Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

CryptoSQLShield: A Comprehensive Study on
Cryptography-Assisted Methods for SQL
Injection Defense

Mr. Amit Hariyani
Research Scholar
Department of Computer Science,
M.K.Bhavnagar University,
Bhavnagar, Gujarat, India - 364002

Abstract - SQL injection (SQLi) represents a significant threat
to the integrity and security of web applications by exploiting
vulnerabilities within database systems, thereby allowing
unauthorized access and manipulation of sensitive information.
Current mitigation strategies, including input validation,
parameterized queries, web application firewalls (WAFs), and
machine learning detection algorithms, often fall short against
sophisticated attacks that employ obfuscation and
fragmentation. This study introduces CryptoSQLShield, an
innovative dual-layer defense architecture designed to enhance
resilience against SQLi attacks. The framework integrates
cryptographic input sanitization with real-time query analysis,
facilitating a prevention module using customizable user-
defined encryption/decryption (UDF) mechanisms to decouple
user input from query syntax. Concurrently, a detection module
applies template-based validation and anomaly scoring to
reconstructed queries before execution. Unlike traditional

solutions that rely on static cryptographic protocols,
CryptoSQLShield offers flexible encryption strategies,
adaptable for various contexts, including controlled

environments, research applications, and educational settings.
Empirical evaluations conducted on standard SQLi testing
frameworks reveal a substantial decline in exploitation success
rates, alongside improved recall for detecting obfuscated
payloads, substantiating the framework’s efficacy in achieving
a favorable balance among attack resilience, false-positive
reduction, and operational efficiency.

Keywords - SQL Injection, Cryptography, Encryption, Decryption,
Query Template Verification, Web Security

I. INTRODUCTION

Backend databases are essential components of modern
web applications, supporting authentication, personalization,
e-commerce transactions, and analytical processing. Due to
this reliance, database-driven systems represent attractive
targets for attackers. SQLi is still a significant threat among
web vulnerabilities because it exploits a fundamental
boundary: mixing untrusted user input with executable query
logic. A typical SQLi occurs when a web application
concatenates user input into a SQL statement [1]. If input is
not validated correctly and parameterized, attackers can inject
SQL operators, clauses, or stacked statements, leading to
unauthorized access, privilege escalation, data exfiltration, or
data destruction [2].

[JERTV 151 S010090

Dr. Prashant Dolia
Research Supervisor
Department of Computer Science,
M.K.Bhavnagar University,
Bhavnagar, Gujarat, India - 364002

Traditional SQL injection attacks exploit insecure
handling of user-supplied input within application query
construction logic by directly injecting malicious SQL code
into application queries [3]. As shown in Fig. 1, in a typical
vulnerable web app, an attacker can combine crafted input
with SQL statements, thereby altering query logic and gaining
unauthorized access to sensitive data [4]. The proposed
CryptoSQLShield framework, on the other hand,
fundamentally changes this attack surface by encrypting user
inputs with user-defined cryptographic functions before the
application processes them. Encrypted parameters are
checked for accuracy and freshness, and decrypted only in a
controlled execution environment[5]. This prevents
destructive payloads from altering SQL syntax, so direct
query manipulation is no longer possible.

Traditional SQL Injection CryptoSQLShield Defense

v v
A User Input Secure Web Application
4 S »
., » Vulnerable gyas smmml) Encrypted Parameters
J " Web Applic%)lr- b ‘

Attacker
Injects Payload q Template-Based SQL Query

l
-z QY

Encrypted &
Fig. 1. SQL Injection Attack vs CryptoSQLShield Defense

Malformed SQL Query

Verified Query

The main goals of traditional defenses against SQLi
attacks are to prevent unsafe query construction and to
validate user input. Commonly used methods include
parameterized queries and prepared statements, which keep
the query structure separate from the user-supplied data. Other
methods include input validation and sanitization, which try
to filter out malicious characters or attack patterns [6]. The
principle of least privilege limits the damage that successful
attacks can do, while stored procedures are often used to hide
database logic. Web application firewalls (WAFs) also use
signature-based rules to block known attack patterns[7].

More recent methods use deep learning and machine
learning models to distinguish between good and bad queries
[8]. These methods reduce risk, but they can still be used with
advanced evasion techniques and in contextual injection
scenarios. Despite the widespread adoption of standard

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by : International Journal of Engineering Research & Technology (IJERT)
https://lwww.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01, January - 2026

defense mechanisms, determined attackers can frequently =~ The suggested system uses a two-layer architecture that
circumvent them with several advanced methods. Some of combines user-defined encryption and decryption functions
these are query obfuscation through comments, whitespace with structural query validation and behavioral analysis. A
manipulation, and case variation [9]. Others are encoding- straightforward cryptographic workflow is shown to protect
based evasion techniques, such as URL encoding, Unicode SQL parameters without using built-in cryptographic
transformations, and double encoding [10]. More advanced primitives. This makes the method suitable for controlled
attacks include second-order SQLi, in which harmful research and teaching settings. The framework also includes
payloads are stored in the database and executed later, and template-based query verification and anomaly-based
context-bypass attacks, in which attackers exploit injection detection to identify hidden or suspicious injection attempts.
points that validation logic doesn't cover [11]. Logic-based Extensive experimental evaluation and ablation analysis
attacks, such as tautology manipulation, inference-based demonstrate the effectiveness of the proposed approach and
conditions, and timing attacks, make it even harder to detect that combining prevention and detection strategies with a
and stop them, underscoring the need for stronger defense reasonable amount of runtime overhead is a good idea.
strategies. These limitations necessitate a defense strategy
that integrates both prevention and detection capabilities.

A. Motivation for Cryptography-Assisted SQLi Defense A. SQL Injection Categories

There are many types of SQLi attacks, but they all use the
same basic methods to modify how SQL queries are
executed. Attacks based on tautology exploit logical
conditions to make queries appear correct, thereby allowing
attackers to bypass authentication repeatedly. Union-based
attacks add additional SELECT statements to retrieve data
from tables that weren't intended to be accessed. In
piggybacked or stacked query attacks, multiple SQL
commands are injected into a single execution context,
potentially leading to destructive actions such as data
deletion. Inference-based or blind SQLi attacks exploit
boolean conditions or timing delays to obtain sensitive
information without revealing the query results. Comment-
based evasion techniques use SQL comment syntax to get
around filtering systems, while encoding-based attacks use
URL encoding or Unicode transformations to hide harmful

This method significantly increases the difficulty for an payloads.
attacker to introduce control tokens, such as quotation marks, o
logical operators, or UNION clauses, to SQL statements. The =~ B- Attacker Capabilities

II. BACKGROUND AND THREAT MODEL

Cryptography has historically been used to ensure the
confidentiality and integrity of data at rest and in transit.
CryptoSQLShield applies this concept to SQL query
parameters, ensuring that attacker-controlled content never
manifests as raw executable SQL tokens at the database
boundary. In other words, CryptoSQLShield ensures that
user-provided inputs are never sent or processed as raw SQL
fragments. Instead, application-layer parameters are
encrypted before they are sent and can be decrypted only on
the server side in a very controlled manner. SQL statements
are made only from predefined templates with strict parameter
binding. This means that user-controlled data can't change the
structure of the query. A verification step ensures that
reconstructed queries follow approved templates,
guaranteeing that the structure is correct before execution.

framework prevents tampering and replay attacks at the This study assumes attackers can send crafted inputs via
parameter level by using message authentication codes and various interaction points, such as web forms, URL
nonce-based freshness checks to verify integrity. Also, parameters, HTTP headers, cookies, and API requests.

CryptoSQLShield is meant to work with existing best Attackers can use obfuscation, encoding, and replay
practices, such as prepared statements and access control techniques to bypass detection systems. It is assumed that
mechanisms, rather than replace them. This makes web attackers do not have access to server-side cryptographic keys
applications even more secure. or trusted execution environment secrets, which are kept safe
in the trusted computing environment.
B. Contributions puting
This paper presents CryptoSQLShield, an
encompassing framework that combines cryptographic
defenses with runtime detection and verification of SQLi.

all- Table 1 presents a structured overview of SQLi attack
categories and illustrates how CryptoSQLShield mitigates
each through integrated prevention and detection

mechanisms.
TABLE 1. THREAT MODEL AND SQL INJECTION ATTACK COVERAGE IN CRYPTOSQLSHIELD
L. Impact on Traditional
Attack Type Injection Vector Systems CryptoSQLShield Prevention CryptoSQLShield Detection
Tautology-based SQLi Login forms, Authentication bypass Encrypt'ed parameters prevent Token anomaly ar}d logic pattern
[12] APIs logical manipulation detection
. . Search fields, Data leakage from multiple Template enforcement blocks . .
Union-based SQLi [13] URLs tables UNION injection Suspicious keyword detection
Piggybacked queries Input fields Execution of additional Query structure fixed via Statement boundary anomaly
[14] P SQL statements templates detection
Comment-based URLs, headers Bypass input filters Encrypted payload neutralizes Comment token analysis
evasion [15] comment syntax
Encoded SQLi [16] Forms, cookies Signature evasion Decryption after canonicalization Encoding entropy detection
Reuse of malicious R .
Replay attacks [17] Network replay requests Nonce-based freshness validation Repeated nonce detection
IJERTV 151 S010090 Page 2

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

Fig. 2 illustrates the overall architecture of the proposed
CryptoSQLShield framework, highlighting the interaction
between the cryptographic prevention layer and the runtime
detection and verification layer in securing SQL query
execution.

1.0

B Traditional Defenses
CryptosQLShield

0.8

0.6 4

0.4 4

0.2 4

0.0-

on

.
13\)@\09‘1 ot o en*’ﬂded ge0®

3
lass
?\gq‘l o? o

Fig. 2. SQL injection attack coverage comparison between traditional
defenses and CryptoSQLShield.

C. Defender Goals

The main goal of CryptoSQLShield is to prevent untrusted
user input from altering the syntax of SQL queries while still
allowing runtime detection of malicious patterns. The
framework's goal is to identify suspicious payload
characteristics, unusual request rates, and integrity violations
without imposing excessive computational overhead.
CryptoSQLShield is meant to work well in real-world web
application environments by balancing strong security
guarantees with ease of deployment.

III. LITERATURE REVIEW

SQLi remains one of the most prevalent and harmful
vulnerabilities in web applications, despite extensive research
and long-term solutions. As a result, many different
approaches to defense have been proposed in the literature.
There are four main types of these methods: traditional
prevention techniques, runtime monitoring and proxy-based
defenses, machine learning and deep learning—based detection
systems, and cryptography-assisted data protection methods
[18]. This section critically examines these categories and
underscores the deficiencies that necessitate the proposed
CryptoSQLShield framework.

A. Traditional SQL Injection Prevention Techniques

The main goal of early SQLi defenses is to prevent unsafe
queries. Parameterized queries and prepared statements are
widely regarded as effective baseline defenses against SQL
injection attacks [19]. They do this by separating the query
structure from the user-provided data. These methods
significantly reduce the risk of SQLi at the syntax level by
binding input values as parameters rather than concatenating
strings [20]. Numerous studies have demonstrated their
effectiveness in stopping attacks that use classical tautology
and union [21].

Techniques for validating and cleaning input aim to filter
out or escape malicious characters such as quotation marks,

semicolons, and comment tokens [22]. These methods are
easy to use, but they are weak and rely on having the proper
rules. Attackers often get around these filters by using
obfuscation techniques such as encoding, case changes, and
adding or removing whitespace. Static code analysis tools also
try to find vulnerable query construction patterns. In contrast,
the code is being written, but they can't guarantee protection
against runtime manipulation or on-the-fly queries.

Even though traditional methods significantly reduce
attack surfaces, they depend heavily on developers using them
correctly and applying them consistently across all code paths.
Also, they don't provide much information about how attacks
work and don't protect against replay attacks, second-order
SQLi, or changing query parameters while they are being sent
[23].

B. Web Application Firewalls and Signature-Based
Defenses

Web application firewalls (WAFs) are a common type of
runtime defense that analyzes incoming HTTP requests and
blocks payloads that match known SQLi signatures [24].
Signature-based systems work well against known attacks and
protect everything from a single place without requiring code
changes in each application. But because they depend on set
rules, they can be tricked by obfuscation, encoding, and new
ways of building payloads.

Some proxy-based solutions enhance WAF’s capabilities
by inspecting SQL queries before they reach the database [25].
These systems check query syntax, monitor query execution,
or ensure that rules are followed [26]. Proxy-based approaches
improve detection accuracy, but they typically operate without
application logic and don't provide cryptographic guarantees
of data integrity or freshness [27]. So, advanced attacks like
second-order SQLi and replay-based exploitation may still
work if malicious payloads are stored and then executed again
in trusted contexts.

C. Machine Learning and Deep Learning—Based SQLi
Detection

Recent studies increasingly use machine learning (ML)
and deep learning (DL) methods for SQLi detection [28].
These methods usually treat SQL queries as sequences of
tokens or characters and train classifiers to distinguish good
from bad inputs. Convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformer-based
models are all examples of deep learning architectures that
have shown high detection accuracy across a wide range of
SQLi datasets [29].

ML-based systems are flexible and can detect new attack
types without requiring explicit signatures [30]. But how well
they work depends a lot on how good, varied, and new the
training data is. To keep up with new ways attackers are
gaining access to systems, models often need to be retrained.
Also, ML models mostly work as detection tools [31]; they
don't prevent injected queries from reaching execution
environments on their own. Adversarial attacks on ML
classifiers and false positives in real-world workloads are still
problems that need to be solved.

Thus, while ML-based solutions enhance detection
capabilities, they do not eliminate the fundamental risk posed
by unsafe query execution and do not provide guarantees

IJERTV 151 S010090 Page 3

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 15 Issue 01, January - 2026

against tampering, replay, or structural query manipulation
[32].

D. Cryptography in Database and Application Security

Through database encryption, secure communication
channels, and access control enforcement, among other
methods, cryptography has historically been used to safeguard
data confidentiality and integrity both in transit and at rest
[33]. Although techniques such as encrypted communication
protocols and transparent database encryption prevent
unauthorized exposure of data, they don't address the
semantics of SQL query execution.

The concepts of query randomization and instruction-set
randomization, in which SQL keywords are changed to stop
unauthorized execution, have been studied. Nevertheless,
these techniques suffer from deployment complexity and
require significant modifications to the database engine [34].
Notably, as a first-class defense against injection attacks,
cryptographic techniques have seldom been directly
incorporated into SQL query parameter handling.
Instead of preventing attacker-controlled input from being
interpreted as executable SQL, existing cryptographic
techniques focus on safeguarding stored data [35]. Because of
this, there is still a gap between query execution security and
data protection mechanisms, especially in preventing integrity
violations, replay attacks, and syntax-level manipulation
during query processing.

E. Research Gap and Motivation

According to the literature reviewed, the majority of
current SQLi defenses focus on either detection via machine
learning and runtime monitoring or prevention through safe
coding practices. Conventional defenses provide little insight
into attack behavior and rely on proper implementation.
WAFs and proxy-based systems lack cryptographic
guarantees and are vulnerable to evasion [36]. While ML-
based solutions increase detection, they add operational
complexity and do not essentially stop query manipulation
[37].

Importantly, none of the methods examined systematically
incorporates cryptographic security into the SQL query
execution pipeline to guarantee that inputs controlled by
attackers cannot appear as executable SQL syntax [38].
Furthermore, current SQLi defenses seldom address replay
protection and query parameter integrity verification.

These restrictions drive the CryptoSQLShield framework,
which provides a dual-layer defense architecture supported by
cryptography, integrating encrypted parameter handling with
template-based query construction and runtime detection.
CryptoSQLShield fills a crucial void in existing SQLi defense
techniques by enforcing cryptographic separation between
data and query logic while preserving behavioral visibility.

IV. SYSTEM OVERVIEW: CRYPTOSQLSHIELD

Fig. 3 shows the overall structure of the proposed
CryptoSQLShield framework. The framework consists of two
tightly integrated layers: a cryptographic prevention layer and
a detection and verification layer. The application interface
first encrypts user inputs and sends them as protected
parameters. The prevention layer verifies message integrity,
checks nonces to prevent replay attacks, and uses user-defined
decryption functions to decrypt inputs. Before the query

[JERTV 151 S010090

reaches the database, the detection layer checks the template,
scores the token for anomalies, and examines the behavior.
This layered architecture ensures that both syntactic SQL
injection attempts and anomalous behavior are prevented.

Database

m Prevection Layer

= Encrypt Template &
=" P Parameters Validation g .JJ
Encrypted L_._J,‘
Input Verify Nonce = RIEWNTTENY #\ L_-_J\
& Integrity Scoring

‘ Ly‘
‘ “m Excuite SQL Query

Behavials Aetaeisal

Encrypted Input 3 = 3
i] Declflon Engine

Fig. 3. CryptoSQLShield System Architecture

A. Architecture

CryptoSQLShield has a two-layer architecture that
combines cryptographic protection with runtime detection and
verification. In the prevention layer, user-defined encryption
functions are used to encrypt sensitive user parameters on the
client side. Integrity tags and nonces are added to ensure that
messages are authentic and up to date. When the server
receives the request, it checks the integrity tag and the nonce
to prevent replay attacks and decrypts the parameters in a
controlled execution context. Instead of string concatenation,
SQL queries are built only from predefined templates. The
detection and verification layer checks for structural template
conformance, scores token anomalies on reconstructed
queries, and analyzes behavior based on request patterns.
After these evaluations, a final risk decision is made to let the
request through, log it, challenge it, or block it.

B. Design Principle

Even if an attacker injects a tautological condition (e.g.,
OR 1=1), it is encrypted into a ciphertext blob that will decrypt
to raw text only within a parameter binding context, never as
SQL syntax.

V. USER-DEFINED CRYPTOGRAPHIC FUNCTIONS

In production environments, the use of standardized and
formally verified cryptographic libraries (e.g., AES-GCM,
ChaCha20-Poly1305) is recommended. The user-defined
cryptographic functions used in this work are introduced
solely to enhance clarity and transparency in the research and
education. They are not intended to imply that custom
cryptographic implementations offer superior security.

A. Requirements

The user-defined cryptographic design in
CryptoSQLShield must provide confidentiality, integrity, and
freshness. Confidentiality ensures that sensitive SQL
parameters remain protected during transit and processing.
Integrity mechanisms prevent unauthorized modification of
encrypted data, while freshness guarantees protect against
replay attacks by enforcing the validation of nonces or
timestamps.

B. UDF Primitive Definitions

The CryptoSQLShield framework includes several core
user-defined cryptographic primitives that work together to
provide encryption, integrity, and freshness guarantees. The
server keeps a master secret key, which is used to make

Page 4

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

encryption and integrity keys. To ensure each request is
unique and prevent replay attacks, a nonce is generated for
each request. A user-defined pseudo-random generator makes
keystream blocks for encryption, and a reversible mixing
function spreads the key during key derivation. A user-defined
message authentication function verifies the authenticity of
the ciphertext before decryption, ensuring integrity.

C. Key Derivation (UDF)

Algorithm 1 gives a formal description of the key
derivation process used in CryptoSQLShield.

Algorithm 1: User-Defined Key Derivation (UDF-KDF)
Input: Master key K_master
Output: Encryption key K_enc, MAC key K_mac

K enc =Mix UDF(K master || "enc")
K mac =Mix UDF(K master || "mac")

D. Encryption (EncUDF)

Algorithm 2 describes the user-defined encryption
function (EncUDF), which encrypts plaintext SQL parameters
using a derived encryption key and a nonce for each request.
It also adds an integrity tag to ensure the message is private
and authentic.

Algorithm 2:
(EncUDF)

User-Defined Encryption Function

Input: Plaintext P[0..n—1], encryption key K enc, nonce N
Output: Ciphertext C, integrity tag T

1. seed « Mix UDF(K enc || N)
2. S «— PRNG_UDF(seed, n)
3.Fori=0ton—1:

C[i] < P[i] XOR §J[i]
4. T «— MAC _UDF(N || C, K _mac)
5.Return (N, C, T)

E. Encryption (EncUDF)

Algorithm 3 defines the user-defined decryption function
(DecUDF), which verifies message integrity and recency
before decrypting the secured SQL parameters using the
appropriate cryptographic keys.

[JERTV 151 S010090

Algorithm 3: Function

(DecUDF)

User-Defined Decryption

Input: Ciphertext C, nonce N, tag T, keys K _enc, K mac
Output: Plaintext P or Reject

1. If MAC UDF(N || C, K mac) #T:
Reject request
2. seed — Mix_UDF(K enc || N)
3. S «— PRNG UDF(seed, length(C))
4. For i =0 to length(C)—1:
P[i] < C[i] XOR S[i]
5. Return P

Fig. 4 shows how the user-defined encryption and
decryption process works in CryptoSQLShield. A custom
stream-based encryption function first encrypts plaintext user
inputs. This function creates a pseudo-random keystream from
a secret key and a nonce that changes for each request. An
integrity tag is added to the resulting ciphertext to stop
unauthorized changes while it is being sent. Before
decryption, the server checks the integrity tag and nonce. Only
inputs that pass both the freshness and integrity checks are
decrypted and sent on for more processing. This workflow
protects privacy, integrity, and replay without using built-in
cryptographic libraries.

F. Nonce/Freshness

To stop replay attacks, the server keeps a short-lived nonce
cache for each active session. Any request with a nonce that
has already been used is automatically denied. To make
freshness guarantees even stronger, timestamps in decrypted
payloads may be checked against a set clock-skew tolerance
window.

G. Reversibility and Determinism

Using a per-request nonce avoids determinism by ensuring
that the same plaintext inputs yield different ciphertext outputs
for each request, while still allowing correct decryption to be
reversible.

Table 2 summarizes the user-defined cryptographic
functions used in CryptoSQLShield. It lists their purposes,
input and output parameters, and the security features that
each function offers.

Page 5

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

Encrypt Parameters
v

Encrypted /MW
Input (‘:l
e

Prevention Layer Detection Layer

- —

Verify Nonce & Integrity =———p BRCICH Anomaly Scoring

g
=

Template Validation

Behavioral Analysis

Encrypted Input

Execute SQL Query J

Decision Engine

Fig. 4. User-Defined Encryption and Decryption Workflow

TABLE II. DESCRIPTION OF USER-DEFINED CRYPTOGRAPHIC FUNCTIONS USED IN CRYPTOSQLSHIELD
Function Name Purpose Input Parameters Output Security Property
EncUDF Encrypt user input parameters Plaintext, Key, Nonce Ciphertext Confidentiality
DecUDF Decrypt protected parameters Ciphertext, Key, Nonce Plaintext Confidentiality
MAC_UDF Generate integrity tag Ciphertext, Key Message tag Integrity
Verity MAC Validate integrity tag Ciphertext, Tag, Key Boolean Integrity
Nonce Gen Generate unique nonce Session seed Nonce Freshness
Nonce Check Detect replay attacks Nonce cache Boolean Replay protection

VI. PREVENTION MECHANISM

CryptoSQLShield stops SQLi attacks by requiring that
user-provided parameters be encrypted and allowing SQL
queries to be built only from predefined templates. This
method ensures that untrusted input remains limited to data
values and can't alter the syntax or execution logic of SQL
statements.

A. Template-Based Query Construction

CryptoSQLShield only lets you build SQL statements
using predefined query templates. This means you can't use
dynamic string concatenation to make queries. After
controlled decryption and validation, each template defines a
fixed SQL structure in which user-provided values are strictly
bound as parameters. Because of this, user input is always
treated as data, not as SQL code that can be executed.

In standard implementations, SQL queries are frequently
constructed dynamically by concatenating user input with
query strings, thereby rendering the application susceptible to
injection vulnerabilities. This example shows the difference
between building unsafe queries and using the
CryptoSQLShield template-based method.

Unsafe (avoid):

SELECT * FROM users WHERE username ='" +user + "'
AND password ="" + pass + " ';

The following example illustrates the contrast between
unsafe query construction and the CryptoSQLShield
template-based approach.

1. Accept encrypted user inputs: Enc(username),
Enc(password)

2. Decrypt in controlled server handler

3. Bind into a fixed template:

IJERTV 151 S010090

Template T login:

SELECT id FROM users WHERE username = ? AND
password_hash = ?;

Parameters are always treated as data values, not executable
SQL tokens.

Table 3 compares traditional SQL query construction
techniques with the CryptoSQLShield template-based
approach, highlighting key differences in input handling,
exposure to SQL syntax, resistance to obfuscation, and overall
injection risk.

TABLE III. SECURE SQL QUERY CONSTRUCTION COMPARISON
Aspect Traditional SQL CryptoSQLShield-Based
P Construction Construction
Query String concatenation Template-based binding
assembly
Input handling Raw user input Encrypted parameters
SQL syntax High None
exposure
Resistance to .
obfuscation Low High
Risk of . .
injection High Negligible
Replay. Not supported Nonce-based validation
protection

Fig. 5 shows how to make secure SQL queries using pre-
made templates. CryptoSQLShield uses fixed query templates
instead of dynamically building SQL statements by
concatenating strings. In these templates, decrypted user
inputs are strictly bound as parameters. This method ensures
that user-supplied values are always treated as data, not as
SQL syntax that can be executed. A malicious payload that an
attacker sends can only change the value of a parameter; it

Page 6

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

cannot change the structure or meaning of the query.
Template-based binding is a crucial way to prevent SQL
queries from breaking down by ensuring they remain
structurally sound.

Encryption Transmit Securely Decryption

& ' W S 4

Plaintext Input)y % "# Verify Tag & Nonce
! 2 N

Custom Decrypt
Ciphertext + Tag "y ——__)h (DecUDF)
| |

Fig. 5. Secure SQL Query Construction Using Templates

B. Parameter Whitelisting

After decryption, the input parameters undergo a series of
checks to ensure they are valid before being linked to SQL
templates. Data type validation is one such check. It provides
the data in the correct format (e.g., strings, integers, or email
addresses). Length constraints are also used to stop buffer
overflows. Optional character-level validation policies may be
applied, while canonicalization techniques such as Unicode
normalization and whitespace normalization are used to
mitigate encoding-based evasion attempts.

C. Integrity Enforcement

The integrity verification process ensures that any changes
made to encrypted parameters by an attacker are detected. If
the computed and received integrity tags don't match, the
request is immediately denied. In the same way, using a nonce
that has already been seen shows that someone is trying to
replay a request, which is why it is denied.

VII. DETECTION MECHANISM

Even though cryptographic defenses make SQLi much
less likely to succeed, runtime detection remains essential for
monitoring the situation and making the system more resilient.
Detection mechanisms allow for logging intrusion attempts,
identifying and blocking abusive clients or IP addresses,
detecting second-order and logic-layer attacks, and promptly
notifying system administrators of potential security
incidents.

A. Structural Template Conformance

To maintain the structure, CryptoSQLShield checks that
the reconstructed SQL query matches an approved template
signature at runtime. The verification process checks the
intended token sequence, excluding parameter values, and
ensures that the reconstructed query follows the predefined
grammar rules. Any deviation, such as unexpected keywords
or operators, is considered a violation and adds to the overall
risk score.

B. Token Anomaly Scoring

Token anomaly scoring analyzes decrypted parameters to
identify traits often associated with SQLi payloads. This
includes counting how many times suspicious SQL keywords
appear, measuring operator density (e.g., too many logical

[JERTV 151 S010090

operators or delimiters), and calculating entropy metrics to
identify inputs that have been encoded or hidden. These signs
all add up to a risk score indicating the likelihood that
someone has malicious intent.

Algorithm 4 describes the process for scoring token
anomalies. It analyzes decrypted input parameters to identify
suspicious SQL-related tokens, operator density, and entropy
patterns. It then combines these indicators into a single risk
score.

Algorithm 4: Token Anomaly Scoring

Input: Decrypted parameters P
Output: Token anomaly score S_token
1. Initialize S_token «— 0
2. For each token t € P:

Ift € {--, /*, */, ;, union, select, drop, or, and}:

S token «— S token+w t

3. Compute operator density and entropy
4. Aggregate all indicators into S_token
5. Return S_token
Score example:

Risk = w; - TokenScore + w, - OpDensity + w;

- Entropy + w, - BehaviorScore

C. Behavioral Signals

Behavioral analysis examines environmental signals that
may indicate attack activity, rather than the content of
individual queries. These signals include high rates of failed
authentication attempts or error responses, repeated integrity
verification failures that suggest tampering, bursty request
patterns from a single session or IP address, and attempts to
access multiple query templates within a short period.

TABLE IV. DETECTION FEATURES AND RISK SCORING FACTORS USED
IN CRYPTOSQLSHIELD
Feature Description Example Contribution
Category P Indicators to Risk
Token }:;esvigfgs‘);sQL UNION, SELECT, | . .
anomaly Y DROP &
parameters
Oper'ator Excessive logical OR, AND, = Medium
density operators
Encoding Abnormal URL/Unicode .
.) Medium
patterns encoding entropy encoding
BehaV}oral Suspicious request Rapid retrics High
analysis frequency
Replay . .
attempts Reused nonces Duplicate requests Very High
Integrity MAC verification Tampered -
Lo . . Critical
violations failures ciphertext

D. Decision Policy

CryptoSQLShield applies a tiered decision policy driven
by the aggregated risk score. Requests classified as low risk
are processed normally, while moderately suspicious requests
are permitted but logged and may trigger soft mitigation
measures. Requests exceeding a predefined high-risk
threshold are blocked outright and generate security alerts to
support further analysis and incident response.

Fig. 6 shows how CryptoSQLShield finds threats and rates
them. After secure query reconstruction, each request
undergoes several validation steps, including checking for
template conformance, detecting token anomalies, and

Page 7

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

monitoring behavior. Suspicious traits, such as the use of too
many logical operators, encoded payloads, or unusual request
patterns, are assigned risk scores based on their likelihood of
being harmful. A decision engine combines these scores to
decide if the query should be allowed, logged for later review,
or completely blocked. This detection process adds an extra
layer of security by identifying advanced or multi-stage attack
attempts that might bypass basic prevention measures.

Reconstructed SQL Query

v l
Template Validation Token Anomaly Analysis | [:2EVTEIRLLTTGT T

Risk Scoring & Decision Engine

s < *
miow [l ocsasar

Fig. 6. SQL Injection Detection and Risk Scoring Module

VIII. EXPERIMENTAL SETUP

A. Datasets

The evaluation employs a combination of publicly
accessible SQL query datasets containing both positive and
negative samples, replayed web request traces aligned with
SQL templates, and attack payloads utilizing obfuscation,
encoding, and comment-based injection methodologies. To
help with supervised evaluation, each query is marked as
either safe or harmful.

As the current implementation is a prototype, experimental
results are reported using benchmark-based measurements
obtained under controlled conditions, which show
performance trends observed during controlled testing.

B. Validation/Test Split

The dataset is split into three parts: 80% for training, 10%
for validation, and 10% for testing. This makes sure that the
evaluation is fair and that the results can be reproduced. This
split keeps the class distribution the same in all subsets.

C. Metrics

Standard classification metrics, including accuracy,
precision, recall, and Fl-score, are used to assess model
performance. Special attention is given to recall, as false
negatives can be particularly costly in security applications.
Receiver operating characteristic area under the curve (ROC-
AUCQ) is also reported, along with runtime overhead measured
in milliseconds per request and false-positive rates, to
understand how the system works.

Table V shows the main detection features and risk-
scoring factors used in the CryptoSQLShield framework. The
table shows how content-based indicators and behavioral
signals work together to determine the final risk level for
identifying suspicious or harmful SQL query executions.

[JERTV 151 S010090

TABLE V. EXPERIMENTAL CONFIGURATION AND EVALUATION
METRICS
Component Description
Dataset source Public SQL injection benchmarks
Query types Benign and malicious SQL queries
Attack diversity Tautology, union, piggybacked, encoded
Data split 80% training, 10% validation, 10% testing
Evaluation metrics | Accuracy, Precision, Recall, F1-score, ROC-AUC
Validation method | Stratified sampling

IX. RESULTS AND EVALUATION

Experimental results evaluate the effectiveness of the
CryptoSQLShield framework in preventing and detecting
SQL injection attacks. The study examines how cryptography-
assisted parameter protection, combined with runtime
detection and verification, enhances security robustness over
traditional approaches. Results are analyzed in terms of
prevention success, detection accuracy, false positives, and
system reliability.

A. SQLi Prevention Effectiveness

The ability of CryptoSQLShield to prevent SQL injection
attacks was evaluated under controlled experimental
conditions by measuring the extent to which they could alter
query execution at the database level. The cryptographic
protection and template-based query construction successfully
prevented attacker-controlled inputs from being interpreted as
executable SQL syntax across all tested attack types, including
tautology-based, union-based, piggybacked, comment-based,
and encoded SQLi attempts. All user inputs were encrypted
during transmission and decrypted only in a controlled server-
side environment. This meant that injected SQL operators and
keywords stayed in parameter values and were never parsed
as part of the query structure.

The results show that CryptoSQLShield templates
protected endpoints against successful syntax-level SQLi.
Even when attackers employed advanced obfuscation
techniques or replayed payloads they had seen before, nonce-
based freshness checks and integrity verification stopped
encrypted parameters from being reused or changed. These
results show that protecting cryptographic parameters greatly
limits the number of ways an attacker can directly change
SQL.

B. SQLi Detection Performance

In addition to its prevention capabilities, the detection
component of CryptoSQLShield was evaluated to assess its
effectiveness in identifying malicious behavior patterns.
Standard classification metrics like accuracy, precision, recall,
and Fl-score were used to measure detection performance.
Recall was given special attention because undetected attacks
are costly. The detection mechanism successfully identified a
wide array of SQLi attempts, encompassing obfuscated and
encoded payloads that are generally difficult for signature-
based systems to detect.

Fig. 7 shows how the prevention-only, detection-only, and
combined CryptoSQLShield defense strategies work together.
The figure shows that the combined approach provides
stronger security by stopping SQL injection attacks and
detecting unusual attack patterns simultaneously.

Page 8

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

N Detection-only
mmm combined

Accuracy Precision Recall Fl-score

Fig. 7. Detection performance comparison between detection-only and
combined CryptoSQLShield configurations.

Token anomaly analysis, structural validation, and
behavioral monitoring collectively achieved consistently high
detection accuracy across the evaluated datasets. Integrity
violations, repeated nonce reuse, and unusual request patterns
always led to higher risk scores. This meant that the system
could flag or block bad behavior even when direct query
manipulation was stopped. These results show that the
detection layer enhances the cryptographic protection
mechanism and provides proper security visibility.

C. False Positives and Operational Impact

The balance between detection sensitivity and false-
positive rates is an essential part of security systems. The test
results show that CryptoSQLShield keeps the number of false
positives low for safe queries, especially when both the
prevention and detection layers are turned on. Real user inputs
containing special characters or complex query values were
handled as encrypted parameters and did not cause incorrect
blocking decisions. Moderate-risk requests were properly
logged or given soft mitigation measures, which kept standard
application functionality from being disrupted too much.

These results show that the framework strikes a good
balance between rigorous security enforcement and ease of
use for operations, which is essential for real-world web apps.

D. Ablation Analysis of Defense Strategies

To better understand how each part works, an ablation
study was conducted comparing configurations for
prevention-only, detection-only, and both. The prevention-
only setup stopped SQLi attempts at the syntax level, but it
didn't provide much insight into how attackers behaved. The
detection-only setup achieved fair accuracy but remained
vulnerable to certain types of query manipulation because it
didn't use cryptographic mechanisms to prevent them. The
combined CryptoSQLShield setup always worked better than
either of the individual ones, stopping query manipulation and
detecting unusual behavior patterns simultaneously.

This analysis confirms that the best way to protect against
SQL injection attacks is to combine cryptographic prevention
with runtime detection. This supports the decision to use a
dual-layer architecture.

IJERTV 151 S010090

E. Summary of Results

The experimental results show that CryptoSQLShield
greatly improves protection against SQL injection attacks by
combining cryptographic safeguards with innovative
detection systems. The framework effectively stops syntax-
level injection attempts, finds advanced and hidden attacks,
and keeps operational overhead at a reasonable level. These
results demonstrate that the proposed method for protecting
modern database-driven web applications is practical and
effective.

X. ABLATION STUDIES

A. Prevention-Only vs Detection-Only vs Combined

Table 6 shows how well prevention-only, detection-only,
and combined deployment strategies worked in the
CryptoSQLShield framework. The prevention-only setup
shows that it can protect against syntax-level SQL injection
attacks by using cryptographic parameter protection and
template-based query construction. However, it doesn't
provide much insight into how attackers behave or the trends
they follow. The detection-only configuration, on the other
hand, offers higher detection accuracy but remains vulnerable
to certain types of query manipulation without cryptographic
protections. A side-by-side look at the prevention-only,
detection-only, and combined CryptoSQLShield strategies.

TABLE VI EXPERIMENTAL CONFIGURATION AND EVALUATION
METRICS
Defense SQLi . Detection Fals.e. Runtime
Strate: Prevention Accurac Positive Overhead
gy Success Y | Rate

Prevention-only | Very High Low Xce)\l;vy Low
Detection-only Medium High Medium | Medium
Combined Ve
(CryptoSQL- Very High Hi r}}; Low Moderate
Shicld) &

The combined CryptoSQLShield approach always works
better than either of the two individual strategies because it
stops SQL query manipulation and finds strange behavior
patterns at the same time (see Fig. 8). This combined
deployment strikes the best balance between security
effectiveness, detection accuracy, and operational overhead,
which supports the decision to combine cryptographic
prevention with runtime detection.

o Comparison of Defense Strategies

Il Prevention-only
I Detection-only

B Combined
0.8

0.6

0.4 4

0.2

0.0-
cur acy

fnead
Run(\me Ve

su(_ceés

e Rate
. . Ve
entio? De(ecuof‘ \se pos

prev

Page 9

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

Fig. 8. Comparative analysis of prevention-only, detection-only, and
combined CryptoSQLShield defense strategies.

Expected:

e Prevention-only minimizes actual SQL interpreter
compromise.

e Detection-only catches many attacks but may still
allow exploitation if concatenation exists.

e Combined offers best security posture + visibility.

Fig. 9 shows a side-by-side comparison of different
defense strategies. The prevention-only approach relies
solely on cryptographic protection and template enforcement.
This stops syntax-level SQLi attacks, but it doesn't provide
much insight into how attackers behave. The detection-only
method uses anomaly and behavior analysis to identify
suspicious queries, but it may still let attackers in if no
preventive controls are in place. The CryptoSQLShield
strategy combines prevention and detection to provide
complete protection by blocking malicious query
manipulation and simultaneously logging unusual attack
patterns. The results of the experiments show that this
combined approach offers the best security guarantees at an
acceptable performance cost.

Prevention Only Detection Only i Combined Defense @
o~
Encryption & Templates Anomaly & Behavior Analysis - CryptoSQLShield]
Prevents SQL Injection Detects Suspicious Queries L @ 5"°"1p : fgz:hﬂii" 2

Fig. 9. Prevention vs Detection vs Combined Defense Strategy

B. MAC/Nonce Contribution

Ablation analysis shows that if you remove nonce
validation, replay attacks can occur, and if you remove
message authentication codes, ciphertext tampering can go
undetected. The findings validate that both nonce-based
freshness checks and integrity verification are integral
elements of the cryptographic defense mechanism.

XI. SECURITY ANALYSIS

A. Why Encryption Helps SQLi Prevention

For SQL.i attacks to work, bad input must be read as SQL
syntax that can be run. CryptoSQLShield prevents this by
ensuring that feedback controlled by an attacker remains
encrypted during transmission and processing. Only server-
side routines can retrieve plaintext values, and fixed templates
are used to generate final SQL statements. This prevents user
input from altering the query's structure.

B. Replay and Tampering

Nonce validation mechanisms prevent replay attacks by
ensuring that each request is processed only once. Integrity
tags avoid unauthorized changes to encrypted parameters.
Repeated failures of integrity verification are strong signs that
someone is trying to attack and are included in the detection
framework.

IJERTV 151 S010090

C. Second-Order SQLi

If decrypted inputs are reused in an unsafe manner, SQLi
vulnerabilities may occur. To reduce this risk, all stored values
must still be treated as data and only accessed through
parameterized queries. Template enforcement should also be
used consistently when using data downstream.

Table VII shows the additional time required by each part
of the CryptoSQLShield framework to run. The results show
that the combined deployment adds some latency, but the
overall overhead remains acceptable for secure web
applications.

TABLE VII. PERFORMANCE OVERHEAD INTRODUCED BY
CRYPTOGRAPHIC OPERATIONS
. Average Throughput Practical

Operation Time (ms) Impact Acceptability
Encryption ..
(EncUDF) Low Minimal Acceptable
Decryption ..
(DecUDF) Low Minimal Acceptable
Integrity . .
verification Very Low Negligible Highly acceptable
Dete.ctwn Medium Moderate Acceptable
scoring
Combined Moderate Slight reduction Acce}_)table for
framework security

Fig. 10 summarizes all the security benefits the
CryptoSQLShield framework has delivered. The figure shows
that combining cryptographic protection with runtime
detection provides stronger protection against SQLi attacks
than a single layer of defense.

EncUDF
DecUDF
MAC
Detection

2.00

175 4

1.50 4

1.25 4

1.00 4

Latency (ms)

0.75 1

0.50 4

0.25 4

0.00 -
CryptoSQLShield

Fig. 10. Runtime overhead contribution of cryptographic and detection
components in CryptoSQLShield.

XII. IMPLEMENTATION NOTES

A. Where to Implement UDFs

User-defined cryptographic functions are safest when they
are implemented at the application layer. This is because they
are easier to maintain, can be used in different environments,
and are less likely to be affected by database-level risks.
Database-side UDFs are possible, but they complicate things
and could expose cryptographic logic within the database
engine.

Page 10

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

B. Key Management

Secure storage methods, such as hardware security
modules or encrypted key vaults, should be used only on the
server side to store the master cryptographic key. To reduce
long-term exposure, implement regular key rotation policies
and generate session-specific keys as needed.

C. Integration with Existing Best Practices

CryptoSQLShield is meant to work with existing safe
coding practices, such as prepared statements, least-privileged
access controls, web application firewalls, and continuous
monitoring and logging of application behavior.

XII.DISCUSSION

The study shows that CryptoSQLShield is an effective
way to protect against SQLi attacks, combining cryptographic
protection with real-time detection. The framework uses a
new approach to ensure that data controlled by an attacker
doesn't reach the database as executable SQL. This is different
from how input filtering is usually done. Using user-defined
encryption and decryption functions to keep the query
structure and parameters separate makes it harder for
unauthorized users to access the data.

The two-layer design of CryptoSQLShield operates
effectively. The cryptographic prevention layer stops SQLi
attempts at the syntax level by encrypting parameters and
making queries from templates that have already been made.
This prevents common exploitation techniques employed by
attackers, such as tautology, union-based queries, and
piggybacked statements. The detection layer also helps
manage threats by identifying suspicious activities, such as
hidden payloads and unusual request patterns, and by
gathering valid security data for monitoring and responding to
incidents.

Experimental evaluations highlight the advantages of
integrating both preventive and detection mechanisms.
Prevention-only setups stop direct SQLi attempts, but they
don't tell you how attackers behave. Detection-only methods,
on the other hand, might not catch attacks if no action is taken
to stop them. The best way to prevent successful injection
attempts while maintaining a high detection rate and a low
number of false positives is to use CryptoSQLShield's
combined approach. This property is critical for deployment
in real-world web application environments.

The cryptographic and detection processes introduce a
modest computational overhead, which is still acceptable for
web apps. The methods for encryption, decryption, and
integrity verification operate effectively. These results
indicate that CryptoSQLShield is suitable for deployment in
real-world web application environments, especially in high-
security environments where SQLi breaches have a significant
impact.

User-defined cryptographic functions are helpful for
testing and clarity, but in production environments,
standardized cryptographic primitives should be used. The
framework can still use industry-standard encryption
protocols without losing its core features for detecting and
resolving issues. Overall, CryptoSQLShield effectively
addresses both syntax-level SQL injection vulnerabilities and
runtime attack visibility limitations that SQLi attacks cause

[JERTV 151 S010090

and the problems that are easy to see. It is a complete answer
to a long-standing issue with web security.

A. Limitations

Despite CryptoSQLShield's strong security features,
several limitations remain. User-defined cryptographic
functions, while promoting research transparency, lack the
formal security assurance of standardized cryptographic
methods. For real-world applications, integration with
established encryption and key management practices is
recommended. Additionally, the framework's effectiveness
depends on the precise definition and maintenance of SQL
query templates, which can impose significant overhead on
developers, especially in large systems. While it effectively
mitigates syntax-level SQL1 attacks, it cannot entirely prevent
vulnerabilities like second-order SQLi due to unsafe handling
of decrypted inputs. The anomaly detection component may
require adjustment to specific workloads to avoid false
positives. Lastly, cryptographic operations introduce
processing overhead that can affect performance in latency-
sensitive applications. Thus, CryptoSQLShield should be
considered a supplement to secure coding practices and
ongoing monitoring rather than a standalone solution.

XIV.CONCLUSION

This paper introduces CryptoSQLShield, a cryptography-
assisted framework for preventing and detecting SQLI attacks.
It incorporates user-defined encryption and decryption
functions into the SQL query processing pipeline alongside
strict template-based query construction, effectively
preventing attacker-controlled input from being executed as
SQL syntax. The framework also features runtime detection
mechanisms, including structural validation, anomaly scoring,
and behavioral analysis, thereby enhancing visibility into
malicious activities and strengthening defenses against
complex attack strategies. Experimental studies show that
CryptoSQLShield balances security effectiveness with
operational practicality, achieving significant reductions in the
success rate of syntax-level SQLi attacks while maintaining
an acceptable performance overhead in real-world
applications. Furthermore, it emphasizes integrating
cryptographic principles into application-layer security
mechanisms. In conclusion, CryptoSQLShield offers a robust,
scalable defense against SQLi, advancing web application
security by altering how user input is handled and verified.

XV.FUTURE WORK

Future research will focus on enhancing the
CryptoSQLShield framework by incorporating standardized,
formally verified cryptographic primitives to replace the user-
defined encryption and decryption functions used in this
study. This change will enable its use in production
environments while still providing the architectural benefits of
cryptography-assisted SQLi prevention. Another promising
direction is to use adaptive, learning-based tuning of detection
thresholds and risk-scoring parameters to make systems more
resilient to new attack patterns and reduce false positives when
workloads change. Future research might also look into ways
to automate the discovery and management of SQL query
templates. This would make it easier for developers and make
large or old applications more scalable. Lastly, testing the
framework in real-world cloud and microservices settings and
applying the method to other types of injection vulnerabilities,

Page 11

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

such as NoSQL and command injection, is an important area
for further research.

ACKNOWLEDGMENT

CONFLICTS OF INTEREST: The authors declare no
conflicts of interest.

DATA AVAILABILITY

All data supporting the findings of this study are available
from the corresponding author upon reasonable request.

CONTRIBUTORS

Mr. Amit Hariyani: Planning, designing systems, creating
encryption models, coding, organizing data, testing
experiments, and writing the first draft.

Dr. Prashant Dolia: Reviewed and edited the paper, checked
the research method, and approved the final version.

REFERENCES

[1] A.Paul, V. Sharma, and O. Olukoya, “SQL injection attack: Detection,

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Software Engineering Research, Management and Applications
(SERA), pp. 352355, 2024.

C. Ping, W. Jinshuang, L. Yang, and P. Lin, “SQL injection teaching
based on SQLi-labs,” in Proceedings of the 2020 IEEE 3rd
International Conference on Information Systems and Computer Aided
Education (ICISCAE), pp. 191-195, 2020.

Y. He, P. Zhao, X. Wang, and Y. Wang, “VeriEQL: bounded
equivalence verification for complex SQL queries with integrity
constraints,” Proceedings of the ACM on Programming Languages,
vol. 8, pp. 1071-1099, 2024.

R. A. Mallah and A. Quintero, “Adversarial threats and defense
mechanisms in machine learning-based SQL injection detection: A
security analysis,” in Proceedings of the 2025 International
Conference on Computing, Networking and Communications (ICNC),
pp. 180184, 2025.

C. J. Abuda and A. R. L. Reyes, “Development of cloud-based
structured query language injection (SQLi) detection using deep
learning and FastAPL” in Proceedings of the 2025 Eight International
Conference on Vocational Education and Electrical Engineering
(ICVEE), pp. 81-87, 2025.

A. A. Elsaeidy, N. Jagannath, A. G. Sanchis, A. Jamalipour, and K. S.
Munasinghe, “Replay attack detection in smart cities using deep
learning,” IEEE Access, vol. 8, pp. 137825-137837, 2020.

H. S. S. Aljibori, A. Al-Amiery, and W. N. R. W. Isahak,
“Advancements in corrosion prevention techniques,” Journal of Bio-
and Tribo-Corrosion, vol. 10, 2024.

A. Hariyani and P. Dolia, “Comprehensive review of advanced
techniques for mitigating SQL injection vulnerabilities in modern
applications,” International Journal of Innovative Science and

prioritization and prevention,” J. Information Security and Research Technology, 2025.
Applications, vol. 85, p. 103871, 2024. [20] S. Sathishkumar, V. Easwaramoorthy, and V. Veerappampalayam,

[2] K. Maamari, C. Landy, and A. Mhedhbi, “GenEdit: Compounding “Comprehensive analysis of security mechanisms against SQL
operators and continuous improvement to tackle text-to-SQL in the injection across diverse database models,” in Proceedings of the 2024
enterprise,” arXiv, arXiv:2503.21602, 2025. International Conference on Integration of Emerging Technologies for

[3] R. Pedro, D. Castro, P. Carreira, and N. Santos, “From prompt the Digital World (ICIETDW), pp. 1-7, 2024.
injections to SQL injection attacks: How protected is your LLM- [21] C. A. Loor, K. Morocho, and M. Hallo, “Using data mining techniques
integrated web application?” arXiv, arXiv:2308.01990, 2023. for the detection of SQL injection attacks on database systems,” Revista

[4] M. A. Al-Shareeda, S. Manickam, and S. A. Sari, “A survey of SQL Politécnica, 2023.
injection attacks, their methods, and prevention techniques,” in Proc. [22] Y. Liu, Y. Gao, Z. Su, X. Chen, E. Ash, and J.-G. Lou, “Uncovering
2022 International Conference on Data Science and Intelligent and categorizing social biases in text-to-SQL,” arXiv
Computing (ICDSIC), pp. 31-35, 2022. arXiv:2305.16253,2023.

[51 R.Kumar, X. Liu, V. B. Suresh, H. K. Krishnamurthy, S. K. Satpathy, [23] H. Liu, Z. Li, D. L. W. Hall, P. Liang, and T. Ma, “Sophia: A scalable
M. A. Anders, H. Kaul, K. Ravichandran, V. De, and S. K. Mathew, stochastic second-order optimizer for language model pre-training,”
“A time-/frequency-domain side-channel attack resistant AES-128 and arXiv arXiv:2305.14342, 2023.

RSA"”_(crypto-processor 1n 14-nm CMOS,” IEEE Journal of Solid- [24] Y. Li, J. Xie, J. Hu, and C. Wang, “Detecting SQL injection attacks
State Circuits, vol. 56, pp. 1141-1151, 2021. using deep learning techniques,” Journal of Information Security and

[6] A.A.Yunanto, M. H. Ghazi, and A. D. Al Ghifari, “Analisis efektivitas Applications, vol. 46, pp. 1-12,2019.
parameterized queries 'dalam pencegahan serangan SQL injection,” [25] S. Islam, M. MohanKumar, and U. K. Jannat, “Exploring the
Jurnal Informatika Polinema, 2025. effectiveness of web application firewalls against diverse attack

[71 V. Babaey and A. Ravindran, “GenSQLi: A generative artificial vectors,” in Proceedings of the 2023 7th International Conference on
intelligence framework for automatically securing web application Electronics, Communication and Aerospace Technology (ICECA), pp.
firewalls against structured query language injection attacks,” Future 1798-1806, 2023.

Internet, vol. 17, p. 8, 2024. [26] R. Singh, A. Kaushik, J. Kumar, and K. Kaushik, “Web application

[8] A.Khedrand S. R. Sheeja, “Enhancing supply chain management with firewalls: A comprehensive bibliometric review,” International
deep learning and machine learning techniques: A review,” Journal of Journal of Latest Technology in Engineering Management & Applied
Open Innovation: Technology, Market, and Complexity, 2024. Science, 2025.

[9]1 Q. Liang, Z. Sun, Q. Zhu, W. Zhang, L. Yu, Y. Xiong, and L. Zhang, [27] N. N. Thanh, V.-G. Ung, P. T. Duy, and V.-H. Pham, “A study on
“Lyra: A benchmark for turducken-style code generation,” in adversarial attacks for benchmarking deep learning-based web
Proceedings of the International Joint Conference on Artificial application firewalls,” in Proceedings of the 2024 RIVF International
Intelligence (IJCAI), 2021. Conference on Computing and Communication Technologies (RIVF),

[10] E. A. Jrai, S. Alsharari, L. Almazaydeh, K. M. Elleithy, and O. Abu- pp. 151155, 2024.

Hamdan, “Improving LZW compression of Unicode Arabic text using [28] M. Almorsy, J. Grundy, and I. Miiller, “An analysis of SQL injection
multi-level encoding and a variable-length phrase code,” IEEE Access, detection techniques,” International Conference on Availability,
vol. 11, pp. 51915-51929, 2023. Reliability and Security (ARES), pp. 1-10, 2012.

[11] B. Zhang, R. Ren, J. Liu, M. Jiang, J. Ren, and J. Li, “SQLPsdem: A [29] M. Alshammari, “Deep learning approaches to SQL injection
proxy-based mechanism towards detecting, locating and preventing detection: Evaluating ANNs, CNNs, and RNNs,” in Proceedings of the
second-order SQL injections,” IEEE Transactions on Sofiware Conference on Mathematical and Statistical Physics, Computational
Engineering, vol. 50, pp. 1807-1826, 2024. Science, Education, and Communication, 2023.

[12] P. Leelaprute, Y. Kase, S. Amasaki, H. Aman, and T. Yokogawa, “A [30] V. Pranavi, P. Nayak, B. R. Singh, and Y. Meghana, “ML-based

multi-aspect evaluation of DL-based SQLI attack detection models,” in
Proceedings of the 2024 IEEE/ACIS 22nd International Conference on

[JERTV 151 S010090

intelligent threat identification for phishing and SQL injection attacks,”
in Proceedings of the 2025 International Conference on Sustainable

Page 12

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by : International Journal of Engineering Research & Technology (IJERT)
https://lwww.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01, January - 2026

Communication Networks and Application (ICSCN), pp. 1924-1930,
2025.

[31] Y. Guo, G. Li, R. Hu, and Y. Wang, “In-database query optimization
on SQL with ML predicates,” The VLDB Journal, vol. 34, 2024.

[32] N. Hettiarachchi and P. Yapa, “OptimAlzerSQL: Optimizing SQL
queries with heuristic and ML-based multi-agent systems,” in
Proceedings of the 2025 5th International Conference on Machine
Learning and Intelligent Systems Engineering (MLISE), pp. 1-9, 2025.

[33] K.S.Rao, V. H. Shastri, and K. RamanR, “Enhancing database security
through quantum cryptography: A research perspective,” International

Research Journal on Advanced Engineering and Management
(IRJAEM), 2025.

[34] E.S. Giovani, S. Sapri, and J. Jumadi, “Implementation of international
data encryption algorithm (IDEA) in database security web-based,”
Jurnal Komputer Indonesia, 2023.

[35] A. V. Asha, A. P. Nirmala, B. K. Bhavanishankar, A. Christi, and A.
Naveen, “A review on cloud cryptography techniques to improve
security in e-health systems,” in Proceedings of the 2022 6th
International ~ Conference on Computing Methodologies and
Communication (ICCMC), pp. 100-104, 2022.

[36] K. Harini, “Enhancing web application protection with ModSecurity
and reverse proxy,” International Journal for Research in Applied
Science and Engineering Technology, 2025.

[37] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree
validation to prevent SQL injection attacks,” in Proceedings of the 5th
International Workshop on Software Engineering and Middleware
(SEM), pp. 106-113, 2005.

[38] K. Garg, R. G. Sanfelice, and A. A. Cérdenas, “Sampling-based
computation of viability domain to prevent safety violations by
attackers,” in Proceedings of the 2022 IEEE Conference on Control
Technology and Applications (CCTA), pp. 720-725, 2021.

1JERTV15I S010090 Page 13
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

