
Data Integrity Check In Cloud Using Dispersal Code

Mr.S.P.Patil

1

Assistant Professor

ADCET, Ashta

Maharashtra

Mr.R.S.Nejkar
2

Assistant Professor

ADCET, ashta

Maharashtra

Ms.D.V.Patil
3

Assistant Professor

ADCET, ashta

Maharashtra

ABSTRACT

 Cloud computing is an emerging field and is envisioned

as the next-generation architecture of IT Enterprise. A distributed

cryptographic system is introduced that allows a set of servers to

prove to a client that a stored file is intact and retrievable. It

cryptographically verifies and reactively reallocates file shares.

This work studies the problem of ensuring the integrity of data

storage in Cloud Computing. In particular, a third party auditor

(TPA), on behalf of the cloud client is allowed to verify the

integrity of the dynamic data stored in the cloud. The introduction

of TPA eliminates the involvement of client in the auditing his data

stored in the cloud is indeed intact or not. Extensive security and

performance analysis show that the proposed scheme is highly

efficient and provably secure.

Keywords— Cloud Computing, Proof of data possession (PDP),

Proof of retrievability (POR), Public verifiability, Third party in

cloud

I. INTRODUCTION

Cloud storage represents a family of on-line

services for archiving, backup and even primary storage of

files. Example: Amazon S3, Google. Cloud-storage

providers offer clean and simple file-system interfaces to the

user by hiding the complexities of hardware management.

The cryptographic community has proposed tools called

proofs of retrievability (PORs) and proofs of data possession

(PDPs) for security assurance. A POR is a challenge

response protocol that enables client to verify that a file is

retrievable or not from cloud service provider. The benefit

of a POR over simple transmission of file is efficiency. The

response can be highly compact, and the client can complete

the proof using a small fraction of file. As a standalone tool

for testing file retrievability against a single server, though,

a POR is of limited value. Detecting that a file is corrupted

is not helpful if the file is irretrievable and the client has no

recourse.

Public verifiability is useful in environments where

file is distributed across multiple systems. In this, file is

stored in redundant form across multiple servers. A client

can test the availability of file on individual servers via a

POR. If it detects corruption within a given server, it can

appeal to the other servers for file recovery.

In a distributed file system, a file is spread across

servers with redundancy through an erasure code. This

supports file recovery in server errors or failures. It can help

a client to check the integrity of file by retrieving fragments

of file from individual servers and cross-checking their

consistency. The system manages file integrity and

availability across a collection of servers. It allows use of

PORs as tool by which storage resources can be tested and

reallocated when failures are detected.

The cloud computing is envisioned as a promising

service platform for the Internet. The new data storage

paradigm in “Cloud” focuses many challenging design

issues. These design issues have profound influence on the

security and performance of the overall system. The data

integrity verification at untrusted servers is one of the major

concerns with cloud data storage. For example, the storage

service provider, which experiences Byzantine failures

occasionally, may decide to hide the data errors from the

clients for their own benefits. The service data files which

belong to an ordinary client for saving provider might

neglect to keep or deliberately delete rarely accessed money

and storage space. It may be more serious. Consider the

large size of the outsourced electronic data and the client’s

constrained resource capability, the core of the problem can

be generalized as how can the client find an efficient way to

perform periodical integrity verifications without the local

copy of data files.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

II. Proposed System:

Many schemes are proposed under different

systems and security models to solve this problem. The

great efforts are made to design solutions that meet various

requirements: high scheme efficiency, stateless verification,

unbounded use of queries and retrievability of data, etc.

Considering the role of the verifier in the model, all the

schemes presented before fall into two categories: private

verifiability and public verifiability. Although schemes

with private verifiability can achieve higher scheme

efficiency, public verifiability allows anyone, not just the

client (data owner), to challenge the cloud server for

correctness of data storage while keeping no private

information. Then, clients are able to delegate the evaluation

of the service performance to an independent third party

auditor (TPA), without devotion of their computation

resources. In the cloud, the clients themselves are unreliable

or cannot afford the overhead of performing frequent

integrity checks. Thus, for practical use, it seems more

rational to equip the verification protocol with public

verifiability, which is expected to play a more important role

in achieving economies of scale for Cloud Computing. That

is, the outsourced data themselves should

not be required by the verifier for the verification purpose.

In the context of public verification, the importance of

blocklessness goes even further because a TPA should not

be allowed to possess the original data files for the obvious

security concern. In this paper we present a framework and

an efficient construction for seamless integration of these

two components in our protocol design. Our contribution

can be summarized as follows:

1. We propose a general formal PoR model with public

verifiability for cloud data storage, in which both

blockless and stateless verification are achieved

simultaneously.

Fig.1.System Architecture

A. Need of public verifiability in cloud

To ensure the correctness of users’ data in cloud,

an effective and flexible distributed scheme with explicit

dynamic data support is proposed. By utilizing the

homomorphism token with distributed verification of

erasure coded data, the scheme achieves the integration of

storage correctness insurance and data error localization. By

detailed security and performance analysis, the scheme is

highly efficient and resilient to Byzantine failure, malicious

data modification attack and even server colluding attacks.

 But the system can further be improved in which

public verifiability is enforced. Public verifiability allows

TPA to audit the cloud data storage without demanding

users’ time, feasibility or resources. Ivy stores file as log,

one log per user. Each participant can read data by

consulting all logs. But if you want to modify it then it must

be appended to your own log means automatically modify

our own log too, although we don’t want it. We can also use

GFS, PAST or OceanStore file share.

III. THE PROPOSED SCHEME FOR PUBLIC VERIFIABILITY IN

CLOUD
In the proposed work, a file is spread across

multiple servers with redundancy through a dispersal code

as shown in Fig.2. This supports file recovery in server

errors or failures. It can help a client to check the integrity of

file by retrieving fragments of file from individual servers

and cross-checking their consistency. The system manages

file integrity and availability across a collection of servers. It

allows use of PORs as tool by which storage resources can

be tested and reallocated when failures are detected.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.2. File Distribution using dispersal code

 Whenever user wants to store a file on cloud, our

system will disperse the entire file in n fragments and stored

on n servers instead of replicating entire file on n servers.

We can distribute it using an error-correcting code referred

as dispersal code. To overcome the problem of corruption

attacks we will use Message Authentication Code (MAC),

computed with secret key known to the client. To make it

highly available, we will replicate these data and codebase

on different cloud environments using appropriate

mechanism. Our system will periodically checks the

intactness and retrievability of file by aggregating responses

from servers and cross checking it with codeword present in

the codebase.

 The proposed system will have the following

modules:

Module 1: Devising vector using Dispersal code

A file is distributed using the dispersal code. Each file

block is individually distributed across the n servers under

the dispersal code as shown in fig.3.

Fig. 3.a Dispersal of File Fig.3.b Encoding

of file

To increase the lifetime of a file the Message

Authentication Code (MAC) is embedded into the

dispersal code. MAC may be constructed as the

straightforward composition of a Universal Hash Function

(UHF) with a pseudorandom function (PRF).

Module 2: Vector replication at each point in the cloud

The vector generated in the Module 1 is replicated in the

codebase present the different cloud data servers.

Fig. 4 Replication of vector stripes on different storage

server

Module 3: Assembly and verification of data at a point in

the cloud

As in the module 2 the file is replicated on different servers.

Whenever the request comes from client to check intactness

and retrievability of file. We will assemble a stripe from

servers and crosscheck with the codeword present in the

codebase. Verify data integrity by throwing challenges to

some or all of the servers. The stripe generated during

response is crosschecked with codeword present in

codebase.

Fig.5 Checking the integrity of the vector at a point in cloud

 The proposed system will implement a distributed

file system in the cloud environment using dispersal code.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

During fragmentation, vector information is generated and

replicated on all servers. The client will request for checking

integrity of data. It throws challenge using secrete key to

some or all servers. In a response a server will generate a

stripe. The stripe is crosschecked with codeword present in

the codebase. If it matches, then the data is intact and

retrievable.

IV. CONCLUSIONS

In this paper, we first distribute file across different

servers and then publicly verify it on demand from anyone

in cloud. Then we proposed a public verifiability scheme for

third party in cloud with the help of error correcting and

MAC Code.

V. REFERENCES

 [1] Cong Wang, Qian Wang, Kui Ren and Wenjing Lou

“Ensuring Data Storage Security in Cloud Computing”,

IEEE 2009

 [2] Kun-Yi Cheng and Chun-Hsin Wu,”Peeraid: A Resilient

Path-aware Storage System for Open Clouds” 2009

IEEE.

[3] Wassim Itani, Ayman Kayssi and Ali Chehab, “Privacy-

Aware Data Storage and Processing in Cloud

Computing Architectures”, 2009 8
th

 IEEE International

Conference on Dependable Atomic and Secure

Computing

[4] Hovav Shacham and Brent Waters, “Compacts Proofs of

Retrievability for Large Files,”

 Proc. of Asiacrypt 2008, Springer-Verlag, 2008.

[5] Abhishek Verma, Shivram Venkatraman,Matthew

Caesar and Roy Campbell,” Efficient Metadata

Management for cloud computing applications”

[6] J. S. Plank and Y. Ding, “Note: Correction to the 1997

Tutorial on Reed-Solomon Coding,” University of

Tennessee, Tech. Rep. CS-03- 504, 2003.

7]

http://www.schneier.com/blog/archives/2009/07/homomorp

hic_enc.html

[8] Michael Miller, “Cloud Computing: Web-Based

Applications That Change the Way You Work and

Collaborate Online”, book.

[9] Anthony T. Velte, Toby J. Velte, Robert Elsenpeter,

“Cloud Computing: A Practical Approach”, book.

[10] http://en.wikipedia.org/wiki/paillier_crptoststem

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

