

ABSTRACT

 Cryptographic hash functions are an

important tool in cryptography to achieve
certain security goals such as authenticity,

digital signatures, digital time stamping, and
entity authentication. They are also strongly
related to other important cryptographic

tools such as block ciphers and
pseudorandom functions. This paper aims to

overview the cryptographic hash functions
and its strength against attacks.

Keywords- hash functions, Brute-Force
Attacks, Cryptanalysis, Birthday Attacks

1. Introduction

 Hash functions are functions that
compress an input of arbitrary length to a

result with a fixed length. If hash functions
satisfy additional requirements, they are a

very powerful tool in the design of
techniques to protect the authenticity of
information.

 A hash value h is generated by a

function H of the form h = H(M) where M is
a variable- length message and H(M) is the
fixed- length hash value. The hash value is

appended to the message at the source at a
time when the message is assumed or known

to be correct. The receiver authenticates that
message by recomputing the hash value.
Because the hash function itself is not

considered to be secret, some means is
required to protect the hash value. Figure 1

illustrates a variety of ways in which a hash
code can be used to provide message
authentication, as follows:

a. The message plus concatenated hash
code is encrypted using symmetric
encryption. This is identical in structure

to the internal error control strategy
shown in Figure 2. The same line of

reasoning applies: Because only A and B
share the secret key, the message must
have come from A and has not been

altered. The hash code provides the
structure or redundancy required to

achieve authentication. Because
encryption is applied to the entire
message plus hash code, confidentiality

is also provided.

b. Only the hash code is encrypted, using
symmetric encryption. This reduces the
processing burden for those applications

that do not require confidentiality. Note
that the combination of hashing and

encryption results in an overall function
that is, in fact, a MAC. That is, E(K,
H(M)) is a function of a variable- length

message M and a secret key K, and it
produces a fixed-size output that is

secure against an opponent who does not
know the secret key.

c. Only the hash code is encrypted, using
public-key encryption and using the

sender's private key. As with (Figure
1.b), this provides authentication. It also
provides a digital signature, because

only the sender could have produced the
encrypted hash code. In fact, this is the

essence of the digital signature
technique.

d. If confidentiality as well as a digital
signature is desired, then the message

Cryptographic of high Security Hash Functions
C. Krishna Kumar1, Dr. C. Suyambulingom2

1, Sathyabama University, Chennai, India, 2Professor (Rtd.), Dept. of Mathematics, TAU,
Coimbatore, India

E-Mail: kkumarmalar@yahoo.com

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

plus the private-key-encrypted hash code
can be encrypted using a symmetric

secret key. This is a common technique.

e. It is possible to use a hash function but
no encryption for message
authentication. The technique assumes

that the two communicating parties share
a common secret value S. A computes

the hash value over the concatenation of
M and S and appends the resulting hash
value to M. Because B possesses S, it

can recompute the hash value to verify.
Because the secret value itself is not

sent, an opponent cannot modify an
intercepted message and cannot generate
a false message.

f. Confidentiality can be added to the

approach of (Figure 1.e) by encrypting
the entire message plus the hash code.

Fig. 1 Basic Uses of Hash Function

Fig. 2 Internal and External Error Control

2. Requirements for a Hash Function

 The purpose of a hash function is to
produce a "fingerprint" of a file, message, or
other block of data. To be useful for

message authentication, a hash function H
must have the following properties:

1. H can be applied to a block of data of

any size.

2. H produces a fixed- length output.
3. H(x) is relatively easy to compute for

any given x, making both hardware and
software implementations practical.

4. For any given value h, it is

computationally infeasible to find x such
that H(x) = h. This is sometimes referred

to in the literature as the one-way
property.

5. For any given block x, it is

computationally infeasible to find y ≠ x
such that H(y) = H(x). This is sometimes

referred to as weak collision resistance.
6. It is computationally infeasible to find

any pair (x, y) such that H(x) = H(y).

This is sometimes referred to as strong
collision resistance.

 The first three properties are
requirements for the practical application of

a hash function to message authentication.
The fourth property, the one-way property,

states that it is easy to generate a code given
a message but virtually impossible to
generate a message given a code. This

property is important if the authentication
technique involves the use of a secret value

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

(Figure 1. e). The secret value itself is not
sent; however, if the hash function is not one

way, an attacker can easily discover the
secret value: If the attacker can observe or

intercept a transmission, the attacker obtains
the message M and the hash code C =
H(SAB||M). The attacker then inverts the

hash function to obtain SAB||M = H(C).
Because the attacker now has both M and

SAB||M, it is a trivial matter to recover SAB.

 The fifth property guarantees that an

alternative message hashing to the same
value as a given message cannot be found.

This prevents forgery when an encrypted
hash code is used (Figures 1.b and 1.c). For
these cases, the opponent can read the

message and therefore generate its hash
code. However, because the opponent does

not have the secret key, the opponent should
not be able to alter the message without
detection. If this property were not true, an

attacker would be capable of the following
sequence: First, observe or intercept a

message plus its encrypted hash code;
second, generate an unencrypted hash code
from the message; third, generate an

alternate message with the same hash code.

 The sixth property refers to how
resistant the hash function is to a type of
attack known as the birthday attack.

3. Simple Hash Functions

 All hash functions operate using the
following general principles. The input

(message, file, etc.) is viewed as a sequence
of n-bit blocks. The input is processed one

block at a time in an iterative fashion to
produce an n-bit hash function.

 One of the simplest hash functions is
the bit-by-bit exclusive-OR (XOR) of every

block. This can be expressed as follows:

Ci = bi1 bi1 ... bim

where

Ci = ith bit of the hash code, 1 i n

m = number of n-bit blocks in the input

bij = ith bit in jth block

 = XOR operation

 This operation produces a simple

parity for each bit position and is known as a
longitudinal redundancy check. It is

reasonably effective for random data as a
data integrity check. Each n-bit hash value is
equally likely. Thus, the probability that a

data error will result in an unchanged hash
value is 2n. With more predictably formatted

data, the function is less effective. For
example, in most normal text files, the high-
order bit of each octet is always zero. So if a

128-bit hash value is used, instead of an
effectiveness of 2128, the hash function on

this type of data has an effectiveness of 2112.

 A simple way to improve matters is

to perform a one-bit circular shift, or
rotation, on the hash value after each block

is processed. The procedure can be
summarized as follows:

1. Initially set the n-bit hash value to
zero.

2. Process each successive n-bit block
of data as follows:

a. Rotate the current hash value

to the left by one bit.
b. XOR the block into the hash

value.

 This has the effect of "randomizing"

the input more completely and overcoming
any regularities that appear in the input.

Figure 3 illustrates these two types of hash
functions for 16-bit hash values.

 Although the second procedure
provides a good measure of data integrity, it

is virtually useless for data security when an
encrypted hash code is used with a plaintext

message, as in Figures 1.b and 1.c. Given a
message, it is an easy matter to produce a
new message that yields that hash code:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

Simply prepare the desired alternate
message and then append an n-bit block that

forces the new message plus block to yield
the desired hash code.

 Although a simple XOR or rotated

XOR (RXOR) is insufficient if only the hash
code is encrypted, you may still feel that
such a simple function could be useful when

the message as well as the hash code are
encrypted (Figure 1.a). But you must be

careful. A technique originally proposed by
the National Bureau of Standards used the
simple XOR applied to 64-bit blocks of the

message and then an encryption of the entire
message that used the cipher block chaining

(CBC) mode. We can define the scheme as
follows: Given a message consisting of a
sequence of 64-bit blocks X1, X2,..., XN,

define the hash code C as the block-by-
block XOR of all blocks and append the

hash code as the final block:

C=XN+1=X1 X2 ... XN

 Next, encrypt the entire message plus
hash code, using CBC mode to produce the

encrypted message Y1, Y2,..., YN+1.
[Jueneman, R.; Matyas, S.; and Meyer, C.

"Message Authentication." IEEE
Communications Magazine, September
1988.] points out several ways in which the

ciphertext of this message can be
manipulated in such a way that it is not

detectable by the hash code. For example,
by the definition of CBC, we have

X1 = IV D(K, Y1)

Xi = Yi1 D(K, Yi)

XN+1 = YN D(K, YN+1)

But XN+1 is the hash code:

XN+1 = X1 X2 ... XN

 = [IV D(K, Y1)] [Y1 D(K, Y2)]

... [YN1 ... D (K, YN)]

 Because the terms in the preceding

equation can be XORed in any order, it
follows that the hash code would not change

if the ciphertext blocks were permuted.

Fig. 3 Two Simple Hash Functions

4. Security of Hash Functions

 We can group attacks on hash
functions into two categories: brute-force
attacks and cryptanalysis.

4.1. Brute-Force Attacks

 The strength of a hash function
against brute- force attacks depends solely on

the length of the hash code produced by the
algorithm. Recall from our discussion of

hash functions that there are three desirable
properties:

 One-way: For any given code h, it is
computationally infeasible to find x

such that H(x) = h.
 Weak collision resistance: For any

given block x, it is computationally

infeasible to find y ≠ x with H(y) =
H(x).

 Strong collision resistance: It is
computationally infeasible to find
any pair (x, y) such that H(x) = H(y).

 For a hash code of length n, the level

of effort required, as we have seen is
proportional to the following:

One way 2n

Weak collision resistance 2n

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

Strong collision resistance 2n/2

 If strong collision resistance is
required (and this is desirable for a general-

purpose secure hash code), then the value
2n/2 determines the strength of the hash code

against brute-force attacks. Oorschot and
Wiener presented a design for a $10 million
collision search machine for MD5, which

has a 128-bit hash length, that could find a
collision in 24 days. Thus a 128-bit code

may be viewed as inadequate. The next step
up, if a hash code is treated as a sequence of
32 bits, is a 160-bit hash length. With a hash

length of 160 bits, the same search machine
would require over four thousand years to

find a collision. However, even 160 bits is
now considered weak.

4.2. Cryptanalysis

 In recent years, there has been
considerable effort, and some successes, in
developing cryptanalytic attacks on hash

functions. To understand these, we need to
look at the overall structure of a typical

secure hash function, indicated in Figure 4.
This structure, referred to as an iterated hash
function, was proposed by Merkle and is the

structure of most hash functions in use
today. The hash function takes an input

message and partitions it into L fixed-sized
blocks of b bits each. If necessary, the final
block is padded to b bits. The final block

also includes the value of the total length of
the input to the hash function. The inclusion

of the length makes the job of the opponent
more difficult. Either the opponent must find
two messages of equal length that hash to

the same value or two messages of differing
lengths that, together with their length

values, hash to the same value.

Fig. 4 General Structure of Secure Hash

Code

 The hash algorithm involves

repeated use of a compression function, f,
that takes two inputs (an n-bit input from the

previous step, called the chaining variable,
and a b-bit block) and produces an n-bit
output. At the start of hashing, the chaining

variable has an initial value that is specified
as part of the algorithm. The final value of

the chaining variable is the hash value.
Often, b > n; hence the term compression.
The hash function can be summarized as

follows:

CVo = IV = initial n-bit value

CVi = f(CVi1, Yi1) 1 i L

H(M) = CVL

where the input to the hash function is a
message M consisting of the blocks Yo,

Y1,..., YL1.

 The motivation for this iterative
structure stems from the observation by
Merkle and Damgard that if the compression

function is collision resistant, then so is the
resultant iterated hash function. Therefore,

the structure can be used to produce a secure
hash function to operate on a message of any
length. The problem of designing a secure

hash function reduces to that of designing a
collision-resistant compression function that

operates on inputs of some fixed size. The
converse is not necessarily true.

 Cryptanalysis of hash functions
focuses on the internal structure of f and is

based on attempts to find efficient
techniques for producing collisions for a
single execution of f. Once that is done, the

attack must take into account the fixed value

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

of IV. The attack on f depends on exploiting
its internal structure. Typically, as with

symmetric block ciphers, f consists of a
series of rounds of processing, so that the

attack involves analysis of the pattern of bit
changes from round to round.

 Keep in mind that for any hash
function there must exist collisions, because

we are mapping a message of length at least
equal to twice the block size b (because we
must append a length field) into a hash code

of length n, where b n. What is required is
that it is computationally infeasible to find

collisions.

5. Birthday Attacks

 Suppose that a 64-bit hash code is

used. One might think that this is quite
secure. For example, if an encrypted hash

code C is transmitted with the corresponding
unencrypted message M (Figure 1.b or
1.5c), then an opponent would need to find

an M' such that H(M') = H(M) to substitute
another message and fool the receiver. On

average, the opponent would have to try
about 263 messages to find one that matches
the hash code of the intercepted message.

 However, a different sort of attack is

possible, based on the birthday paradox.
Yuval proposed the following strategy:

1. The source, A, is prepared to "sign" a
message by appending the appropriate

m-bit hash code and encrypting that hash
code with A's private key (Figure 1.c).

2. The opponent generates 2m/2 variations

on the message, all of which convey
essentially the same meaning. The

opponent prepares an equal number of
messages, all of which are variations on
the fraudulent message to be substituted

for the real one.
3. The two sets of messages are compared

to find a pair of messages that produces
the same hash code. The probability of
success, by the birthday paradox, is

greater than 0.5. If no match is found,

additional valid and fraudulent messages
are generated until a match is made.

4. The opponent offers the valid variation
to A for signature. This signature can

then be attached to the fraudulent
variation for transmission to the intended
recipient. Because the two variations

have the same hash code, they will
produce the same signature; the

opponent is assured of success even
though the encryption key is not known.

 Thus, if a 64-bit hash code is used,
the level of effort required is only on the

order of 232.

 The generation of many variations

that convey the same meaning is not
difficult. For example, the opponent could

insert a number of "space-space-backspace"
character pairs between words throughout
the document. Variations could then be

generated by substituting "space-backspace-
space" in selected instances. Alternatively,

the opponent could simply reword the
message but retain the meaning.

CONCLUSION

 As with encryption algorithms,
cryptanalytic attacks on hash functions seek
to exploit some property of the algorithm to

perform some attack other than an
exhaustive search. The way to measure the

resistance of a hash algorithm to
cryptanalysis is to compare its strength to
the effort required for a brute-force attack.

That is, an ideal hash algorithm will require
a cryptanalytic effort greater than or equal to

the brute- force effort. The attacks that have
been mounted on hash functions are rather
complex and beyond our scope.

REFERENCES

1. van Oorschot, P., and Wiener, M.

"Parallel Collision Search with

Application to Hash Functions and
Discrete Logarithms." Proceedings,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

Second ACM Conference on Computer
and Communications Security, 1994.

2. I. Bellefroid and K. Beyen, “Evaluatie
van de Cryptografische Veiligheid van

Anti-Virus Paketten (Evaluation of the
Security of Anti-Virus Software – in
Dutch),” ESAT Laboratorium,

Katholieke Universiteit Leuven, Thesis
grad. eng., 1992.

3. Meyer, C., and Schilling, M. "Secure
Program Load with Modification
Detection Code." Proceedings,

SECURICOM 88, 1988.
4. Nechvatal, J. "Public Key

Cryptography."
5. Simmons, G., ed. Contemporary

Cryptology: The Science of Information

Integrity. Piscataway, NJ: IEEE Press,
1992.

6. Menezes, A.; van Oorschot, P.; and
Vanstone, S. Handbook of Applied
Cryptography. Boca Raton, FL: CRC

Press, 1997.
7. Damgard, I. "A Design Principle for

Hash Functions." Proceedings, CRYPTO
'89, 1989; published by Springer-Verlag.

8. C.H. Meyer and S.M.

Matyas,“Cryptography: a New
Dimension in Data Security,” Wiley &

Sons, 1982.
9. C.M. Adams and S.E. Tavares, “The

structured design of cryptographically

good S-boxes,” Journal of Cryptology,
Vol. 3, No. 1, 1990, pp. 27–41.

10. Jueneman, R.; Matyas, S.; and Meyer, C.
"Message Authentication." IEEE
Communications Magazine, September

1988.
11. Merkle, R. "One Way Hash Functions

and DES." Proceedings, CRYPTO '89,
1989; published by Springer-Verlag.

12. Dobbertin, H. "The Status of MD5 After

a Recent Attack." CryptoBytes, Summer
1996.

13. S. Babbage, “On the relevance of the
strict avalanche criterion,” Electronic
Letters, Vol. 26, No. 7, 1990, pp. 461–

462.
14. Yuval, G. "How to Swindle Rabin."

Cryptologia, July 1979.

15. Davies, D., and Price, W. Security for
Computer Networks. New York: Wiley,

1989.
16. Rabin, M. "Digitalized Signatures." In

Foundations of Secure Computation,
DeMillo, R.; Dobkin, D.; Jones, A.; and
Lipton, R., eds. New York: Academic

Press, 1978.
17. Bellare, M., and Rogaway, P. "Collision-

Resistant Hashing: Towards Making
UOWHF's Practical." Proceedings,
CRYPTO '97, 1997; published by

Springer-Verlag.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

7www.ijert.org

