Abstract: Cloud computing technology provides assistance to companies and users to share computing resources instead of having personal devices or local servers to handle the applications. Mobile cloud computing networking [MCCN] is a novel approach. MCCN is an integration of cloud-based resources and mobility. This paper gives an overview of mobile cloud network model, their challenges and technology of LTE. But sometimes it is difficult in cloud to built spontaneous network and configures its parameters. This paper gives brief view of the routing algorithm used to enhance the capacity of access network in mobile cloud services based on merging of computation and networking in heterogeneous mobile cloud networks.

Keywords: Mobile cloud computing network, Heterogeneous network, LTE [Long-Term Evolution].

1. INTRODUCTION

Cloud computing technology provides assistance to users and companies to share computer resources on pay-as-you-use basis. Cloud technology came into existence in late 2000s.

In cloud the service providers provides a variety of services such as
1. SaaS [Software as a Service]
2. PaaS [Platform as a Service]
3. IaaS [Infrastructure as a Service]

In cloud the resources such as storage, computing power are not present at the user’s location.

Pros of cloud computing are cost, storage, access, speed, scalability.

Cons of cloud computing are security, privacy, internet access dependent, standardization, service level agreements, suppliers interoperability.

The popularity of mobile devices and also increased demand of mobile applications made to converged as mobile cloud computing based on user palatable. Some statistics of mobile computing are given below.
In MCCN network, security is considered as bottleneck. So an adaptive data routing model is used to overcome the situations when mobile devices come across high volume of traffic and disconnection situation. Why we use an adaptive data routing algorithm?

An adaptive data routing algorithms changes their routing decisions based on topology and traffic. With this solution scalability, elasticity of cloud is increased and also power reduction for mobile devices is achieved. This new routing process is known as cognitive data routing in heterogeneous mobile cloud networks (CDRHMCN).

Cognitive radio technology and algorithms are used to solve the problem of spectrum by allowing the unlicensed users (SU) to access available spectrum without affecting the activity of licensed user (PU).

2. RELATED WORK

The mobile cloud networking architecture is as shown in figure 5. The MCCN architecture consists of 3 models:

1. Client/server model.
2. Cloudlet model.
3. Ad-hoc model.

Client/Server model: In this model tasks and complex applications are offloaded from mobile device (Client) to computational infrastructure server which remains static and provides services to the mobile users.
4. COGNITIVE DATA ROUTING IN HETEROGENEOUS MOBILE CLOUD NETWORKING MECHANISM

As cognitive data routing algorithm provides solutions to bottleneck problems. By assuming the availability of various type of resources and alternative wireless connectivity. Heterogeneous in mobile cloud networks comes from the infrastructures, variety of hardware and technologies like Mobile devices, cloud and Wireless networks.

We propose an LTE cellular network that contains of cellular base station (e Node B) and mobile devices connected to it. LTE was designed to increase the capacity and speed of the cellular networks. In LTE download rate is 100Mbps and Uplink rate is of 50Mbps. LTE supports both TDD [Time division duplexing] and FDD [Frequency division duplexing].

In LTE to do necessary analysis and decision of nodes has a command and control functions that is used to initiate the procedure with the following steps.
1. Resource scanner
2. Selecting Algorithm
3. Decision and execution
4. Partitioning

5. SIMULATIONS

Using opnet17.5 version, which supports LTE for modeling heterogeneous mobile cloud computing networking along with Visual Studio 2012 version.

Power consuming report is shown in figure.

In this scenario by using LTE network nodes can utilize resources by switching the mobile node from cloudlet, client/server or ad-hoc models to utilize the resources and providing data routing in successful manner. By this network capacity, coverage area, network throughput increases by using CDRHM CN algorithm. Consuming of power and delay is minimized. The average throughput in the ad-hoc model with high range of QOS is shown in figure 13.
6. CONCLUSION AND FUTURE WORK

In heterogeneous mobile cloud computing network requires adaptive data routing algorithm to overcome the critical networking challenges. By considering throughput, delay we can assess the performance of the network. Future work, there is need to overcome the security in mobile level as well as in cloud level, it is necessary to improve the storage capacity, battery life time, power consumption on MCN.

REFERENCES


AUTHORS PROFILE:

CH. Srilakshmi Prasanna received her B.Tech (CSE) Degree from G. PullaReddy Engineering college, Kurnool, A.P, India in 2008 and received M. Tech (CSE) degree from JNTUA College of Engineering, Pulivendula, A.P in 2014. She has total of 1 year of experience in teaching and currently working as Academic Assistant at JNTUA College of Engineering, Pulivendula, Y.S.R. Dist., A.P, India.

M. CHENNA KESHAVA received his B.Tech (CSE) Degree from G. PullaReddy Engineering College, Kurnool, A.P, India in 2008 and pursuing M. Tech (CSE) degree in JNTUA College of Engineering, Pulivendula, A.P. He has total of 5 years of experience in teaching.