in coming up with accurate, interpretable and deployable malware 

detection systems through a critical analysis of current research and identification of issues left to be addressed. 

2. MALWARE ANALYSIS AND DETECTION PARADIGMS 

The analysis and representation of malicious software is vital to the functioning of malware detection systems. Malware analysis is 

the study of potentially malicious software in order to gain an insight into its structure, behavior, and purpose, and eventually derive 

some distinctive features that will allow distinguishing them and classifying them properly. Malware analysis methods have been 

continuously developed over time to keep up with more advanced evasion techniques used by attackers. Malware analysis paradigms 

in modern research can be generally divided into three categories (static analysis, dynamic analysis, and hybrid analysis), and each 

has its own benefits and drawbacks. 

Dynamic malware analysis fills in part of the weaknesses of the static analysis technique by observing malware behavior in a 

controlled environment, usually a sandbox or a virtual machine. Dynamic analysis can give a better understanding of the real actions 

of malicious software by observing runtime activity like system calls, API calls, file system operations, registry changes, and 

network interactions. Such approach of behavioral perspective helps identify malware which does not seem harmful when it is in 

the form of malware, but during execution, it performs malicious activities. Dynamic analysis thus is more resistant to obfuscation 

of code and packing techniques. However, it brings with it enormous difficulties, such as large computing power, increased analysis 

time, and vulnerability to environment-aware malwares, which are capable of identifying sandboxing conditions and eliminate 

malicious activities (Ilić et al., 2024). 

Deep learning combined with the state-of-the-art malware analysis paradigms have helped to increase the detection capabilities 

significantly. Nevertheless, the sophistication of modern malware as well as the variety of the methods of analysis present threats 

in terms of model interpretability, scaling, and robustness. Knowledge of the interaction of various paradigms of analyses with deep 

learning architecture is thus critical in the development of effective and reliable systems of malware detection. The following section 

is based on this relationship to discuss taxonomy and architectural. 

3. DEEP LEARNING ARCHITECTURES FOR MALWARE DETECTION 

The quality of malware detection systems that are trained using deep learning highly depends on the type of neural network 

architecture and malware data representation. In contrast to other conventional machine learning approaches, which require 

handcrafted features, deep learning encoders will automatically derive hierarchical abstractions out of raw or less processed inputs. 

This is an ability that allows them to identify complex and non-linear relationships which are in the behavior of modern malware. 

In the last ten years, various types of deep learning architectures have been investigated to detect malware, and each is specific to 

the data modalities and analysis paradigm. 

One of the most popular architectures used in the study of malware detection is the convolutional neural networks (CNNs), which 

is mainly used in the case of the statical analysis of malware. This has been made very successful by the fact that the visualization 

of malware has become more popular; executable binaries or byte sequences are converted into a two-dimensional representation 

like a grayscale image. In this sense, CNNs acquire spatial patterns that are associated with malicious behavior and in many cases, 

they produce high classification accuracy. The approaches based on CNNs are computationally efficient when running inference 

and can be scaled to big datasets. They are however mostly useful at capturing spatial correlations and might not be able to model 

temporal dependencies or semantics of execution, thus being less useful against malware with complex behaviour (Yamashita et 

al., 2018). 

Recently, transformer-based architectures have been proposed to malware detection because they allow modeling long-range 

dependencies with self-attention mechanisms. Transformers operate on input sequences in parallel unlike RNNs, so they are highly 

suitable in large-scale learning. Opcode sequences, API call sequences and even multi-modal malware representations have been 
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transformed. They are promising candidates of next-generation malware detection systems because of their high flexibility and 

scalability. However, transformer models are computationally costly and can be resource-heavy (large labeled datasets are 

frequently necessary to perform optimally), meaning that they may not be applicable in resource-constrained settings. 

In general, the selection of the deep learning architecture should be informed by the characteristics of the malware data, the analysis 

paradigm and deployment limitations. There is no single architecture that is always the best and trade-offs between accuracy, 

interpretability, scalability, and computational efficiency are unavoidable. These trade-offs are the key to understanding how the 

malware detection systems can be developed not only to be accurate, but also to be real and reliable. In the following section the 

emphasis is put on explainable artificial intelligence approaches that set out to respond to the interpretability challenges presented 

by these deep learning models. 

4. EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MALWARE DETECTION 

Although deep learning models have shown tremendous advances in malware detection accuracy, their black box decision processes 

present serious issues in practice in cybersecurity settings. Deep neural networks are usually black-box models which provide 

minimal information on the impact of input features on final predictions. This non-transparency in malware detection may 

undermine the trust of analysts in their work, make it difficult to respond to incidents, and enforce regulatory and organizational 

accountability demands. In its turn, explainable artificial intelligence (XAI) has become an important direction of research that seeks 

to better the interpretability and reliability of systems of malware detection that rely on deep learning. 

SHapley Additive explanations (SHAP) is another model-agnostic method that bases its application on cooperative game theory. 

SHAP attributes the importance of features by determining their marginal contribution to a prediction in all conceivable sets of 

features. SHAP has been applied to malware detection applications to explain both local and global predictions to allow analysts to 

interpret the significance of features in malware families and datasets. SHAP has better theoretical guarantees and more explanatory 

power than LIME, at the cost of higher computational complexity, and hence may be more restricted to real-time detectors (Wang 

et al., 2024). 

Explainability methods have also become popular with model-specific methods, specifically convolutional and attention-based 

models. Gradient-weighted Class Activation Mapping (Grad-CAM) is widely used with CNN-based binarial malware classifiers, 

which are used on image-like representations of binaries. Grad-CAM produces heatmaps which identify areas of the input image 

that are most important in the model decision, enabling visual examination of the potentially suspicious segments of code by the 

analyst. Although these visual explanations are intuitively explained, the quality of the underlying malware visualization is important 

to their interpretability, and may not directly map to semantic program behaviour (Chen et al., 2019)(Hota, Panja and Nag, 2025). 

5. DEPLOYMENT CHALLENGES AND OPEN RESEARCH ISSUES 

Although deep learning-based malware detection systems have made a great step forward, their application in the real world in 

terms of cybersecurity practice is still not addressed. There are numerous models which exhibit amazing results in controlled 

experimental environments, but find significant drawbacks in the integration into working systems. These are difficulties based on 

the dynamism of malware, limitations of computational infrastructure, and the trade-offs of accuracy, interpretability, and efficiency. 

Resistance to adversarial manipulation is one of the most important issues related to the implementation of deep learning-based 

malware detection systems. Authors of malware programs are finding more and more ways to detect and take advantage of 

vulnerabilities in learning-based detectors by generating adversarial samples to avoid being classified. These attacks can be 

relatively benign binary mutations, API reordering, or behavioral fuzzing, which maintains malicious code but deceives detectors. 

Despite the proposed solutions to the weakness through adversarial training and data augmentation, research has shown that these 

methods are usually more complex and of higher computational cost to train. In addition, adaptive property of adversarial attacks 

provides a challenge in ensuring resilience in the long run. 

Another significant worry is scalability, especially the case of the enterprise and cloud settings when it is necessary to analyze 

millions of files, network events, and execution traces in a day. High-computational and memory complexity deep learning models 

can impose unacceptable latency, but not be used in real-time or near-real-time detection. Transformer-based models, as well as 

graph neural networks, are powerful but particularly resource-intensive. Reaching a correct tradeoff between inference efficiency 
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and detection accuracy is still an unresolved research question, especially when it is needed to run on edge devices or resource-

limited systems like IoT networks. 

Explainable artificial intelligence is also a new technology that makes deployment difficult. Although XAI methods increase 

transparency and trust, they may add computational complexity that impedes real-time detection. Also, the explanations produced 

by post-hoc approaches do not necessarily accurately mirror the inner workings of complex models, and hence this can result in 

false interpretations. Multiple concerns are also emerging that an in-depth description of the process might reveal confidential 

information about detection logic, allowing adversaries to reverse-engineer models and come up with evasion measures (Sadeghi 

R. et al., 2024). 

Availability, as well as quality of data remain a major problem. Most malware datasets in research are obsolete, imbalanced or their 

labels are not based on consistent criteria. Access to realistic operational data is also limited by privacy and legal constraints, which 

limits the generalizability of publicly-available dataset-trained models. These problems make it clear that collective data-sharing 

models, labeling standards and benchmarking efforts should be realistic. 

To conclude, the discrepancy between laboratory implementation and practical application is a significant drawback to deep 

learning-based malware detection. To solve adversarial robustness, scalability, adaptability, explainability, and data quality in a 

single solution, a unified approach is important to the next generation of practical and trustworthy detection systems. The final part 

provides a summary of the lessons learnt during this review and gives the future research directions (Salih et al., 2025).  

6. FUTURE RESEARCH DIRECTIONS 

Despite the fact that deep learning and explainable artificial intelligence have greatly improved malware detectors, there are still 

several research gaps that have not been addressed yet. These issues are crucial to creating detection systems that are accurate, as 

well as robust, interpretable and applicable in the real world. 

A prospective avenue is in the usage of naturally interpretable deep learning systems to detect malware. Majority of the current 

strategies are based on post-hoc explainability mechanisms that are used after training the models, which might not necessarily be 

consistent with the internal decision mechanisms. Future directions need to concentrate on the explanation-conscious model design, 

where the interpretability is directly incorporated in the structure as sparse representation, attention constraints, or rule-directed 

learning. These models can decrease the dependence on the external explanation tools and enhance trust and transparency. 

Malware data still remains a limiting area due to the lack of realistic, recent, and varied data on malware. The most important thing 

that future research must focus on is coming up with standardized benchmark datasets that capture the current malware behavior in 

various platform, such as Windows, Android, IoT, and cloud. There should also be inclusion of time data and longitudinal 

assessment which would enhance the realism of the experiment. Federated learning and privacy-preserving data collection and 

sharing systems have potential solutions that can be considered to meet these limitations of data accessibility and remain 

confidential. 

Other considerations to future malware detection systems include scalability and efficiency. Theoretical studies of lightweight deep 

learning models, model compression algorithms, and hardware-constrained optimization are fundamental to its implementation in 

resource-constrained settings. The solutions of edge computing and on-device detection, especially on IoT and mobile platforms, 

need models capable of working under strong latency and energy constraints without performance trade-offs in detection. 

Lastly, the explainability evaluation is to be given more attention. Although there are well-developed predictive performance 

measures, there are no standardized ways of evaluating the quality, consistency, and utility of explanations. The creation of 

quantitative and qualitative assessment systems of XAI in malware detection is necessary to compare the methods and future studies. 

In general, the future development of malware detection research will need a comprehensive solution including accuracy, robustness, 

explainability, scalability, and usability. By solving these mutually supporting problems, future systems will be able to resolve the 

changing threat environment and render adequate cybersecurity defense. 
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7. CONCLUSION 

The case of malware detection systems based on deep learning with a specific analysis of explainable artificial intelligence as an 

essential requirement to implement the systems in the real world were discussed in the paper. Since malware is getting more 

sophisticated and bigger day after day, traditional signature-based detection systems are no longer sufficient. Detection accuracy of 

deep learning methods has been shown to improve significantly because the methods automatically learn complex representations 

that use a variety of malware data formats such as binary files, behavioral traces and structural graphs. The convolutional neural 

networks, recurrent neural networks, graph neural networks and transformer-based models each have brought their own advantages 

to the detection scene. 

The evaluation of malware datasets and its practices showed that the main challenges were still bias of data sets, imbalanced classes, 

time, and inconsistency in benchmarking. These problems complicate a just comparison between the studies and restrict the extent 

to which the reported results can be generalized. Also, adversarial, scalability, concept drift, and system integration deployment 

issues remain barriers to research advances into operational security solutions. 

This paper identifies gaps in the existing literature and highlights gaps in knowledge about the importance of a unified perspective 

of malware detection that is accurate, interpretable, robust, and efficient. The next generation of research should not focus on 

individual performance gains but should rather develop the concept of integrated and explanation aware detection systems that can 

adjust to new threats and real-world conditions. Finally, the successful integration of deep learning with explainable artificial 

intelligence has an impressive future potential in enhancing reliable and stable malware detection systems in current cybersecurity 

architectures. 
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