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Abstract— Fluid viscous dampers (FVDs) have been widely 

used as a means of achieving structural control, through energy 

dissipation. While linear FVDs have been in vogue, nonlinear 

FVDs too show considerable promise due to their superior energy 

dissipation characteristics and significant reduction in the 

damper force compared to a linear fluid viscous damper for the 

same peak displacement. This paper presents an analytical study 

to evaluate the effect of supplemental damping in the form of 

incorporating both, linear and nonlinear FVDs on SDOF and 

MDOF systems when they are subjected to seismic excitations. 

Covered in the paper are the basics of the properties and 

characteristics of both linear and nonlinear FVDs, besides the 

development of design charts giving the plots of time periods of 

SDOF systems versus deformation (displacements), relative 

velocities, total acceleration and the damper force. These design 

charts in turn form the basis in the form of readily available 

charts for preliminary decisions on parameters of supplemental 

dampers to be used in design required for a particular system to 

meet the desired response stipulations. The detailed mathematical 

formulations and a numerical study to evaluate the response of 

an example MDOF system to a seismic excitation is discussed 

using two methods -   response spectrum method being used to 

evaluate the response in terms of reduction in storey drifts and 

the second method used is mode superposition method to evaluate 

the response in terms of reduction in storey displacements 

through time history analysis.  

Keywords— Energy Dissipation; Fluid Viscous 

Dampers(FVDs); Response Control; Natural Damping Coefficient; 

Supplemental Damping; Linear FVD; nonlinear FVD; Damper 

Force; Response Spectra; Design Charts; Storey Drifts; Storey 

Displacements 

 

I.  INTRODUCTION  
In conventional seismic design, acceptable performance of 

a structure during earthquake shaking is based on the lateral 
force resisting system, being able to absorb and dissipate the 
earthquake energy in a stable manner for a large number of 
cycles. Energy dissipation occurs in specially detailed regions 
of concentrated damage to the gravity frame, namely plastic 
hinges which are often irreparable. The occurrence of inelastic 
deformations results in softening of the structural system which 
itself reduces the absolute input energy.  

 

Another approach to improving earthquake response 
performance and damage control is that of supplemental energy 
dissipation systems. In these systems, mechanical devices are 

incorporated into the frame of the structure and dissipate 
energy throughout the height of the structure. The means by 
which energy is dissipated is either yielding of mild steel, 
sliding friction plates, motion of a piston or a plate within a 
viscous fluid, orificing of fluid, or viscoelastic action in 
polymeric materials. 

In-structure damping, or energy dissipation, encompasses 
any component to reduce the movement of structures under 
lateral loads such as wind and earthquakes. Usual structural 
engineering processes attempt to achieve more capacity than 
demand by increasing the capacity of the structure. Passive 
control takes the opposite approach and attempts to reduce the 
demand on the structure. This strategy attempts to reduce the 
demand on a structure, rather than more usual approach of 
adding capacity. The focus of vibration control of structures in 
this paper is through incorporation of Fluid Viscous Dampers 
(as type of Passive Energy Dissipation Devices (EDDs)) on 
‘framed structure’ applications, although the basic working 
principles are the same for bridges and other structures. [1][2] 

II. FLUID VISCOUS DAMPERS 
‘Fluid Viscous Dampers (FVDs)’, are a class of ‘Passive 

Energy Dissipation System’. They are commonly used as 
passive energy dissipation devices for seismic protection of 
structures. They can dissipate large amount of energy over a 
wide range of load frequencies. The damping force generated 
by the damper is due to the pressure differential across the 
piston head and fluid compressibility. Such dampers consist of 
a hollow cylinder filled with fluid, the fluid typically being 
silicon based. As the damper piston rod and piston head are 
stroked, fluid is forced to flow through orifices either around or 
through the piston head. The resulting differential in pressure 
across the piston head very high pressure on the upstream side 
and very low pressure on the downstream side can produce 
very large forces that resist the relative motion of the damper. 
These dampers will generally not increase the strength and 
stiffness of a structure unless the excitation frequency is high. 
They operate on principles of fluid orificing and sloshing. 
Damping force in these devices is proportional to ‘velocity’, 
i.e.  they are ‘rate dependent’ devices. A purely viscous device 
is a special case of viscoelastic device with zero stiffness and 
frequency independent properties i.e. at any excitation 
frequency will not add stiffness.  
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Therefore, when an FVD is to be applied to the energy 
dissipation design of a structure, the natural frequency of the 
structure will not be affected, so, it is more convenient and 
simpler in design. The reduction in deformations can be in the 
tune of 30% to 70%, which are comparable to those achieved 
by using other passive energy dissipation devices such as the 
metallic, friction and the viscoelastic dampers. The main 
advantages of incorporating FVDs in a superstructure apart 
from those mentioned above include activation at low 
displacements, requirement of minimal restoring force, their 
properties are largely frequency and temperature independent 
besides they have a proven record in military applications. A 
disadvantage, however of using FVDs is from reliability point 
of view that there can arise a possibility of fluid seal leakage. 
[1][2][3] 

III. ORGANIZATION OF THE PAPER  
 The present paper based on the objectives is organized in 
the following manner: 

1) A brief introduction and general information on the 
concept of energy dissipation through supplemental 
damping in structures subjected to seismic excitation 
forms the initial part. 

2) Evaluation of damper properties and characteristics of 
FVDs (both, linear and nonlinear) is covered. 

3) Developing formulation of Supplemental Damping 
Ratio (ξsd) for use of nonlinear fluid viscous dampers 
under seismic excitation, besides, also covered briefly 
is development of ‘Design Charts’ in specific context 
to El Centro ground acceleration for preliminary 
selection of linear and nonlinear damper parameters for 
seismic control of SDOF structures. 

4) Evaluation of the response taking example MDOF 
structures using linear and nonlinear fluid viscous 
dampers, duly incorporating the inputs from the so 
obtained design charts; and 

5) Finally, inferences are drawn for the preliminary 
selection of proposed FVD based on storey 
displacement/storey drift stipulations, as found suitable 
for the MDOF system selected, concludes this paper. 

IV. METHODOLOGY ADOPTED FOR THE CURRENT 

INVESTIGATION 
Based on the objectives set for the current investigation, the 

basic methodology adopted for the investigation, included, 
utilization of the established equations of motion as pertaining 
to the response of a single degree of freedom (SDOF) system 
subjected to a seismic excitation (in this case, the El Centro 
earthquake of 1940 has been taken as the input excitation) as a 
bare frame with its inherent damping and thereafter analyzing 
effect on the response of the same very system upon 
incorporating a supplemental damping (through a fluid viscous 
damper, with both linear and nonlinear properties) into it. 
Design charts (site specific) for SDOF systems (i.e. plots of 
displacement versus time period, relative velocity versus time 
period, total acceleration versus time period and damper force 
versus time period) developed have been incorporated in 
obtaining the inputs (‘Sa/g’ values for the dynamic analysis of 
multi degree of freedom (MDOF) systems).  The supplemental 
damping effect was thereafter analyzed for example MDOF 

System (i.e. 4 storey frame with assumed parameters) using 
these design charts. The overall analysis has been based on 
Newmark’s Average Acceleration Method using MATLAB 
and MS Excel. 

V. EVALUATING DAMPER PROPERTIES AND 

CHARACTERISTICS FOR A FLUID VISCOUS DAMPER 

AND DEVELOPING DESIGN CHARTS FOR 

PRELIMINARY SELECTION OF LINEAR AND 

NONLINEAR DAMPER PARAMETERS          [3] [4] [5] 
The mathematical modeling for the two types of FVDs i.e. 

linear and nonlinear, is done in terms of parameters α and cα 

(i.e. the nonlinearity parameter and the damping coefficient, 
respectively) constituting the equation of the damping force, fd: 

   fd =  cα  α sgn ( , where  

 , is the relative velocity between the two ends of the 
damper; α is the exponent between 0 and 1 (α =1 for linear 
viscous dampers while α=0 exhibits the characteristics of a 
friction damper).  

 For a given earthquake ground acceleration (in this 
case, El Centro earthquake of 1940), we develop the design 
charts that directly give us the structural deformation, relative 
velocity, total acceleration and the damper force for a specific 
Time Period value of an SDOF system over a range of 3 
seconds; these design charts are useful in thus selecting an 
FVD that limits the structural deformation to a design value.  

A. Nonlinear Fluid Viscous Damper  

The force (fD)-velocity ( ) relation for nonlinear fluid viscous 

dampers (FVDs) can be analytically expressed as a fractional 

velocity power law: 

fD = cα sgn ( )| |α                          (1) 

 

where, cα is the experimentally determined damping 

coefficient with units of force per velocity raised to the α 

power; α is a real positive exponent with typical values in the 

range of    0.35 – 1 for seismic applications; and sgn (.) is the 

signum function. Equation (1) becomes       fD = c1   for α = 1, 

which represents a linear FVD and  fD = c0 sgn ( ) for α=0, 

which represents a pure friction damper. Thus, α characterizes 

the nonlinearity of FVDs.  

The energy dissipated by the damper during a cycle of 

harmonic motion u = u0 sin ωt is: 

ED = D du = D dt = α
1+α dt     (2) 

 

Integrating Equation 2 results in: 

  ED = α cα ωα u0
α+1   

                                          (3) 

Where, the constant α is: 

  α = (22+α Г2 (1+ α/2)) / ( Г (2+α))         (4) 

and Г is the gamma function. For a linear FVD, (α = 1), α = 1 

and Equation 3 becomes: 

  ED =  c1 ω u0
2                                       (5) 
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In the limit case of pure friction dampers, (α = 0), α = 4/  

and Equation (3) reduces to 

ED =  c0 u0. 

Nonlinear and linear FVDs dissipate an equal amount of 

energy per cycle of harmonic motion if the two results 

(Equations (3) and (5)) for ED are the same; this equality leads 

to 

 cα = ((ω u0)1-α / βα) c1           (6) 
 

B. Equivalent Linear Viscous Damping [3] 
We characterize the energy dissipation capacity of energy-

equivalent nonlinear FVDs by supplemental damping ratio ξsd 
and their nonlinearity by α. For a linear single-degree-of 
freedom (SDOF) system with mass m, stiffness k, and a 
nonlinear FVD defined by Equation (1), the supplemental 
damping ratio ξsd due to the FVD is defined based on the 
concept of equivalent linear viscous damping as follows: 

          ξsd = ED/4πES0 = ED/2πku0
2                        (7) 

where ES0 is the elastic energy stored at the maximum 
displacement, u0. Substituting Equation (3) evaluated at ω=ωn 
into Equation (7) gives ξsd as a function of the displacement 
amplitude, u0: 

ξsd = ((βα cα)/2ku0) (ωnu0)α = ((βα cα)/2mωn))(ωnu0)α-1                     
            (8) 

Equation (8) reduces to the amplitude-independent damping 
ratio ξsd = (c1/2mωn) for a linear FVD (α=1) and to  ξsd = 
2c0/πku0 for a friction damper (α=0).   

C. Equation of Motion and System Parameters [1][4][5] 
 

(1) Equation of motion 

The equation governing the motion of the SDOF system 

with mass m, elastic stiffness k, linear viscous damping 

coefficient c, and a nonlinear FVD subjected to ground 

acceleration üg(t) is 

    mü + ců + ku + cα sgn (ů) |ů|α = -müg(t)                      (9) 

Given cα and α ≠ 1 values, Equation (9) is nonlinear, therefore, 

the response u of the system depends nonlinearly on the 

excitation intensity. Thus, parameterizing this equation and 

studying the effect of supplemental damping on system 

response become complicated because of the nonlinear term 

involving two parameters cα and α, wherein cα is not a 

dimensionless parameter. Therefore, we replace cα by 

Equation (9) for energy-equivalent FVDs and divide the 

resulting equation by m to obtain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ü + 2ξ ωnů + ωn
2u + (2 ξsd ωn) / βα (ωnu0)1-α sgn(ů)|ů|α =-üg(t) 

                                                                              (10) 

 

Where, ωn = √ (k/m)    and ξ = c/2mωn are the natural 

vibration frequency and the damping ratio of the system, 

respectively; and ξsd is the supplemental damping ratio due to 

the nonlinear FVD. Equation (10) governs the motion of 

SDOF systems with energy-equivalent nonlinear FVDs, which 

are characterized by the same ξsd value but different α values. 

In particular, when α =1 and α =0 in Equation (10), we obtain 

the governing equations for linear-viscous and friction-

supplemental damping, respectively. 

Although Equation (10) is nonlinear and involves the 

unknown displacement amplitude u0  (for α≠1) in the 

supplemental damping term, it offers the following advantages 

over Equation (9): (i) the response u of the system varies 

linearly with the excitation intensity, i.e. scaling the üg(t) by 

doubling the peak ground acceleration üg0 will double u(t); (ii) 

effects of nonlinear FVDs on the system response can be 

investigated in terms of two independent, dimensionless 

parameters, ξsd and α; and (iii) the accuracy of the 

corresponding linear viscous system in estimating the response 

of the system with nonlinear FVDs can be evaluated. 

 

(2) System Parameters 

As indicated by Equation (9), the response of energy-

equivalent SDOF systems with nonlinear FVDs is controlled 

by four parameters: (i) damper nonlinearity parameter α, 

which controls the shape of the damper force hysteresis loop; 

(ii)  supplemental damping ratio ξsd , which represents the 

energy dissipation capacity of the FVD independent of the α 

value; (iii)  natural vibration period of the system Tn = 2π / ωn; 

and (iv)  damping ratio, ξ, which represents the inherent 

(natural) energy dissipation capacity of the system.   

 

D. Earthquake Response 

The earthquake response history selected for the current 

evaluation is that of the El Centro 1940 ground motion as has 

been taken in this paper. Accordingly all the system responses 

(deformation, velocity and the total acceleration responses) are 

based in particular to the El Centro seismic excitation. 

 

(1) Influence of Damper Nonlinearity 

Although the mean response spectra for deformation, 

relative velocity, and total acceleration presented in Figs. 1 

(a)–(c), 2  (a)-(c) and 3  (a)-(c) respectively, are affected very 

little by damper nonlinearity, the influence increases at longer 

periods and for smaller values of α, implying more 

nonlinearity.  
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Damper nonlinearity has essentially no influence on system response in the velocity-sensitive spectral region and small 

influence in the acceleration- and displacement-sensitive regions. Thus, the system response is only weakly affected by damper 

nonlinearity. This observation has the useful implication for design applications that, for a given ξsd, the response of systems with 

nonlinear FVDs can be estimated to a sufficient degree of accuracy by analyzing the corresponding linear viscous system (α=1). 

         
            (a) 

 

 
                (b)

 

 
(c) 

 
Fig. 1      Mean response spectra for deformation for the example SDOF system with ξ = 2% and  
supplemental damping ξsd = 0, 5%, 15% and 30% due to nonlinear FVDs with different α values 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS010160
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 01, January-2018

353



 

 

  
 

(a) 

          

  
 

(b) 

 

 

  
 

(c) 

 
Fig. 2     Mean response spectra for relative velocity for the example SDOF system with ξ = 2% and  

supplemental damping ξsd = 0, 5%, 15% and 30% due to nonlinear FVDs with different α values 
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(a) 
 

 

  
 

(b) 

 

  
 

(c) 

 

    
Fig. 3   Mean response spectra for total acceleration for the example SDOF system with ξ = 2% and  

supplemental damping ξsd = 0, 5%, 15% and 30% due to nonlinear FVDs with different α values 
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(2) Influence of Supplemental Damping 
 

As expected, supplemental damping reduces structural 

response, with greater reduction achieved by the addition of 

more damping (Figs. 1, 2 and 3); the reduction achieved with a 

given amount of damping is different in the three spectral 

regions. As Tn→0, supplemental damping does not affect 

response because the structure moves rigidly with the ground. 

And as Tn→∞, supplemental damping again does not affect 

the response because the structural mass stays still while the 

ground underneath moves.  

The response reduction is significant over the range of 

periods considered. As observed from the plots, as little as 5% 

supplemental damping reduces the deformation response in a 

range of over 20% averaged over the three acceleration-, 

velocity-and displacement-sensitive spectral regions, 

respectively. The corresponding reductions are close to about 

40% - 50% range for moderate supplemental damping         

(ξsd =15%) and higher for large supplemental damping         

(ξsd =30%). Consistent with earlier observations, the reduction 

in responses is essentially unaffected by damper nonlinearity 

in the velocity-sensitive region and only weakly dependent in 

the acceleration- and displacement-sensitive regions. It is thus 

indicated that supplemental damping reduces all responses. 

 

E. Damper Force 

The response spectrum for damper force shown in Figs. 4 

(a), (b) and (c) permits two salient observations: 

(i) the damper force is larger for larger dampers, as 

indicated by their ξsd values; and 

(ii) for a selected ξsd for supplemental damping, the damper 

force is smaller for nonlinear FVDs, as can be observed for 

time periods lesser than 0.8 seconds; the more nonlinear the 

damper (i.e. smaller the α value), the smaller is the damper 

force (comparison between Figs. 4 (a), (b) and (c)).  

From Figs. 4 (a), (b) and (c)), it is also observed that for 

longer time periods, increase in nonlinearity increases the 

damping force in comparison to the linear dampers. Thus, it 

could be inferred that such nonlinear dampers would find 

usefulness in cable suspension bridges which have long time 

periods. Nonlinear FVDs are advantageous because they 

achieve essentially the same reduction in response (Figs. 1, 2 

and 3) but with a significantly reduced damper force (Fig. 4).  

The above observations are valid for the range of system 

period considered, except for very short-period systems        

(Tn < 0.1 sec). 

 

 
(a) 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Damping Force-Time Period Plot

Time Period (sec)

D
a

m
p

e
r 

F
o

rc
e

 (
k

N
)

 

 

zhi sd = 0

zhi sd = 5%

zhi sd = 15%

zhi sd = 30%

alpha = 0.7

zhi sd = 15%

zhi sd = 5%

zhi sd = 0%

zhi sd = 30%

 
(b) 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS010160
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 01, January-2018

356



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Damping Force-Time Period Plot

Time Period (sec)

D
a

m
p

e
r 

F
o

rc
e

 (
k

N
)

 

 

zhi sd = 0

zhi sd = 5%

zhi sd = 15%

zhi sd = 30%

alpha = 0.35

zhi sd = 30%

zhi sd = 15%

zhi sd = 5%

zhi sd = 0%

 
(c) 

 

Fig. 4   Damper force spectra for FVDs with supplemental damping ξsd = 5%, 15% and 30% and α = 1, 0.7 and 0.35 

 

VI.        RESPONSE EVALUATION TAKING AN 

EXAMPLE MDOF SYSTEM 

In this part of the paper, we evaluate the responses of an 

example MDOF system – a four storey frame of given 

parameters (dimensions and stiffness). In this example, the 

first method adopted to analyze the responses (in terms of 

‘storey drifts’), was, the Response Spectrum Method which has 

been used considering initially, a bare frame with its inherent 

natural damping ratio of 2%, thereafter, incorporating 

supplemental damping of 5%, 15% and 30%. The design 

charts (Fig.3) used for the Sa/g values are the ones developed 

for an SDOF system pertaining to the El Centro ground 

acceleration, and are therefore site specific. The response 

spectrum method adopted is as per the provisions of the IS 

1893 (Part 1): 2016. 

 
           Fig. 5      An example four MDOF system 

 

      

   
 

Fig. 6      El Centro Earthquake Ground Acceleration (1940) 

 

The second method considered for analyzing the response 

in terms of ‘displacements’ of each storey (physical 

coordinates) the same four storey framed structure subjected to 

the same El Centro ground acceleration has been done using 

Time History Analysis. Here too, initially, only the bare frame 

with its natural damping ratio is considered for evaluation of    

displacement response, thereafter the same frame is evaluated 

for response after incorporating two types of supplemental 

damping at a supplemental damping ratio of 30% but with 

linear and nonlinear FVDs.  

 

1) Response Evaluation using Response Spectrum Method 

for a Four DOF System 

 

The four storey frame considered is as shown in the Fig. 5. 

The parameters of mass and stiffness are as illustrated. The 

frame is subjected to the El Centro ground acceleration     (Fig. 

6). The procedure adopted for evaluation of response is to first 

calculate the natural frequencies for the various modes as also 

to find out the mode shapes. The storey shears are then 

determined from dynamic analysis to finally arrive the storey 

drifts.

Stiffness K2 = 633700 

kN/m  

Stiffness K1 = 633700 

kN/m  

Stiffness K4 = 633700  

kN/m  

Stiffness K3 = 633700 

 kN/m  
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The Sa/g values for response spectrum method are the ones adopted from the design charts developed for El Centro ground 

acceleration.  The results of the responses for storey drifts for the four storey frame using response spectrum method with 5%, 

15% and 30% supplemental damping considering bare frame (i.e. without supplemental damping, ξsd = 0 and natural damping,    

ξ =2%) and with different supplemental damping ratios (ξsd = 5%, 15% and 30%) using the values of Sa/g from the developed 

design charts are tabulated as under: 

 
TABLE 1: COMPARATIVE RESULTS  

 

 
 

To enable a validation for the results of storey drifts 

obtained by response spectrum method, the same four storey 

frame is analyzed using mode superposition method for 

obtaining the responses in terms of storey displacements using 

time history analysis. The effect of introducing a supplemental 

damping of 30% (both, linear and nonlinear) on individual 

storey displacements is covered in the next sub-section 

wherein the same example four DOF system has been 

considered. 
 

2) Response Evaluation using Mode Superposition Method 

for a Four DOF System (Bare Frame)                 [6] [7] 

We evaluate the response of the four storey plane frame 

model in Figure 5 (i. e. a Four Degree of Freedom System) 

subjected to El Centro ground acceleration (Fig. 6), using 

mode superposition method (incorporating time history 

(Tedesco et. al. 1999)). The equation of motion for a multi-

degree-of-freedom system in matrix form can be expressed as:     

 In mode superposition analysis or a modal analysis, a set of 

normal coordinates is defined, such that, when expressed in 

those coordinates, the equations of motion become uncoupled 

The physical coordinates {x} may be related with normal or 

principal coordinates {q} from the transformation expression 

as, 

 {x} = [Ø]{q},  where [Ø] is the modal matrix. 

Time derivatives of {x} are, 

             
 

 Substituting the time derivatives in the equation of motion, 

and pre-multiplying by [Ø]T  results in, 
 

                   (11) 
 

 

 

 

 

 

 

Where, 

  
The solution of equation of motion for any specified forces is 

difficult to obtain, mainly due to coupling of the variables {x} 

in the physical coordinates.  In mode superposition analysis or 

a modal analysis, a set of normal coordinates is defined, such 

that, when expressed in those coordinates, the equations of 

motion become uncoupled. 

 
The mass and stiffness matrices for the plane frame with infills 

are: 

K =  1267400      -633700           0                0 

-633700     1267400     -633700            0 in kN/m 

       0            -633700     1267400     -633700 

          0                 0           -633700        633700 

M =  64.4500         0            0             0 

         0       64.4500              0                0 in Tons   

                0                    0                 64.4500         0 

         0                    0                     0            37.0800 
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 Natural frequencies and mode shape for the plane 

frame model: 

 

[ω] =    37.9751       0             0             0 

 0 108.1569        0             0 in rad/second 

              0       0             161.9460    0 

   0       0          0           191.6197 
 

 

 T   =  0.1655       0            0            0 

 0    0.0581         0            0 in seconds 

              0       0             0.0388        0 

   0       0         0         0.0328 

     

 

 
 

The values for [M], [K] and [C] are: 

 
 

 
Calculation of Effective Force Vector 
 

The excitation function is,  

 

  

 
 

Displacement Response in Physical Coordinates 

 

The uncoupled equations in the normal coordinates are,  

 
  

The displacement response qr is now evaluated using the 

Average Acceleration Method. The displacement response in 

physical coordinates {x} is calculated from the transformation 

expression: 

 

 
The numerical method used is the Average Acceleration 

Method to arrive at the values of q1, q2, q3 and q4 i.e. the 

normal coordinates. Thereafter the above equations are solved 

to get the values of the physical displacement responses (x1, 

x2, x3 and x4 in meters) of the four storeys as time history plots 

over the entire 30 seconds duration. These pertain to bare 

frame displacements that have only the natural damping ratio 

of 2% and there is no supplemental damping incorporated. The 

response of masses at various floor levels in the physical 

coordinates {x} are obtained as shown in Figs. 7 (a) to 7 (d). 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Fig. 7    Displacement response history in physical coordinates for the four 

storey frame: Bare Frame (without supplemental damping) 

 

Displacement Response after incorporating Supplemental 

Damping 

In order to reduce the response of the bare frame we 

incorporate supplemental damping in the form of linear and 

nonlinear FVDs in the frame and then analyze the effect on the 

structural response. The supplemental damping ratio of 30% is 

taken for both, linear and nonlinear damping. The alpha value 

(nonlinearity) taken is 0.5. This supplemental damping is 

taken to be present in each storey i.e. each storey has a 

supplemental damping ratio of 30%. 

The effect of supplemental damping is analyzed in 

two steps, i.e. first we incorporate linear damping and obtain 

the individual storey displacement response history in physical 

coordinates and then, in step two, nonlinear damping is 

incorporated and similarly we obtain the individual storey 

displacement response history in physical coordinates. A 

comparison is then carried out to draw conclusions. 

 

1) Response using linear damping 

The displacement response history obtained for the same 

frame (all the four storeys) through the Average Acceleration 

Method using linear FVD is as reflected in the plots as under: 
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(d) 

 
Fig. 8   Displacement Response History in physical coordinates for the  

Four Storey Frame: 30% Supplemental Damping (Linear) 

 

 

 

 

 

 

 

2) Response using nonlinear damping 
 

In the second step, the time history plots using nonlinear 

supplemental fluid viscous damping as mentioned above are 

obtained (Figs. 9 (a) to 9 (d)).  
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
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Fig. 9    Displacement Response History in physical coordinates for the 

 Four Storey Frame: 30% Supplemental Damping (Nonlinear) 

 
 

VI. CRITICAL EVALUATION  
Based on the analysis of the example MDOF system, what 

stands out is that there is consistency in the expected results on 
how these systems respond to external excitation. Also there is 
considerable similarity in the change in the behavior once 
subjected to supplemental damping by means of incorporating 
an EDD. The results of important findings duly summarized are 
listed out below along with the concise discussions. 

1) Effect on Storey Drifts (based on response spectrum 
method) 

It is observed from Table 1 that as the supplemental 
damping in the given MDOF system increases, there is a 
pronounced reduction in the respective storey drifts. The 
reduction in the storey drift at the level of the four storey is 
about 20% for a 5% supplemental damping ratio compared to a 
bare frame with only its natural damping, while the reduction is 
about 47% and 67% for 15% and 30% supplemental damping 
ratios. Here, it could also be inferred that a reduction in 
respective storey drifts is implicative of reduction in storey 
displacements. The same is corroborated in the succeeding 
findings. 

2) Effect on Storey Displacements (based on mode 
superposition method) 

It is observed from Figs. 7, 8 and 9 that the maximum 
displacement in the bare frame (Figs. 7 (a) to (d)) for the first 
storey is 0.00432m (i.e. 4.32mm) while for the second, third 
and fourth storeys the physical displacements are 0.00714m 
(i.e. 7.14mm), 0.00931m (i.e. 9.31mm) and 0.010172m (i.e. 
10.17mm), respectively. The displacements for the bare frame, 
as expected are increasing from the lowest storey i.e. the first 
storey to the topmost storey i.e. the fourth storey, progressively.  

Also, from Figs. 8(a) to (d), once linear supplemental 
damping is introduced into the system, it can be clearly seen 
that there has been a significant reduction in the displacement 
response in each of the four storeys, i.e. the first storey 
displacement is observed to reduce from 0.00432m (i.e. 
4.32mm) to 0.000985m (i.e. 1mm), for the second storey, the 
reduction in displacement is from 0.00714m (i.e. 7.14mm) to 
0.00198m (i.e. 1.98mm), while for the third and fourth storeys 
it’s from 0.00931m (i.e. 9.31mm) and 0.010172m (i.e. 

10.17mm), to 0.00278m (i.e. 2.78mm) and 0.00297m (i.e. 
2.97mm), respectively.  

Again, it is evident from the plots in Figs. 9 (a) to (d), that 
there is further reduction in the storey displacements when 
there is nonlinearity in the damping, even at a constant 
supplemental damping of 30%. The fourth storey maximum 
displacement has now reduced from a maximum of 0.01017m 
(i.e. 10.17mm) to barely 0.001476m (i.e. 1.47mm). Table 2, 
summarizes the comparative results (including the response of 
the other storeys to nonlinear supplemental damping). 

TABLE 2:  COMPARATIVE RESULTS OF STOREY 
DISPLACEMENTS USING MODE SUPERPOSITION METHOD 

 

 
 

VII. CONCLUSIONS 

The objectives that were set for the current investigation were 

successfully met and the various associated parameters were 

successfully evaluated. Preliminary selection of linear and 

nonlinear damper parameters too can be suitably implemented 

through the design charts that were developed for seismic 

control of SDOF systems (in terms of α i.e. the nonlinearity 

parameter and cα in the form of the supplemental damping, 

ξsd). Following conclusions can be drawn from the foregoing 

discussions for supplemental damping in both, SDOF and 

MDOF systems.  

1) Fluid viscous dampers have a high energy dissipation 

capacity. The dynamic characteristics of a nonlinear FVD 

can be described by its energy dissipation capacity, 

represented by supplemental damping ratio ξsd, and its 

nonlinearity by a parameter α, which defines the 

hysteresis loop shape. The much lesser is the value of 

velocity exponent, greater is the energy dissipation 

capacity of the damper. 

2) Damper nonlinearity essentially has no influence on the 

peak responses—deformation u0, relative velocity ů0, and 

total acceleration ü0t  of systems. 

3) Nonlinear FVDs are advantageous because they achieve 

essentially the same reduction in system responses but 

with a reduced damper force (within specific time period 

range). 

4) The design values of structural deformation and forces 

for a system (period Tn and inherent damping ξ) with 

nonlinear FVDs can be estimated directly from the design 

spectrum for the period Tn and total damping         ξ + ξsd. 
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Specific Conclusions from the Example MDOF systems 
  

1) The response behavior of the example MDOF systems 

(first one i.e. 4 DOF system evaluated using the response 

spectrum method and the second i.e. 4 DOF system using 

mode superposition method) provide a complete 

overview and thus validate the various inferences drawn 

from the above evaluation, as to the behavior of these 

structures when subjected to seismic excitation. They go 

onto establishing the fact that the responses of a bare 

frame in terms of storey displacements or storey drifts 

have a significant reduction once supplemental damping 

is introduced (in our case, both types of fluid viscous 

dampers i.e. linear and nonlinear), as has been observed 

from the time histories for the four-storey frame.  
 

2) The comparison between the storey displacements for the 

four storey frame using mode superposition method and 

storey drifts by response spectrum method  helped in 

validating that there is consistency in the design charts 

developed for El Centro ground acceleration and  the 

results are comparable. 
 

3) Introduction of nonlinearity in a damper further 

contributes to reduction in the maximum storey 

displacements, as compared to the corresponding 

reduction due to linear damping. This has a direct impact 

on the structural control through energy dissipation, thus 

mitigating any adverse effect on the primary structural 

members. 
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