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Abstract:- Damped vibrations of a circular plate of
parabolically varying thickness resting on elastic foundation
have been studied on the basis of classical plate theory. The
fourth order differential equation of motion is solved by the
method of frobenius. Using high speed digital computer,
frequencies, deflection functions and moments corresponding
to the first two modes of vibrations are computed for circular
plate with clamped and simply supported edge conditions for
various values of taper constants, damping parameter and
elastic foundation. These results have been presented both in
tabular and graphical forms.

INTRODUCTION

In the research work the focus has been laid down
the effect of taper constant, damping and elastic foundation
on frequencies of an Isotropic circular plate of linearly
varying thickness has been studied. The object of the work
presented here is to study the damped vibration of a
circular plate of parabolically varying thickness resting on
elastic foundation.

Here the fourth order differential equation of
motion is solved by the method of Frobenius. The
transverse displacement is expressed as an infinite series in
terms of radial coordinates. The frequencies, deflection
functions and moment parameters corresponding to the first
two modes of vibrations are computed for the circular plate
with clamped and simply supported edge conditions for
various values
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vary in the form H=Ho (1- aR?), where
H, = Hiro, @ =taper constant.
In the light of these assumptions

equation (1) takes the form,
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Substituting (3) in (2) and solving we get,
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where p= circular frequency,
Q) = Frequency parameter ,
Dy = damping parameter ,
Er = Elastic foundation parameter
A series solution for W is assumed in the form,
w(R)= ial R , a,20, (5
- where ¢ is exponent of singularity

Substituting (5) in equation (4) one
obtains

iaz |:1 (A)R(Cﬁr‘l) +iai |:2 (ﬂ)R(C”'Z) +iaﬂ F3 (ﬁ)R(C”) N
=0 Py ~

Zaﬂ F4 (/1) R(C+l+2) +z aﬂ F5 (Z)R(C+/1+4) — 0
A=0 A=0 (6)

For the series expression (5) to be the solution the
coefficient of different powers of R in the equation (6)

must be identically equal to zero. Thus equating to zero the
coefficient of lowest power of R, one gets the identical

equation , a, F, (O)= O since a, #0 ie. F1 (0) =

%1 O):Nl (1) by (3) N, (2) by (2) +N, (3) bo(l) N, (4) b (O) =0
[1_0(;:;12(02— 2)(c-3)+2¢c(c-1)(c-2)-c(c-1)+c]=0

the following indicial roots are obtained c=0, 0, 2,
2 further, equating to zero the coefficient of the next
subsequent power of R, one finds that a;=0 and a; is
indeterminate for c=0 hence a, can be written as an
arbitrary constants along with ao. Similarly equating to zero
the coefficients of next higher power of R the constant as is
obtained in terms of ag, and a; and a. (A =4, 5, 6, --) can be
written in terms of ap and a..

Hence assuming ,
a,=Aa,+ B, a,=(L=0,1,2,3,—-)
(7

The following solution, corresponding to ¢=0 is obtained,
W =a, {1+ZAA Rl}+a{R2 +ZBAR‘} )
A=4 A=4

It is evident that no new solution will arise
corresponding to other values of ¢, i.e. for c=2, it is already
contained in the solution (8) with arbitrary constants ao and
az.

Convergence of the Solution

Lamb's technique is applied to test the
convergence of the solution (8). Rewriting recurrence
relation

ak+8 + ak+6 FQ (7\’ + 6) + a}»+4 FB(}\‘ + 4) aMZ F4(>\‘ + 2)

a, a, F(+8) a, 'F1(>L+8)+ a, F(L+8)
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a
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— where A —>
A

where p = limit

A—o0
p—> oo,

Hence the infinite series is uniformly convergent
when |u| < 1. Hence the solution is convergent.
Boundary Conditions and Frequency Equations
The frequency equations for clamped and simply supported
circular plates have been obtained by employing the
appropriate boundary conditions.
Clamped Plate: For a circular plate clamped at edges r=a,
the deflection w and slope of the plate element at edges
should be zero.
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Using above equation and applying the boundary
conditions one obtains the frequency equation for (clamped

Q) V,(Q
plate) as lzl() . 120 ©)

Q) V(@
where V (gz)zlJriAi VZ(Q):l+iBA
A=4 A=4
V,(Q)= i;t A V(Q)=2+ iz B,
A=4 A=4

Simply Supported Plate: For a circular plate simply
supported at the edge r=a, the deflection W and the
moments Mr at the edge should be zero.

rt)| =0 or,
— _
\NR:]-: aV\i_Flaﬂ :O
OR R OR

Applying these boundary conditions on the
equation , one gets the frequency equation for
simply supported plate as,

Q) V(@
mem%O 0
where Vs (Q)=> A(A+v-1)A,

A=4

V, (Q)=2(1+v +iz (A+v-1)B,
A=4

Deflection Functions and Moments
Again enforcing the boundary condition W=0 at X=1 and

adopting the same value of @, and @, the non
dimensional parameter is obtained in the form

M=o 1or ){fluw 1AR“}
A=3

(1-oR?f L{ L+v)+ Y A +v-1B,R* 2}
A=3

(11)
EH;

Where DO = m

The values of Q) for both edge conditions have
been taken from equation (9) and (10).
Result and Discussion : Numerical results for an isotropic
circular plate of parabolically varying thickness resting on
elastic foundation have been computed by using computer
technology. In all the cases considered the Poisson’s ratio
has been assumed to remain constant and it has been taken

to be 0.3. Terms of series up to an accuracy of 107 in
their absolute values have been retained. Frequency
parameter corresponding to first two modes of vibration of
a clamped and simply supported isotropic circular plate has
been computed for different values of taper constant,
damping parameter and foundation effect have been
computed. All the results are tabulated in tables and
graphically shown in figures (1.1) to (1.8). The results up

to accuracy of 10 ™* have been given in the tables.

Verification of work is obtained by allowing
damping parameter and elastic foundation parameter to be
zero, the problem reduce to well known problem of a
homogenous circular plate of parabolically varying
thickness. The results so good agreements with the already
published work of Gupta .

Figure (1.1) and (1.2) shows the effect of variation
of a taper constant on the frequency parameter for a
circular plate of parabolically varying thickness resting on

elastic foundation, (i.e., for D, =.01, EL =.01, h =1
and D, =.02, E =.02, h =.1) with simply supported
(S-S) and clamped edge edge conditions. From figure it is
observed that the first mode remain near about constant and
the second mode will be decreases in frequency parameter
with the increasing of taper constant on the both mode of
vibration for simply supported and clamped edge plates.
Figure (1.3) and (1.4) shows the effect of variation
of damping constant on the frequency parameter for a
circular plate of parabolically varying thickness resting on

elastic foundation (i.e., for & = .01, E; =.01, h =1 and
a=.02, E =.02, h =.1) with simply supported and
clamped edge conditions. From figure it is observed that
there is a decreasing in the frequency parameter with the
increasing of damping parameter on the both mode of
vibration but this decreasing is some greater for the first
mode than the second mode for the simply supported and
clamped edge plates.
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Figure (1.5) and (1.6) shows the effect of variation
of foundation parameter for a circular plate of parabolically
varying thickness resting on elastic foundation (i.e., for
a=.01D,=.01h=1and a=.02, D, =.02, h=1)
with simply supported and clamped edge conditions. From
figure it is observed that there is a increasing in the
frequency parameter with the increasing of foundation
effect but this increasing is some greater for the first mode
than the second mode on the both mode of vibration for the
simply supported and clamped edge plates.

Figure (1.7) and (1.8) shows the variation of
deflection and moment parameter with respect to the
different points on the plate surface from axis of symmetry.

FIGURE 11 (H=0.1, v =0.3)
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Variation of € for the vibration of a damped simply
supported circular plate of parabolically varying thickness
for different values of taper constant.

FIGURE 12 (H=0.1, v =0.3)
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circular plate of parabolically varying thickness for
different values of taper constant.

FIGURE 13 (H=0.1, v =0.3)
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Variation of Q for the vibration of a damped simply
supported circular plate of parabolically varying thickness
for different values of damping parameter.

FIGURE 1.4 (H=0.1, v =0.3)
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Variation of Q for the vibration of a damped clamped
circular plate of parabolically varying thickness for
different values of damping parameter.

FIGURE 15 (H=0.1, v =0.3)
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Variation of € for the vibration of a damped simply
supported circular plate of parabolically varying thickness
for different values of foundation parameter.

FIGURE 1.6 (H=0.1, v =0.3)
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Variation of € for the vibration of a damped clamped
circular plate of parabolically varying thickness for
different values of foundation parameter.
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Transverse Deflection (W) for a circular plate of
parabolically varying thickness.

FIGURE = 1.8
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