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Abstract—In this article, the notions of Cubic Z-Ideals in 

Z-algebras is introduced and some of their properties are 

investigated. The Z-homomorphic image and inverse image of 

cubic Z-Ideals in Z- algebras is investigated. Also, the 

cartesian product of cubic Z-Ideals in Z-algebras are also 

discussed.  
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I.  INTRODUCTION  

Imai and Iseki [2, 3] introduced two new classes of algebras 

that arise from the propositional logic. In 2017, 

Chandramouleeswaran et al. [1] introduced the concept of         

Z-algebra as a new structure of algebra based on propositional 

logic. Zadeh [19] introduced the notion of fuzzy sets in 1965. 

In 1975, Zadeh [20] made an extension of the concept of fuzzy 

set by an interval-valued fuzzy set whose membership 

function is many-valued and form an interval in the 

membership scale. In our earlier paper [7–18] we have 

introduced the concept of cubic set to Z-Subalgebras in            

Z-algebras and the concepts of fuzzy set, interval-valued fuzzy 

set, intuitionistic fuzzy set, intuitionistic L-fuzzy set, interval-

valued intuitionistic fuzzy set to Z-Subalgebras and Z-ideals in 

Z-algebras. In 2012, using a fuzzy set and an interval-valued 

fuzzy set, Jun et al. [6] introduced a new notion called a cubic 

set and investigated several properties. Meanwhile, in 2010, 

Jun et al. [5] introduced the notion of cubic subalgebras/cubic 

ideals in BCK/BCIalgebras and they investigated several 

properties.In 2011, Jun et al. [4] applied the notion called a 

cubic sets to a group and introduced the notion of cubic 

subgroup. In this paper, we have introduced the concept of 

cubic Z-Ideals of Z-algebras and investigated some of their 

properties. 
  

II. PRELIMINARIES 

In this section, we recall some basic definitions that are 

required for our work 

Definition 2.1[1]  A Z-algebra ( )0,,X 
 
is a nonempty set X 

with a constant 0 and a binary operation   satisfying the 

following conditions: 

00x)1Z( =  

xx0)2Z( =  

xxx)3Z( =  

xyyx)4Z( =  when 0x   and 0y     x, y  X. 

Definition 2.2[1]  Let )0,,X(   and )0,,Y(  be two                

Z-algebras. A mapping  )0,,Y()0,,X(:h →  is said to  be a 

Z-homomorphism of Z-algebras if )y(h)x(h)yx(h =  for 

all Xy,x  . 

Definition 2.3:[6] Let X be a nonempty set . A cubic set A  in 

X is a structure }Xx)x(),x(~,x{A AA =  briefly 

denoted by ),~(A AA =  where 

]1,0[DX:],[:)x(~ U
A

L
AA →  is an interval-valued fuzzy set 

in X and ]1,0[X:A →  is a fuzzy set in X . 

For two cubic sets ),~(A AA =  and ),~(B BB =  in X, we 

define 

1. BABA and~~iffBA   

2. .ABandBAiffBA =
 

3.  Xx|)x(~),x(,xA AA
c =

 

4. }Xx)x(),x(~,x{BA BABA =                

}Xx))x(),x(max()),x(~),x(~min(r,x{ BABA =
    

5. }Xx)x(),x(~,x{BA BABA =                                

}Xx))x(),x(min()),x(~),x(~max(r,x{ BABA =
   

 

Definition 2.4:[4] Let  ),~(A AA =  be a cubic set of X. For 

]1,0[D]s,s[ 21   and ]1,0[t , the set 

]}s,s[)x(~|Xx{])s,s[;~(U 21A21A =  is called an 

interval-valued upper ]s,s[ 21 -level subset of A and 

}t)x(|Xx{)t;(L AA =   is called lower t-level subset 

of A. 

Definition 2.5:[4] A cubic set ),~(A AA =  in a nonempty 

set X is said to have the rsup-inf property  if for any subset T 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020263
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

557

www.ijert.org
www.ijert.org
www.ijert.org


of X there exists Tt0   such that  )t(~supr)t(~
A

Tt
0A =



 and 

)t(inf)t( A
Tt

0A =


 respectively. 

Definition 2.6:[6] Consider a collection of cubic sets  

}Xx)x(),x(~,x{A
ii AAi =  where i ,  

(i) P-union and  P-intersection denoted by 

















i

iAP  and  


















i

iAP  are defined as follows. 









=



















Xx)x(),x(~,xAP
i

i
i

i
AA

i

i
 

                 







=


Xx)x(sup),x(~supr,x
ii A

i
A

i

,

 









=



















Xx)x(),x(~,xAP
i

i
i

i
AA

i

i
 









=


Xx)x(inf),x(~infr,x
ii A

i
A

i

 
 

(ii) Union and intersection denoted by 
i

iA  and  
i

iA are 

defined as follows. 









=





Xx)x(),x(~,xA
i

i
i

i
AA

i

i
 

          







=


Xx)x(inf),x(~supr,x
ii A

i
A

i

, 









=





Xx)x(),x(~,xA
i

i
i

i
AA

i

i
 

          







=


Xx)x(sup),x(~infr,x
ii A

i
A

i
 

Definition 2.7:[4] Let h be a mapping from a set X into a set 

Y. 

(i) Let ),~(A AA =  be a cubic set in X. Then the image of 

A under h, denoted by   

}Yy)y(),y(~,y{)A(h )A(h)A(h =  , is defined by:  







 ==
=

−

 −

otherwise]0,0[

}y)x(h|x{)y(hif)z(~supr
)y(~

1
A

)y(hz
)A(h

1

 

and 






 ==
=

−

 −

otherwise1

}y)x(h|x{)y(hif)z(inf
)y(

1
A

)y(hz
)A(h

1

  

is  a cubic set in Y. 

(ii) Let ),~(B BB =  be a cubic set in Y. Then the inverse 

image (or pre-image) of B under h, denoted  by  

}Xx)x(),x(~,x{)B(h
)B(h)B(h

1
11 = −−

−
 is a cubic set in X 

defined by ))x(h(~)x(~
B)B(h 1 = −  and  

))x(h()x( B)B(h 1 = −  for all Xx . 

Definition 2.8:[4] Let ),~(A AA =  and ),~(B BB =  be 

any two cubic sets in  X . Then, the Cartesian product of cubic 

sets A and B is given by ),~(BA BABA  =  where 

]1,0[DXX:~
BA →    and ]1,0[XX:BA →   are defined 

by  )}y(~),x(~min{r)y,x(~
BABA =   and 

)}y(),x(max{)y,x( BABA =   for all XX)y,x(  . 

III. CUBIC Z-IDEALS IN Z-ALGEBRAS 

 

              In this section, the notion of Cubic Z-ideals in                   

Z-algebras is defined and corresponding results are proved. 

Definition 3.1: Let )0,,X(   be a Z-algebra. A cubic set 

),~(A AA = in X is called a cubic Z-ideal of X if it satisfies 

the following conditions: 

(i) )x(~)0(~
AA    and )x()0( AA   

(ii) )}y(~),yx(~min{r)x(~
AAA   

(iii) )}y(),yx(max{)x( AAA   , for all .Xy,x   

Example 3.2: Consider a Z-algebra X= {0,1,2,3} with the 

following Cayley table : 

  
0 1 2 3 

0 0 1 2 3 

1 0 1 3 1 

2 0 3 2 1 

3 0 1 1 3 

Define a cubic set A  in X by  ]8.0,6.0[)x(~
A =     and   

2.0)x(A =  , for all .Xx Then, A is a cubic Z-ideal of a 

Z-algebra X. 
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Theorem 3.3: The intersection of any set of cubic Z-ideals of 

a Z-algebra X is also a cubic  Z-ideal of X. 

Proof: Let }Xx)x(),x(~,x{A
ii AAi =  where i  an 

index set, be a set of cubic Z-ideals of a Z-algebra X . Then 

for any Xy,x  ,  

)x(~)x(~infr)0(~infr)0(~
iiii AAAA  ==

 

)x()x(sup)0(sup)0(
iiii AAAA  ==  

)}}y(~),yx(~min{rinf{r)x(~infr)x(~
iiii AAAA =  

                                
)}y(~infr),yx(~infrmin{r

ii AA =
 

                                 
)}y(~),yx(~min{r

ii AA  =
        

          

and )}}y(),yx(sup{max{)x(sup)x(
iiii AAAA =

 

                                  )}y(sup),yx(max{sup
ii AA =

                                
 

                                  
)}y(),yx(max{

ii AA  =
       

 

Hence ),~(A
ii AA

i

i 



=  is a cubic Z-ideal of a            Z-

algebra X. 

Theorem 3.4: Let ),~(A
ii AAi =  be a set of cubic Z-ideals 

of a Z-algebra X, where i  an index set. If  

)}}y(~),yx(~min{rsup{r
ii AA   

)}y(~supr),yx(~suprmin{r
ii AA =   and  

)}y(inf),yx(max{inf)}}y(),yx(inf{max{
iiii AAAA =

, for all Xy,x  , then the union of iA  is again a cubic                   

Z-ideal of X. 

Theorem 3.5: Let ),~(A
ii AAi =  be a set of cubic               

Z-ideals of a Z-algebra X, where i  an index set. If 

)}y(inf),yx(max{inf)}}y(),yx(inf{max{
iiii AAAA = , 

for all Xy,x  , then the  P-intersection of iA  is again a 

cubic Z-ideal of X. 

Theorem 3.6: Let ),~(A
ii AAi =  be a set of cubic               

Z-ideals of a Z-algebra X, where i  an index set. If 

)}}y(~),yx(~min{rsup{r
ii AA   

)}y(~supr),yx(~suprmin{r
ii AA = , for all Xy,x  , then 

the P-union of iA  is again a cubic Z-Subalgebra of X. 

Theorem 3.7: Cubic set ),~(A AA =  of a Z-algebra X is a 

cubic Z-ideal of X where ],[~ U
A

L
AA =  if and only if 

U
A

L
A ,  and 

c
A )(  are fuzzy Z-ideals of X. 

Analogously, the following theorems can be proved. 

Theorem 3.8: Let ),~(A AA =  be a cubic set in a                         

Z-algebra X. Then A is a cubic Z-ideal of X if and only if for 

all ]1,0[D]s,s[ 21    and  ]1,0[t , the sets ])s,s[;~(U 21A  

and )t;(L A  of A are either empty or  Z-ideals of X. 

Theorem 3.9: Let h be a Z-homomorphism from a                           

Z-algebra )0,,X(   onto a Z-algebra )0,,Y(    and A be a 

cubic Z-ideal of X with rsup-inf property. Then image of A 

denoted by  h(A) is a cubic  Z-ideal of Y. 

Theorem 3.10: Let )0,,Y()0,,X(:h →  be a                     

Z-homomorphism of Z-algebras. If B is a cubic  Z-ideal of Y, 

then )B(h 1−
 is a cubic Z-ideal of X. 

Theorem 3.11: Let )0,,Y()0,,X(:h →  be an                              

Z-epimorphism of Z-algebras. Let B be a cubic set of Y. If  

)B(h 1−
 is a cubic Z-ideal of X then B is a cubic Z-ideal of Y. 

Theorem 3.12: If A and B be cubic Z-ideals of Z-algebra X 

then BA  is a cubic Z-ideal in  XX . 

Theorem 3.13: Let A and B be two cubic sets of a Z-algebra 

X. If BA  is a cubic Z-ideal of  XX , the following are 

true. 

(i) )y(~)0(~
BA    and )x(~)0(~

AB     for all Xy,x  . 

(ii) )y()0( BA    and  )x()0( AB    for all Xy,x  . 

Proof: Assume that )0(~)y(~
AB    and   )0(~)x(~

BA   

for some Xy,x  . 

Then  

)}0(~),0(~min{r)}y(~),x(~min{r)y,x(~
ABBABA =   

                                                               )0,0(~
BA=  

 which is a contradiction. 

Similarly, assume that )0()x( BA    and   )0()y( AB   

for some Xy,x  . 

Then 

)}0(),0(max{)}y(),x(max{)y,x( ABBABA =   

                                                            )0,0(BA=  
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which is also a contradiction. Thus proving the result. 

Theorem 3.14: Let A and B be two cubic sets of a Z-algebra 

X such that BA  is a cubic Z-ideal of XX .Then either A 

or B is a cubic Z-ideal of X. 

IV  CONCLUSION 

In this article, we have introduced cubic Z-ideals in Z-algebras 

and discussed their properties. We extend this concept in our 

research work.  
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