
 

 

 

 

 

 

 

 

 

ABSTRACT 
 

 Cryptographic hash functions are an 

important tool in cryptography to achieve 
certain security goals such as authenticity, 

digital signatures, digital time stamping, and 
entity authentication. They are also strongly 
related to other important cryptographic 

tools such as block ciphers and 
pseudorandom functions. This paper aims to 

overview the cryptographic hash functions 
and its strength against attacks. 
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1. Introduction 

 
 Hash functions are functions that 
compress an input of arbitrary length to a 

result with a fixed length. If hash functions 
satisfy additional requirements, they are a 

very powerful tool in the design of 
techniques to protect the authenticity of 
information. 

 
 A hash value h is generated by a 

function H of the form h = H(M) where M is 
a variable- length message and H(M) is the 
fixed- length hash value. The hash value is 

appended to the message at the source at a 
time when the message is assumed or known 

to be correct. The receiver authenticates that 
message by recomputing the hash value. 
Because the hash function itself is not 

considered to be secret, some means is 
required to protect the hash value. Figure 1 

illustrates a variety of ways in which a hash 
code can be used to provide message 
authentication, as follows: 

 
 

 
 

 
 
 

 
 

a. The message plus concatenated hash 
code is encrypted using symmetric 
encryption. This is identical in structure 

to the internal error control strategy 
shown in Figure 2. The same line of 

reasoning applies: Because only A and B 
share the secret key, the message must 
have come from A and has not been 

altered. The hash code provides the 
structure or redundancy required to 

achieve authentication. Because 
encryption is applied to the entire 
message plus hash code, confidentiality 

is also provided. 
 

b. Only the hash code is encrypted, using 
symmetric encryption. This reduces the 
processing burden for those applications 

that do not require confidentiality. Note 
that the combination of hashing and 

encryption results in an overall function 
that is, in fact, a MAC. That is, E(K, 
H(M)) is a function of a variable- length 

message M and a secret key K, and it 
produces a fixed-size output that is 

secure against an opponent who does not 
know the secret key. 

 

c. Only the hash code is encrypted, using 
public-key encryption and using the 

sender's private key. As with (Figure 
1.b), this provides authentication. It also 
provides a digital signature, because 

only the sender could have produced the 
encrypted hash code. In fact, this is the 

essence of the digital signature 
technique. 

 

d. If confidentiality as well as a digital 
signature is desired, then the message 
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plus the private-key-encrypted hash code 
can be encrypted using a symmetric 

secret key. This is a common technique. 
 

e. It is possible to use a hash function but 
no encryption for message 
authentication. The technique assumes 

that the two communicating parties share 
a common secret value S. A computes 

the hash value over the concatenation of 
M and S and appends the resulting hash 
value to M. Because B possesses S, it 

can recompute the hash value to verify. 
Because the secret value itself is not 

sent, an opponent cannot modify an 
intercepted message and cannot generate 
a false message. 

 
f. Confidentiality can be added to the 

approach of (Figure 1.e) by encrypting 
the entire message plus the hash code.  

 

Fig. 1 Basic Uses of Hash Function 
 

 
 

Fig. 2 Internal and External Error Control 
 

 
 

2. Requirements for a Hash Function 

 

 The purpose of a hash function is to 
produce a "fingerprint" of a file, message, or 
other block of data. To be useful for 

message authentication, a hash function H 
must have the following properties: 

 
1. H can be applied to a block of data of 

any size. 

2. H produces a fixed- length output. 
3. H(x) is relatively easy to compute for 

any given x, making both hardware and 
software implementations practical.  

4. For any given value h, it is 

computationally infeasible to find x such 
that H(x) = h. This is sometimes referred 

to in the literature as the one-way 
property. 

5. For any given block x, it is 

computationally infeasible to find y ≠ x 
such that H(y) = H(x). This is sometimes 

referred to as weak collision resistance. 
6. It is computationally infeasible to find 

any pair (x, y) such that H(x) = H(y). 

This is sometimes referred to as strong 
collision resistance. 

 
 The first three properties are 
requirements for the practical application of 

a hash function to message authentication. 
The fourth property, the one-way property, 

states that it is easy to generate a code given 
a message but virtually impossible to 
generate a message given a code. This 

property is important if the authentication 
technique involves the use of a secret value 
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(Figure 1. e). The secret value itself is not 
sent; however, if the hash function is not one 

way, an attacker can easily discover the 
secret value: If the attacker can observe or 

intercept a transmission, the attacker obtains 
the message M and the hash code C = 
H(SAB||M). The attacker then inverts the 

hash function to obtain SAB||M = H(C). 
Because the attacker now has both M and 

SAB||M, it is a trivial matter to recover SAB. 
 
 The fifth property guarantees that an 

alternative message hashing to the same 
value as a given message cannot be found. 

This prevents forgery when an encrypted 
hash code is used (Figures 1.b and 1.c). For 
these cases, the opponent can read the 

message and therefore generate its hash 
code. However, because the opponent does 

not have the secret key, the opponent should 
not be able to alter the message without 
detection. If this property were not true, an 

attacker would be capable of the following 
sequence: First, observe or intercept a 

message plus its encrypted hash code; 
second, generate an unencrypted hash code 
from the message; third, generate an 

alternate message with the same hash code.  
 

 The sixth property refers to how 
resistant the hash function is to a type of 
attack known as the birthday attack.  

 

3. Simple Hash Functions 

 
 All hash functions operate using the 
following general principles. The input 

(message, file, etc.) is viewed as a sequence 
of n-bit blocks. The input is processed one 

block at a time in an iterative fashion to 
produce an n-bit hash function. 
 

 One of the simplest hash functions is 
the bit-by-bit exclusive-OR (XOR) of every 

block. This can be expressed as follows: 
 

Ci = bi1  bi1  ...   bim 

where 
 

Ci = ith bit of the hash code, 1  i  n 

m = number of n-bit blocks in the input 

bij = ith bit in jth block 

 = XOR operation 

 
 This operation produces a simple 

parity for each bit position and is known as a 
longitudinal redundancy check. It is 

reasonably effective for random data as a 
data integrity check. Each n-bit hash value is 
equally likely. Thus, the probability that a 

data error will result in an unchanged hash 
value is 2n. With more predictably formatted 

data, the function is less effective. For 
example, in most normal text files, the high-
order bit of each octet is always zero. So if a 

128-bit hash value is used, instead of an 
effectiveness of 2128, the hash function on 

this type of data has an effectiveness of 2112. 
 
 A simple way to improve matters is 

to perform a one-bit circular shift, or 
rotation, on the hash value after each block 

is processed. The procedure can be 
summarized as follows: 
 

1. Initially set the n-bit hash value to 
zero. 

2. Process each successive n-bit block 
of data as follows: 

a. Rotate the current hash value 

to the left by one bit. 
b. XOR the block into the hash 

value. 
 
 This has the effect of "randomizing" 

the input more completely and overcoming 
any regularities that appear in the input. 

Figure 3 illustrates these two types of hash 
functions for 16-bit hash values. 

 Although the second procedure 
provides a good measure of data integrity, it 

is virtually useless for data security when an 
encrypted hash code is used with a plaintext 

message, as in Figures 1.b and 1.c. Given a 
message, it is an easy matter to produce a 
new message that yields that hash code: 
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Simply prepare the desired alternate 
message and then append an n-bit block that 

forces the new message plus block to yield 
the desired hash code. 

 Although a simple XOR or rotated 

XOR (RXOR) is insufficient if only the hash 
code is encrypted, you may still feel that 
such a simple function could be useful when 

the message as well as the hash code are 
encrypted (Figure 1.a). But you must be 

careful. A technique originally proposed by 
the National Bureau of Standards used the 
simple XOR applied to 64-bit blocks of the 

message and then an encryption of the entire 
message that used the cipher block chaining 

(CBC) mode. We can define the scheme as 
follows: Given a message consisting of a 
sequence of 64-bit blocks X1, X2,..., XN, 

define the hash code C as the block-by-
block XOR of all blocks and append the 

hash code as the final block: 

C=XN+1=X1 X2  ...  XN 

 
 Next, encrypt the entire message plus 
hash code, using CBC mode to produce the 

encrypted message Y1, Y2,..., YN+1. 
[Jueneman, R.; Matyas, S.; and Meyer, C. 

"Message Authentication." IEEE 
Communications Magazine, September 
1988.] points out several ways in which the 

ciphertext of this message can be 
manipulated in such a way that it is not 

detectable by the hash code. For example, 
by the definition of CBC, we have 

X1 = IV  D(K, Y1) 

Xi = Yi1  D(K, Yi) 

XN+1 = YN  D(K, YN+1) 

But XN+1 is the hash code: 

XN+1 = X1 X2 ... XN 

  = [IV D(K, Y1)]  [Y1 D(K, Y2)] 

...  [YN1 ... D (K, YN)] 

 Because the terms in the preceding 

equation can be XORed in any order, it 
follows that the hash code would not change 

if the ciphertext blocks were permuted.  
 

Fig. 3 Two Simple Hash Functions 

 
 

4. Security of Hash Functions 

 

 We can group attacks on hash 
functions into two categories: brute-force 
attacks and cryptanalysis.  

 

4.1. Brute-Force Attacks 

 

 The strength of a hash function 
against brute- force attacks depends solely on 

the length of the hash code produced by the 
algorithm. Recall from our discussion of 

hash functions that there are three desirable 
properties: 
 

 One-way: For any given code h, it is 
computationally infeasible to find x 

such that H(x) = h. 
 Weak collision resistance: For any 

given block x, it is computationally 

infeasible to find y ≠ x with H(y) = 
H(x). 

 Strong collision resistance: It is 
computationally infeasible to find 
any pair (x, y) such that H(x) = H(y). 

 
 For a hash code of length n, the level 

of effort required, as we have seen is 
proportional to the following: 

One way 2n 

Weak collision resistance 2n 
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Strong collision resistance 2n/2 

 If strong collision resistance is 
required (and this is desirable for a general-

purpose secure hash code), then the value 
2n/2 determines the strength of the hash code 

against brute-force attacks. Oorschot and 
Wiener presented a design for a $10 million 
collision search machine for MD5, which 

has a 128-bit hash length, that could find a 
collision in 24 days. Thus a 128-bit code 

may be viewed as inadequate. The next step 
up, if a hash code is treated as a sequence of 
32 bits, is a 160-bit hash length. With a hash 

length of 160 bits, the same search machine 
would require over four thousand years to 

find a collision. However, even 160 bits is 
now considered weak. 
 

4.2. Cryptanalysis 

 

 In recent years, there has been 
considerable effort, and some successes, in 
developing cryptanalytic attacks on hash 

functions. To understand these, we need to 
look at the overall structure of a typical 

secure hash function, indicated in Figure 4. 
This structure, referred to as an iterated hash 
function, was proposed by Merkle and is the 

structure of most hash functions in use 
today. The hash function takes an input 

message and partitions it into L fixed-sized 
blocks of b bits each. If necessary, the final 
block is padded to b bits. The final block 

also includes the value of the total length of 
the input to the hash function. The inclusion 

of the length makes the job of the opponent 
more difficult. Either the opponent must find 
two messages of equal length that hash to 

the same value or two messages of differing 
lengths that, together with their length 

values, hash to the same value. 
 

Fig. 4 General Structure of Secure Hash 

Code 
  

 
 
 The hash algorithm involves 

repeated use of a compression function, f, 
that takes two inputs (an n-bit input from the 

previous step, called the chaining variable, 
and a b-bit block) and produces an n-bit 
output. At the start of hashing, the chaining 

variable has an initial value that is specified 
as part of the algorithm. The final value of 

the chaining variable is the hash value. 
Often, b > n; hence the term compression. 
The hash function can be summarized as 

follows: 

CVo = IV = initial n-bit value 

CVi = f(CVi1, Yi1) 1  i  L 

H(M) = CVL 

 
where the input to the hash function is a 
message M consisting of the blocks Yo, 

Y1,..., YL1. 

 

 The motivation for this iterative 
structure stems from the observation by 
Merkle and Damgard that if the compression 

function is collision resistant, then so is the 
resultant iterated hash function. Therefore, 

the structure can be used to produce a secure 
hash function to operate on a message of any 
length. The problem of designing a secure 

hash function reduces to that of designing a 
collision-resistant compression function that 

operates on inputs of some fixed size. The 
converse is not necessarily true.  
 

 Cryptanalysis of hash functions 
focuses on the internal structure of f and is 

based on attempts to find efficient 
techniques for producing collisions for a 
single execution of f. Once that is done, the 

attack must take into account the fixed value 
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of IV. The attack on f depends on exploiting 
its internal structure. Typically, as with 

symmetric block ciphers, f consists of a 
series of rounds of processing, so that the 

attack involves analysis of the pattern of bit 
changes from round to round. 
 

 Keep in mind that for any hash 
function there must exist collisions, because 

we are mapping a message of length at least 
equal to twice the block size b (because we 
must append a length field) into a hash code 

of length n, where b  n. What is required is 
that it is computationally infeasible to find 

collisions. 
 

5. Birthday Attacks 

 

 Suppose that a 64-bit hash code is 

used. One might think that this is quite 
secure. For example, if an encrypted hash 

code C is transmitted with the corresponding 
unencrypted message M (Figure 1.b or 
1.5c), then an opponent would need to find 

an M' such that H(M') = H(M) to substitute 
another message and fool the receiver. On 

average, the opponent would have to try 
about 263 messages to find one that matches 
the hash code of the intercepted message.  

 
 However, a different sort of attack is 

possible, based on the birthday paradox. 
Yuval proposed the following strategy: 
 

1. The source, A, is prepared to "sign" a 
message by appending the appropriate 

m-bit hash code and encrypting that hash 
code with A's private key (Figure 1.c).  

2. The opponent generates 2m/2 variations 

on the message, all of which convey 
essentially the same meaning. The 

opponent prepares an equal number of 
messages, all of which are variations on 
the fraudulent message to be substituted 

for the real one. 
3. The two sets of messages are compared 

to find a pair of messages that produces 
the same hash code. The probability of 
success, by the birthday paradox, is 

greater than 0.5. If no match is found, 

additional valid and fraudulent messages 
are generated until a match is made.  

4. The opponent offers the valid variation 
to A for signature. This signature can 

then be attached to the fraudulent 
variation for transmission to the intended 
recipient. Because the two variations 

have the same hash code, they will 
produce the same signature; the 

opponent is assured of success even 
though the encryption key is not known.  

 

 Thus, if a 64-bit hash code is used, 
the level of effort required is only on the 

order of 232. 
 
 The generation of many variations 

that convey the same meaning is not 
difficult. For example, the opponent could 

insert a number of "space-space-backspace" 
character pairs between words throughout 
the document. Variations could then be 

generated by substituting "space-backspace-
space" in selected instances. Alternatively, 

the opponent could simply reword the 
message but retain the meaning. 
 

CONCLUSION 

 

 As with encryption algorithms, 
cryptanalytic attacks on hash functions seek 
to exploit some property of the algorithm to 

perform some attack other than an 
exhaustive search. The way to measure the 

resistance of a hash algorithm to 
cryptanalysis is to compare its strength to 
the effort required for a brute-force attack. 

That is, an ideal hash algorithm will require 
a cryptanalytic effort greater than or equal to 

the brute- force effort. The attacks that have 
been mounted on hash functions are rather 
complex and beyond our scope. 
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