

Decentralized IoT Security Gateway System

Dr. Janani A1, Fabian Ferno2, Joeshiba K3 , Shirley Christabel4

1Associate Professor, Dept. of Information Technology, Loyola ICAM College of Engineering & Technology,

Tamil Nadu, India
2,3,4B.Tech Information Technology, Loyola ICAM College of Engineering and Technology, Tamil Nadu, India

Abstract:- The Internet of Things (IoT) has seen widespread

adoption in recent years, connecting numerous devices to the

internet. However, current IoT networks are vulnerable to

various security threats such as data breaches, unauthorized

access, and cyber-attacks. To address these security challenges,

we propose the Riot protocol - a comprehensive solution for

securing IoT networks by providing device authentication, data

encryption, decentralized key generation, scalability, and more

with cryptographic wallet-based authentication. This protocol

ensures the confidentiality, integrity, and authenticity of the data

exchanged between IoT devices (publishers) or users

(subscribers). The Riot protocol aims to provide a secure and

reliable communication between devices, offering an extensive

solution to the challenges of IoT security using blockchain

technology.

Key Words: Blockchain, CIA triad, Encryption, dApp, Smart

Contracts, Cryptographic Salt, Device Signature, Internet of

things.

1.INTRODUCTION

 The Internet of Things (IoT) has seen rapid growth in recent

years, connecting a multitude of devices to the internet and

enabling a range of new applications and services. IoT has the

potential to revolutionize many aspects of our lives, from

healthcare to smart homes and cities [6]. However, this growth

has also brought new security challenges, as these

interconnected devices can be vulnerable to various security

threats such as data breaches, unauthorized access, and cyber-

attacks. In order to unlock the full potential of IoT while

ensuring its security, it is imperative to provide secure and

reliable communication between IoT devices and its users.

The Riot protocol is the proposed solution for securing IoT

networks by leveraging blockchain technology [3]. It offers

device authentication, data encryption, data integrity,

scalability, and interoperability through cryptographic wallet

integration, thereby an end-to-end solution for IoT security

[3]. The device authentication process involves using a

decentralized key generation system to generate the Riot key

[1]. It uses symmetric encryption on the Riot key to encrypt

the data exchanged between IoT devices and users, and data

integrity is ensured by validating the data signature using the

user's private key from their cryptographic wallet [13]. The

use of decentralized transaction and data management

provides anonymity, safety, data integrity, scalability,

interoperability, and an end-to-end solution for IoT security

[4]. It aims to provide secure and reliable communication

between IoT devices, offering a comprehensive solution to the

challenges of IoT security [12].

2. PLATFORM ARCHITECTURE

The Riot protocol is a blockchain-based platform designed to

secure IoT networks. Its architecture consists of several

components, including a front-end dApp for user interaction,

a blockchain node provider for accessing the blockchain, a

Device Auth SDK for firmware compatibility, a database layer

(ideally using decentralized storage like IPFS), a

programmable blockchain layer for smart contract

deployment, and a cryptographic wallet for secure user

authentication. The platform uses “Riot keys” generated from

token ingredients for device authentication and data

encryption, ensuring secure and reliable communication

between IoT devices and users while providing data integrity

and collusion resistance.

Fig 1: System Architecture

2.1 Security Workflow

1. Each device in the system is previously registered using

descriptive parameters like firmware hash, device id,

manufacturer metadata, device subscriber address, etc -

henceforth called token ingredients.

2. Before streaming sensor data, the riot key is generated by

requesting the decentralized key generator using the

token ingredients.

3. Riot key is used in the encryption module to encrypt the

digitally signed data payload.

4. The device user (subscriber) can request the riot key to

the key-generating smart contract as their subscriber

address exists in the state of the blockchain.

5. Upon receiving the key, the user can decrypt the payload

and hash verify the signature for data integrity validation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

393

www.ijert.org
www.ijert.org
www.ijert.org

2.2 Decentralized Application (dApp)

In the context of the Riot protocol, a front-end dApp, or a

decentralized application, is responsible for enabling users to

interact with the smart contract on the blockchain [11]. It

serves as a user interface for managing the IoT devices that

are registered (minted) on the blockchain smart contract or to

gain access to the device data decryption. The front-end dApp

has an interface that could allow users to request and manage

their corresponding Riot keys using their device subscriber

address. Once the key is obtained, the user can then use it to

decrypt the encrypted data sent by their IoT devices, validate

the device's signature using their private key, and view the

decrypted sensor data payload. The front-end dApp also

enables system administrators to manage devices by updating

the token ingredients on-chain, such as device ID, group ID,

and firmware hash for each device. In addition, the dApp

could display the user's device history and usage statistics for

their IoT devices. Overall, the front-end dApp is an essential

component of the Riot platform, as it enables users to easily

manage and interact with their IoT devices on the blockchain

in a secure and decentralized manner [11].

2.3 Blockchain Node Provider

A blockchain node provider offers access to a network of

nodes on a blockchain, allowing developers to interact with

the blockchain without running their own nodes. This helps

integrate blockchain functionality into applications and

deploy smart contracts. Popular node providers include

Alchemy, Infura, and QuickNode.

2.4 Device Auth SDK

The device firmware SDK (software development kit) is used

for developing firmware for IoT devices that are compatible

with the Riot protocol. With the device firmware SDK,

developers can build firmware that communicates with the

Riot protocol and can be registered as a device on the

blockchain which helps ensure that the firmware running on a

device is legitimate and has not been tampered with. It uses

cryptographic techniques such as digital signatures and the

delivery of the device token ingredients to the microservices

that would communicate with the smart contract. The SDK

essentially authenticates and verifies the legitimacy of the

firmware on the device.

2.5 Data store

Post encryption, data can be stored in any data store such as

MySQL, MongoDB, etc. Ideally, with the intention of making

this platform truly decentralized, a database alternative that

uses decentralized storage - IPFS [12] - Interplanetary File

System - for eg. Orbit DB.

2.6 Programmable Blockchain Layer

In the context of the Riot protocol, a smart contract is used to

automate the execution of predefined rules and regulations for

the interaction between various IoT devices. It acts as a self-

executing contract with the terms of the agreement between

the devices written in the code. The smart contract is deployed

on the blockchain, ensuring its transparency and immutability

[1]. It also eliminates the need for intermediaries, making the

transaction process faster, cheaper, and more secure. In

summary, smart contracts help to enforce trust, reduce

transaction costs, and enhance the overall efficiency of the

Riot protocol. It allows programmability on the blockchain. It

contains one of the most important modules, the key generator

module which resides on a blockchain.

Fig 2: Cryptographic Software & Hardware Wallet

2.7 Cryptographic Wallet

A cryptographic wallet is an important component in the Riot

platform as it enables users to securely store and manage their

digital assets, such as cryptocurrencies and tokens [2]. It

securely holds the private key of the user who holds the

account, thereby allowing them to sign the transactions on the

smart contract. It seamlessly integrates with the Dapp to let

the users authenticate and get access which is a fundamental

aspect of the Riot platform's functionality.

3. KEY, TOKEN GENERATION, AND

CRYPTOGRAPHIC FUNCTIONS

The key and token generation in the Riot project utilize

cryptographic functions to ensure secure and robust

authentication. The device token ingredients, including group

ID, manufacturer metadata, firmware signature, device ID,

and device subscriber address, are used as input to generate a

session salt hash with an oracle. This session salt hash, along

with the individual hashes of token ingredients, are combined

to create a merkle hash, which serves as the Riot key. The use

of cryptographic techniques in the key and token generation

process ensures the integrity, confidentiality, and authenticity

of the generated keys and tokens, contributing to the overall

security of the Riot platform.

3.1 Token ingredients

The riot key is generated by the following token ingredients

that aim to secure the system on multiple layers of the IoT data

lifecycle. They are listed below.

Table -1: Riot Key - Token Ingredients.

Ingredient Source Description

Group ID Session /

Region

A unique identifier assigned to a

group/region/zone. Eg. Devices

in a particular room, zone, etc.

Session Salt Smart Contract A random hash generated using

oracle networks assigned for a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

394

www.ijert.org
www.ijert.org
www.ijert.org

device by on-chain smart contract

methods.

Manufacturer

metadata

Physical JSON data with device

specifications like serial_no,

model number, manufacturer

details, etc.

Firmware

signature

Application The firmware signature is used to

detect the integrity of the official

vendor who issued it.

Device ID Physical A unique identifier that is used to

identify the device itself, issued

by the smart contract.

Device

subscriber

address

Session the public wallet address of the

user who will be consuming the

data.

Upon a device is done produced and deployed, a Merkle hash

of these ingredients is stored in Blockchain smart contract [3].

The ingredients are securely used to create the device entities

on the smart contract to the collection of devices. Each new

device added shall be mapped to a non-fungible entity on-

chain.

3.2 Salt Generator

 A cryptographic salt can be defined as random data that is used

as an additional input to a one-way function that hashes data,

a password, or a passphrase [13] . In the context of the Riot

platform, a session salt is a random string of characters that is

generated by the network for each session of the devices. It is

used in combination with the other token ingredients (device

ID, group ID, firmware hash, device password, and device

subscriber address) to create the Merkle root hash, which is

referred to as the 'Riot key' [9].

The use of a group salt in this way adds an additional layer of

security to the Riot protocol by making it more difficult for

attackers to precompute hashes and launch attacks against the

system. Given h = H(t) where t is the token, H() is a

cryptographic hashing function, and h is the resulting hash

output, the following characteristics exist for well-accepted

and proven hash functions:

• Computing h from s should be computational simple while

deriving any s from a given h should be computationally

difficult.

• There should be an extremely low probability of h1 = h2

given s1≠ s2.

• Any identical inputs s1 = s2 should generate identical outputs

h1 = h2 [13].

This function generates a random number using the current

timestamp, sender address, and block number. It then converts

the number into a bytes32 data type, which is used as the

session salt. The function returns the salt to be used in

combination with the other token ingredients to create the

Merkle root hash [9].

3.3 RIOT key generator

 The Riot protocol uses Fernet symmetric encryption algorithm

to encrypt the sensor data along with its digital signature using

the Riot key as the key [12]. Riot Key Generator is responsible

for generating symmetric keys that are used to encrypt and

decrypt data in the Riot protocol. Programmatically, the key

generator function takes in the Riot device token ingredients

and the corresponding session salt [13], as inputs and

generates a symmetric key using the PBKDF2 algorithm with

the SHA-256 hash function. The symmetric key is then used

to initialize a Fernet object, which can be used to encrypt and

decrypt data using the generated key.

 By using symmetric encryption, the Riot protocol eliminates

the need for a complex key management system and reduces

the computational overhead of encrypting and decrypting data

[1]. Additionally, Fernet encryption provides a high level of

security and confidentiality for the data exchanged between

devices and the system.

 Overall, the combination of device authentication through

Riot keys and secure data exchange through Riot keys

provides a robust security framework for IoT devices in the

Riot protocol.

Code Snippet: Smart Contract Generator method

function generateRiotKey(... tokenIngredients) public view

returns (bytes32) {

 // Verify that the token ingredients match the token data

…

 // Generate session salt hash

…

 // Compute the individual hashes of all the token ingredients

…

 // Create a Merkle hash using the group salt hash and the

individual hashes of all the token ingredients

 bytes32[] memory merkleHashElements = new bytes32[](6);

 merkleHashElements[0] = sessionSaltHash;

 merkleHashElements[1] = tokenIdHash;

 merkleHashElements[2] = groupIdHash;

 merkleHashElements[3] = manufacturerMetadataHash;

 merkleHashElements[4] = firmwareSignatureHash;

 merkleHashElements[5] = deviceIdHash;

 bytes32 riotKey = merkleize(merkleHashElements);

 return riotKey;

}

3.4 Collusion resistance

 IoT data security is critical in ensuring that the data

collected from devices is protected from unauthorized access,

modification, and theft. A significant approach to IoT data

security is collusion resistance - a security measure that aims

to prevent multiple parties from collaborating to compromise

the system. This is achieved by ensuring that the security of

the system does not depend on the trustworthiness of any

single party. In the context of our project, collusion resistance

is achieved through the use of individual device keys

generated through the smart contract method based on the

device's unique attributes ensuring that each device has its

own unique key, making it difficult for colluding devices to

collectively compromise the security of the platform.

Furthermore, the decentralized nature of the platform ensures

that there is no single point of failure or control, making it

difficult for malicious actors to collude and compromise the

security of the platform [8].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

395

www.ijert.org
www.ijert.org
www.ijert.org

3.5 Encryption/Decryption Module

 The encryption/decryption module is responsible for securing

the IoT sensor data before it is stored in the data storage

microservice. Fernet symmetric encryption is used for

encryption, which provides a high level of security and speed.

It uses a shared secret key to both encrypt and decrypt data

[13].

Table -2: Fernet Encryption Segmentation

Encryption: The signature and the sensor data payload are

combined to form a hash. The module takes the sensor data

payload and the generated Riot key as the input. The hash and

the original data are then encrypted using Fernet symmetric

encryption. The encrypted data is stored in the data storage

microservice or could be sent to the communication channels

that need this data.

Decryption: The module takes the encrypted data and the Riot

key as input. The Riot key is used as the decryption key using

Fernet symmetric decryption. The decrypted data is then

unconcatenate into the signature and original data. The

signature is verified using the device subscriber's key using

the cryptographic wallet [13]. If the signature is valid, the

original data is decrypted.

This encryption/decryption module provides a high level of

security for the IoT sensor data by encrypting the data with the

Riot key. Additionally, digital signatures are used to verify the

integrity of the sensor data.

3.6 Signature validation

 In our project, we use digital signatures to ensure data

integrity. They are created using the private key of the signer

and can only be verified using the corresponding public key.

To validate the integrity of data, we first create a hash of the

original data and then sign the hash using the private key of

the device subscriber. This creates a unique digital signature

for the data that can be used to verify using the provided public

key to ensure that the data has not been tampered with. This

process helps to prevent masquerade attacks and ensures that

the data being accessed is authentic and has not been modified

by an unauthorized party.

3.7 Key invalidation cases

 There are several scenarios where the RIOT key may be

invalidated or rendered unusable. These include

Device tampering: If the device is tampered with, the RIOT

key may become compromised or invalidated. This can occur

if the device is physically compromised or if its firmware is

modified or corrupted. The protocol immediately identifies

this case because of the token ingredient that includes the

firmware hash and the device’s manufacturer metadata.

Riot key compromised: If the RIOT key is compromised by

an attacker, it can no longer be used to secure data. This can

occur if an attacker gains access to the key, either through a

vulnerability in the device or through a data breach. This is

also avoided by using cryptographic wallets and smart

contracts to generate the Riot keys making it impossible to

generate the keys on their own.

Token expiration: Riot keys are typically designed to have a

limited lifespan for each session. If the token expires, it can no

longer be used to secure data.

User revocation: If a system admin revokes access to a device

or their data, the Riot key associated with that user may

become invalidated.

System upgrades: If the device firmware is upgraded or

changed, existing Riot keys may no longer be valid or

compatible with the new system due to the change in the

firmware hash.

4. IMPLEMENTATION

To realize the proposed Riot protocol, several key components

were developed and integrated to form a cohesive platform.

This section outlines the primary steps involved in the

implementation of the Riot protocol for the IoT security

platform.

4.1 Smart Contract Deployment: The smart contract was

developed using Solidity and deployed on the Polygon

network. It manages device registration, validation, and key

generation, with extensive testing conducted to ensure

security and robustness.

4.2 Device Firmware Integration: An SDK was created to

streamline the incorporation of the Riot protocol into IoT

devices' firmware. The SDK facilitated the integration of

cryptographic functions, communication protocols, and

device registration processes, ensuring compatibility with a

wide range of devices and development platforms.

Fig 3: Dapp Front End

4.3 User Interface Development: A user-friendly

decentralized application (dApp) was designed for end-users

to manage their IoT devices, request Riot keys, and access

decrypted data. The dApp integrated seamlessly with

cryptographic wallets for secure user authentication and key

management.

Fig 4: Dapp + Wallet Connection

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

396

www.ijert.org
www.ijert.org
www.ijert.org

4.4 Data Storage Selection and Implementation: A suitable

database technology was selected and implemented for storing

encrypted sensor data. In addition, a decentralized storage

solution such as IPFS was explored to enhance the platform's

decentralization and resilience against data tampering or loss.

The encryption/decryption module was implemented using

Fernet symmetric encryption to secure IoT sensor data. This

module was designed to work seamlessly with the generated

Riot keys, providing a high level of security and performance.

Fig 5: Data Flow - Level 2 Diagram

4.5 Platform Testing and Evaluation: Comprehensive

testing and evaluation were conducted to ensure the platform's

functionality, security, and performance. Rigorous unit

testing, integration testing, and stress testing were performed,

and the platform was benchmarked against alternative IoT

security solutions.

5. CONCLUSIONS

The Riot protocol is a novel approach to securing Internet of

Things (IoT) devices through the use of blockchain

technology. By leveraging smart contract functionality and

cryptography, the Riot protocol provides a secure and

verifiable mechanism for transmitting and storing data from

IoT devices. This project demonstrates the potential of the

Riot protocol to address the security challenges facing IoT

devices, while also highlighting the important role of

blockchain technology in creating secure and trustworthy

systems.

Following the progress of the paper, the future scopes of the

project is extensive. Addressing emerging security threats by

incorporating advanced cryptographic techniques and

privacy-preserving technologies to ensure user data privacy

without compromising the platform's performance.

Scalability: Further improving the scalability of the Riot

protocol to accommodate the exponential growth of IoT

devices and handling their data communication efficiently.

Energy efficiency: Optimizing the system for energy

efficiency and resource-constrained environments, allowing

the Riot protocol to be more suitable for low-power IoT

devices.

Interoperability: Investigating ways to facilitate seamless

integration of the Riot protocol across different IoT platforms

and standards, thus promoting widespread adoption.

Collaboration: Fostering collaboration between various

stakeholders in the IoT ecosystem, including manufacturers,

developers, and regulators, to ensure a unified approach to IoT

security.

However the Riot platform comes with its own challenges to

be applied in mainstream industries. They are:

Adoption: Encouraging IoT device manufacturers and

developers to adopt the Riot protocol and integrate it into their

products, which may require overcoming resistance to change

and demonstrating the benefits of the platform.

Performance trade-offs: Balancing security and privacy

enhancements with the platform's performance, ensuring that

new features do not negatively impact system efficiency and

speed.

Regulatory compliance: Ensuring that the Riot protocol

adheres to evolving data privacy and security regulations

across different jurisdictions, which may require continuous

updates and modifications to the platform.

User education: Educating end-users about the benefits of the

Riot protocol and guiding them through the process of using

the platform effectively, which may require the development

of user-friendly documentation and training materials.

Advanced attack vectors: Preparing for and addressing

sophisticated attacks that may target the Riot protocol,

including the potential exploitation of vulnerabilities in the

underlying blockchain and cryptographic algorithms.

In conclusion, Riot is a groundbreaking project that uses

blockchain, smart contracts, and cryptography to enhance IoT

security. With its innovative approach, Riot offers a

decentralized and secure infrastructure for IoT devices,

holding potential for revolutionizing IoT authentication and

security.

REFERENCES
[1] Maissa Dammak, Sidi-Mohammed Senouci, Mohamed Ayoub

Messous, Mohamed Houcine Elhdhili, Christophe Gransart, 2020.

“Decentralized Lightweight Group Key Management for Dynamic

Access Control in IoT Environments” IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 3,

SEPTEMBER 2020. ieeexplore.ieee.org/document/9119178

[2] M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci and C.

Gransart, "Token-Based Lightweight Authentication to Secure IoT

Networks" 2019 16th IEEE Annual Consumer Communications &

Networking Conference (CCNC), Las Vegas, NV, USA, 2019, pp. 1-4.

doi: 10.1109/CCNC.2019.8651825.

[3] Jawad Ali, Toqeer Ali &, Yazed Alsaawy, Ahmad Shahrafidz Khalid

and Shahrulniza Musa. 2019. “Blockchain-based Smart-IoT Trust Zone

Measurement Architecture. INTERNATIONAL CONFERENCE ON

OMNI-LAYER INTELLIGENT SYSTEMS (COINS)”, May 5–7,

2019, Crete, Greece. ACM, NewYork, NY, USA, 6 pages.

doi.org/10.1145/3312614.3312646

[4] Jollen Chen. 2017. “Devify: Decentralized Internet of Things Software

Frame-work for a Peer-to-Peer and Interoperable IoT Device”. In

Proceedings of Advances in IoT Architecture and Systems, Toronto,

Canada, June 2017 (AIo-TAS’17), 6 pages.

sigbed.seas.upenn.edu/archives/2018-03/paper4.pdf

[5] Kazım Rıfat Özyılmaz and Arda Yurdakul. 2017. “Work-in-Progress:

Integrating Low-Power IoT devices to a Blockchain-Based

Infrastructure”. In Proceedings of EMSOFT’ 17 Companion, Seoul,

Republic of Korea, October 15–20, 2017, 2 pages.

doi.org/10.1145/3125503.3125628

[6] Nada Alasbali, Saaidal Razalli Azzuhri, Rosli Salleh. 2020. “A

Blockchain-Based Smart Network for IoT-Driven Smart Cities”. IECC

2020, July 8-10, 2020, Singapore. doi.org/10.1145/3409934.3409957

[7] Ali Dorri; Salil S. Kanhere; Raja Jurdak; Praveen Gauravaram. 2017.

“Design and Development of Blockchain-Based Decentralized IoT

Platform. IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops)”. 13-17 March

2017.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

397

www.ijert.org
www.ijert.org
www.ijert.org

[8] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system

https://bitcoin.org/bitcoin.pdf (2008), Accessed 23rd Dec 2021 Google

Scholar

[9] Yin-qing Fang; Jian-bin Liao; Lian-you Lai, 2020. Verifiable Secret

Sharing Scheme Using Merkle Tree.2020 International Symposium on

Computer Engineering and Intelligent Communications (ISCEIC).

doi.org/10.1109/ISCEIC51027.2020.00008

[10] W. Yang, E. Aghasian, S. Garg, D. Herbert, L. Disiuta and B. Kang, "A

Survey on Blockchain-Based Internet Service Architecture:

Requirements, Challenges, Trends, and Future," in IEEE Access, vol. 7,

pp. 75845-75872, 2019, doi: 10.1109/ACCESS.2019.2917562.

[11] Lodovica Marchesi, Michele Marchesi, Roberto Tonelli, Maria Ilaria

Lunesu. 2022, p “A blockchain architecture for industrial applications.

Blockchain: Research and Applications 3 (2022),”

doi.org/10.1016/j.bcra.2022.100088

[12] J. Sun, X. Yao, S. Wang and Y. Wu, "Blockchain-Based Secure Storage

and Access Scheme For Electronic Medical Records in IPFS," in IEEE

Access, vol. 8, pp. 59389-59401, 2020. doi:

10.1109/ACCESS.2020.2982964

[13] A. D. Kent and L. M. Liebrock, "Secure Communication via Shared

Knowledge and a Salted Hash in Ad-Hoc Environments," 2011 IEEE

35th Annual Computer Software and Applications Conference

Workshops, Munich, Germany, 2011, pp. 122-127. doi:

10.1109/COMPSACW.2011.30

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS030227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 03, March-2023

398

www.ijert.org
www.ijert.org
www.ijert.org

