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Abstract— This paper explores the difference in 

performance of spline wavelets of the bi-orthogonal type in de-

noising images corrupted by Additive White Gaussian Noise. 

The dependence of the peak signal-to-noise ratio and the mean 

squared error on the filter characteristics of the wavelets, when 

stationary wavelet transform is used in the de-noising process, is 

investigated. It is found that the de-noising action augments with 

use of wavelet of lower effective length for its high pass 

reconstruction filter. For wavelets with equal effective lengths 

for their high pass reconstruction filters, a relation similar to the 

above, exists for the high pass decomposition filters. ‘Bior1.1’ 

(bi-orthogonal spline wavelet 1.1) is found to be the most 

suitable wavelet in the family, for de-noising. ‘Bior 3.1’ is found 

to be an odd member in the family and is not at all suitable for 

de-noising, the reason for which is traced to the lack of 

smoothness of its decomposition scaling function.  

 

Keywords— Spline wavelet, stationary wavelet transform, 

additive white gaussian noise, thresholding. 

I. INTRODUCTION  

 

The Fourier Transform has been the dominant tool for 

image processing, in the frequency domain. But the Wavelet 

Transform has emerged as an even better instrument for the 

purpose. There are several factors which contribute to 

superiority of the Wavelet Transform over the Fourier 

transform, in image processing applications. 

 The Fourier Transform has a sinusoidal basis function 

which extends from ─ ∞ to + ∞. It makes use of only the sine 

and cosine functions [1]. With Fourier Transform we compare 

the signal to be analyzed, in terms of sinusoidal functions of 

different frequencies. Therefore it provides good frequency 

resolution, but then, the resolution in time is zero. This is 

actually a manifestation of Heisenberg’s uncertainty principle 

which holds that a signal can be said to occupy some position 

inside a rectangle of dimension Δt ×  Δω within the time-

frequency space but the exact position inside this rectangle 

cannot be determined [2]. However, a solution to circumvent 

this problem is provided by what is called “Multi- Resolution 

Analysis” (MRA). MRA means analysis of the image or 

signal at different resolutions. In MRA, the details of the 

image at a particular resolution, say rk, is estimated as the 

difference of information of its approximations at the 

resolutions rk and rk─ 1, k ϵ Z, where the resolutions rk─ 1 and rk 

follow an ascending order [3].  The Wavelet Transform helps 

to make MRA realizable. It can break up input data in to 

different frequency parts and then analyze each of these parts 

with a resolution suited for the scale of that part [4]. This 

means that small details as well as coarse details in an image 

can be perceived. In Wavelet Transform, shifted and 

translated versions of a prototype wavelet constitute a set of 

orthogonal basis functions.  Wavelets are little wave-like 

functions which can be represented as:  

 

           fs,t(u) = |s|−½ 
f (

u−t

s
)   s,t ε R,  s ≠ 0,      (1) 

 

and produced by dilations and translations of the function ‘ f ’ 

[5]. An appropriate combination of wavelets can be used to 

represent any signal [6]. The original wavelet before 

stretching or shrinking is called “Mother wavelet”. Wavelets 

are extremely adaptable for analyzing any signal; this is 

consequent of their ability to be dilated and translated. 

Translation of the wavelet determines the location to analyze, 

and scale changes of the wavelet helps to analyze the signal at 

different frequencies [2]. 

 A wavelet function Ψ ϵ L2 (R) has a varying frequency. 

The function is 0 except for a short duration in time. Therefore 

a wavelet is said to have a “compact support”. This property 

enables to achieve perfect reconstruction [7]. A wavelet 

should also comply with the following three conditions [2]:  

(i)  0 mean value, i.e., 

                                 ∫ Ψ dt =  0
 + ∞

 ─ ∞
                         (2)                

,                                                                     

(ii)  Ψ is normalized, i.e.,                                           

                            ║Ψ║ 2dt =  1                                   (3)           

      and                                                                                                                                 

       (iii) the admissibility condition represented as:                                                     

                             ∫
 |Ψ(ω)2 |

|𝜔|

 +  ∞ 

 − ∞
 dω <  ∞,                

(4) 

                where Ψ(ω) is the Fourier Transform of  Ψ.  

This paper investigates the de-noising performance of bi-

orthogonal spline wavelets using StationaryWavelet 

Transform (SWT).  

II. MATERIALS AND METHODS  

A. Bi-orthogonal wavelets      

First, By the term ‘bi-orthogonal’, we mean two functions 

or ‘bases’ which are mutually orthogonal, but each of which 

need not form an orthogonal set. For bi-orthogonal wavelets, 

we use two different scaling functions and two different 

wavelet functions. One set of scaling and wavelet functions (Φ 

and Ψ) is used in the decomposition step and the other set (Ψ 

andΨ̂) is used in the reconstruction step. This provides 

interesting features that are not possible by using one and the 

same filters for decomposition and reconstruction as what we 

do in the orthogonal case. Also, filter banks comprising bi-
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orthogonal filters are more flexible and can be designed easily. 

Bi-orthogonal wavelets have linear phase which is good for 

reconstruction of images [8]. In this study we make use of the 

bi-orthogonal spline wavelets listed as: 'bior 1.1', 'bior 1.3', 

'bior 1.5', 'bior 2.2', 'bior 2.4', 'bior 2.6', 'bior 2.8', 'bior 3.1',  

'bior 3.3', 'bior 3.5', 'bior 3.7', 'bior 3.9', 'bior 4.4', 'bior 5.5' and 

'bior 6.8'      

B. Corruption of image by adding noise 

For studying the de-noising performance, first of all we 

create a noisy image by adding noise of desired type and 

variance to the selected original image. Additive White 

Gaussian Noise (AWGN) is chosen for corrupting the original 

image because most of the noisy digital images contain this 

type of noise [9]. Additive Gaussian Noise can be represented 

by the noise model: i (x, y) = t(x, y) + r(x, y), where i(x, y) is 

the pixel in the corrupted image, t(x, y) is the true pixel value 

and r(x, y) represents the random Gaussian distributed noise 

[10]. We have used an AWGN of variance σ2 = 0.07 to 

corrupt the image. The noise variance value 0.07 is in a 0 ─ 1 

scale. Such a high value for the added noise is selected to 

enable good visual comparison between the noisy image and 

the de-noised images. 

C. Stationary wavelet transform 

 Image de-noising process using a wavelet transform 

called Discrete Wavelet Transform (DWT) uses the pyramidal 

algorithm proposed by Stephen Mallat. But DWT has the 

drawback that it is not shift-invariant. This amounts to that the 

transform of a time-shifted version of an image differs from 

that of the original image. This is a consequence of the 

decimation associated with DWT. Lack of shift-invariance 

results in production of artifacts in the reconstructed image. 

The Stationary Wavelet Transform (SWT) is a shift-invariant 

transform. It has better de-noising performance than DWT 

[11]. An algorithm which implements SWT is the ‘a΄ trous’ 

algorithm.  However, SWT involves additional computation 

and is basically redundant [12]. But the benefits offered by 

SWT outweigh its shortcomings. Hence we have adopted 

SWT in this work.  

D. Levels of  decomposition 

The decomposition using SWT can be continued until only 

1 sample is left. In practice the number of levels of 

decomposition is determined by factors such as the noise 

content and quality of the reconstructed image. We have used 

the lena image (jpeg) of size 512 × 512 for the study. ‘J’ levels 

of decomposition, J ε Z, are possible with SWT so far as the 

size of the image is divisible by 2J. But more than 3 levels of 

decomposition result in blurring the image. It is the 

consequence of removal of more information from the image 

on account of thresholding at the higher levels. Hence in this 

work we have used an optimum 3 levels of decomposition for 

analysis with each wavelet.  

E. Thresholding 

We adopt soft thresholding in this work. In soft 

thresholding the threshold value is subtracted from all 

coefficients whose values are larger than it and the remaining 

coefficients are thrown away [13]. Here, unlike hard 

thresholding, abrupt discontinuities are not produced. This has 

prompted us to use soft thresholding.  

F. Performance measures 

De-noising performance evaluation is carried out using 

two performance measures namely, Mean Squared Error 

(MSE) and Peak Signal to Noise Ratio (PSNR) of the de-

noised images. These are defined as:            

        MSE=  
1

m n
∑   ∑ ( X(i, j) ─  X′(i, j)) 2n

j =  1
 m
i = 1        (5) 

 

      PSNR =10 log ( 
255  2

MSE
 )dB                                    (6) 

 

  where X is the original (noise-less) image, X′ is the de-

noised image, X(i, j) is the pixel value at the ith  row and jth  

column of the digital image and  m and n are the number of 

rows and columns [14].  

The MSE and PSNR are calculated for the de-noised 

images resulting from de-noising using each wavelet.  

The visual quality of the de-noised images is also 

examined. There is no generally accepted objective method 

for assessing visual quality of de-noised images. However two 

criteria in use are absence of artifacts and preservation of 

edges in the original image.[15].  

III. RESULTS AND DISCUSSION  

 

The noisy image is shown in Fig. 1. Fig. 2 and Fig. 3 show 

the de-noised images with the obtained maximum and 

minimum values of PSNR, respectively. The MSE and PSNR 

corresponding to de-noising with the different bi-orthogonal 

wavelets are shown in Table 1.  

The decomposition process using SWT involves 

convolution of the image matrix with a low pass filter and a 

high pass filter. These filters are respectively labeled as LoD 

and HiD and the values of their effective lengths are given in 

columns 4 and 5 respectively in Table 1. Similarly the 

reconstruction process involves convolution of the image 

matrix with another set of filters containing a low pass filter 

and a high pass filter indicated as LoR and HiR. The values of 

the effective lengths of these filters are given in columns 6 and 

7 respectively in Table 1. Usually the high frequency 

components in an image comprise the noise in the image. 

 
                              Fig.1. Noisy image 
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Therefore it is reasonable for us to examine the features of 

HiD and HiR to relate the same to the variations in the de-

noising performance of the different wavelets used for the 

study. The output of low pass filter contains approximation of 

the image. 

It is observed that the estimated values of the PSNR (and 

MSE) vary with the different wavelets used in the SWT for 

the de-noising process. From Table 1 it can be seen that the 

variations in the PSNR values have some amount of 

relationship with the effective lengths of HiR and HiD. A 

detailed inspection of the corresponding values leads to the 

following observations:    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The PSNR decreases with increase in the effective 

length of HiR. This fact is observed to be true in all the de-

noising cases under consideration, except in the cases of de- 

noising with ‘bior 3.1’, ‘bior 3.3’ and ‘bior 3.5’. ‘Bior 3.1’ 

gives the lowest PSNR (34.5294) even though this wavelet 

has a low value 4 for effective length of HiR.  In fact, ‘bior 

3.1’ has the second lowest effective length of HiR when we 

consider the corresponding values of all the other members in 

the bi-orthogonal spline wavelet family. Thus ‘bior 3.1’ is 

found to have an odd behavior, the reasons for which shall be 

explored  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
               Fig.2 . Image de-noised with ‘bior 1.1’ 

                                                                                                               

                           
 

 
                   Fig.3. Image de-noised with ‘bior 3.1’ 

                                                               TABLE 1 

 

PSNR, MSE and effective filter lengths of the wavelets 
 

Wavelet MSE PSNR  dB 

 

Effective length of filters 

 

LoD HiD LoR HiR 

bior 1.1 12.4334 37.1849 2 2 2 2 

bior 1.3 13.0208 36.9844 6 2 2 6 

bior 1.5 13.2655 36.9036 10 2 2 10 

bior 2.2 13.0943 36.9600 5 3 3 5 

bior 2.4 13.2460 36.9100 9 3 3 9 

bior 2.6 13.3893 36.8632 13 3 3 13 

bior 2.8 13.5105 36.8241 17 3 3 17 

bior 3.1 22.9163 34.5294 4 4 4 4 

bior 3.3 13.6426 36.7818 8 4 4 8 

bior 3.5 13.4364 36.8480 12 4 4 12 

bior 3.7 13.5213 36.8206 16 4 4 16 

bior 3.9 13.6092 36.7925 20 4 4 20 

bior 4.4 13.4691 36.8374 9 7 7 9 

bior 5.5 13.6570 36.7773 9 11 11 9 

bior 6.8 13.8360 36.7207 17 11 11 17 
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later. Hence the following discussion skips ‘bior 3.1’, for the 

time being. As we move from ‘bior 2.8’ to ‘bior 3.3’, the 

PSNR decreases even though the effective length of HiR has 

decreased. The reason for this is an increase in the actual 

values of HiR represented by the increased value of HiRmax 

(maximum value of HiR) given in Table 2.  Due to this 

increase in values of HiR, high amplitude coefficients 

containing noise are retained. An effect just opposite to this is 

observed in the case of ‘bior 3.5’. 

‘Bior 1.1’ gives the maximum value of PSNR which is 

37.1849. Also, the effective length of HiR has the lowest 

value for ‘bior 1.1’. This fact agrees with our above 

observation regarding relation between PSNR and effective 

length of HiR. 

Large effective length of HiR means large number of non-

zero filter points in the filter. Since this high pass filter with 

the large number of non-zero coefficients is convolved with 

the coefficients resulting from decomposition of the noisy 

digital image which have subsequently been thresholded, such 

a convolution gives rise to high frequency components spread 

over a large extent and carries the noise components that have 

not been removed in the thresholding process. This explains 

the reduction in PSNR with increase in effective length of 

HiR. 

2.  When the effective lengths of HiR for two different 

wavelets are equal, the PSNR is found to decrease with 

increase in the effective length of HiD. This is evident by 

observing the PSNR values of the set of wavelets comprising 

‘bior 2.4’, ‘bior 4.4’ and ‘bior 5.5’, each of which has an 

effective length 9 for HiR. The PSNR values obtained on de-

noising with these wavelets decrease regularly as the effective 

lengths of HiD increase. This is shown separately in Table 3 

for easy reference.   

An identical effect is noticed on observing the de-noising 

performance of ‘bior 2.8’ and ‘bior 6.8’. Both of these 

wavelets have effective length 17 for HiR. The PSNR is found 

to have decreased as the effective length of HiD has increased 

3. The influence of effective length of HiD on de-noising 

performance is considerably less than that of HiR. This can be 

established in the following way. We have already established 

above that (i) the PSNR decreases with increase in the 

effective length of HiR and that (ii) when the effective lengths 

of HiR of 2 bi-orthogonal spline wavelets are equal, the PSNR 

decreases with increase in the effective length of HiD. 

As we move from ‘bior 1.5’ to ‘bior 2.2’ the effective 

length of HiD increases from 2 to 3, effective length of HiR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decreases from 10 to 5 and PSNR increases. Also when we 

move from ‘bior 3.9’ to ‘bior 4.4’, the effective length of HiD 

undergoes an increase from 4 to 7; at the same time, effective 

length of  HiR decreases  from 20 to 9 and the PSNR value 

increases. Here the effective length of HiD has increased by 1 

point in the former case and by 3 points in the latter case.  On 

the other hand, the effective lengths of HiR in these cases have 

had decrease and that by considerably larger numbers of 

points. In both the instances the PSNRs have only increased; 

this increase in PSNR is in tune with our observation 1, i.e., 

the increase in PSNR accompanies the decrease in effective 

length of HiR. In this context it may be noted that the 

aforesaid increases in effective lengths of HiD have had no 

noticeable effect on the PSNR. This establishes that effective 

length of HiD has considerably lesser influence on de-noising 

performance, compared to effective length of HiR; also this 

influence is in tune with observation No. 2 above. 

The apparent dominance of the dependence of effective 

length of HiR on PSNR, compared to that of HiD, is 

consequent of the larger value of effective length of HiR 

compared to that of HiD, or in other words, due to the larger 

numbers of non-zero filter points of HiR when compared to 

those of HiD; it can be seen that in most cases, the effective 

length of  HiR is 2 to 4 times that of HiD.    

Now, we may investigate the reason for the odd behavior 

of ‘bior 3.1’.  

The decomposition scaling function of ‘bior 3.1’ is shown 

in Figure 4. As what can be seen from Figure 4, this function 

is not at all a smooth one. It is scaling function bases that 

generate the wavelet basis functions [2]. Hence the 

decomposition wavelet function of ‘bior 3.1’ is also not 

smooth. The basic two-scale relation in MRA is:   

 

       Φ(t) =  ∑  p(k) Φ( 2t − k),𝑘   kε  Z ,    (7) 
 

 where Φ(t) is the scaling function and p(k)  is the discrete 

sequence of coefficients resulting from the decomposition. 

This      

 

                              

 

 

 

Table 2. Maximum values of HiR for 

'bior 2.8’,’bior 3.3’ and ‘bior3.5’. 

Wavelet HiRmax 

bior 2.8 0.4626 

bior 3.3 0.9944 

bior 3.5 0.9667 

 

 

TABLE  3. 

 

PSNR and effective lengths of  HiD for wavelets with  HiR of 
effective length 9. 

 

Wavelet Effective length of  HiD    PSNR  dB 

bior 2.4 3 36.9100 

bior 4.4 7 36.8374 

bior 5.5 11 36.7773 
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equation indicates that the scaling function at a particular 

resolution can be decomposed in to a linear combination of 

scaling functions at the next higher resolution [2]. The discrete 

sequence p(k) of the coefficients resulting from the 

decomposition constitutes the low pass filter in the wavelet 

decomposition. Since the decomposition scaling function is 

not smooth, its regularity is poor and the decomposition low 

pass filter has a high variance. This is also evident from Table 

4  
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which shows the variances of LoD (Var (LoD)) of the 

different wavelets. It can be seen that ‘bior 3.1’ has the highest 

value for “variance” or “dispersion” of LoD. This explains the 

reason for the odd behavior and the poor de-noising 

performance of ‘bior 3.1’. Also the visual quality of the de-

noised images is found to have changes following the changes 

in the PSNR values.         

    

IV. CONCLUSIONS  

 

This paper explores de-noising performance of the 

different bi-orthogonal spline wavelets, when SWT is used as 

the transform for the de-noising operation. The de-noising 

action is found to improve with the use of bi-orthogonal 

wavelet of lower effective length for its high pass 

reconstruction filter. When the effective lengths of high pass 

reconstruction filter for any two bi-orthogonal spline wavelets 

are equal, the PSNR decreases with increase in the effective 

length of high pass decomposition filter. The influence of 

effective length of high pass decomposition filter on de-

noising performance is considerably less than that of high pass 

reconstruction filter; this is due to the fact that the latter has 

larger number of non-zero filter points than the former. 

The maximum value of PSNR is obtained by de-noising 

with the bi-orthogonal spline wavelet with the minimum 

effective reconstruction filter length which is ‘bior 1.1’. ‘Bior 

1.1’ is hence the most suitable bi-orthogonal spline wavelet 

for de-noising images corrupted by AWGN. ‘Bior 3.1’ is 

found to be an odd member in the bi-orthogonal spline 

wavelet family. This wavelet gives the lowest PSNR. 

Therefore ‘bior 3.1’ is not at all suitable for de-noising.  The 

odd behavior and the worst de-noising performance of 

‘bior3.1’ are traced to be consequent of the lack of smoothness 

of its decomposition scaling function. It is also found that the 

visual quality of the images resulting from de-noising using 

the different bi-orthogonal spline wavelets follow the changes 

in the PSNR values obtained. 
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