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Abstract— Credit card fraud detection with online shopping 

sector is performed here. A Credit card transactional data 

was simulated, trained and predicted and then the transaction 

blocking rules will check those details. The fault phase is data 

driven; this is purely data driven and adopts a classifier or 

another statistical model to estimate the probability for each 

feature vector being a fraud. This entire process is handled by 

investigator. With the investigated user information we 

perform the fraud detections. Investigators call cardholders 

and, after having verified , assign the label “genuine” or 

“fraudulent” to the alerted transaction, and return this 

information to the FDS. In the following, we refer to these 

labeled transactions as feedbacks and use the term alert–

feedback interaction to describe this mechanism yielding 

supervised information in a real-world FDS. 

  
Keywords— Data mining ,Credit card fraud detection ,Naïve 

Bayesian classification ,Finger print image ,One Time 

Password. 

 

I. INTRODUCTION 

CREDIT card fraud detection is a relevant problem that 

draws the attention of machine-learning and computational 

intelligence communities, where a large number of 

automatic solutions have been proposed. In fact, this 

problem appears to be particularly challenging from a 

learning perspective, since it is characterized at the same 

time by class imbalance], namely, genuine transactions far 

outnumber frauds, and concept drift, namely, transactions 

might change their statistical properties over time. These, 

however, are not the only challenges characterizing 

learning problems in a real-world fraud-detection system 

(FDS). In a real-world FDS, the massive stream of payment 

requests is quickly scanned by automatic tools that 

determine which transactions to authorize. Classifiers are 

typically employed to analyze all the authorized 

transactions and alert the most suspicious ones. Alerts are 

then inspected by professional investigators that contact the 

cardholders to determine the true nature (either genuine or 

fraudulent) of each alerted transaction. By doing this, 

investigators provide a feedback to the system in the form 

of labeled transactions, which can be used to train or 

update the classifier, in order to preserve (or eventually 

improve) the fraud-detection performance over time. The 

vast majority of transactions cannot be verified by 

investigators for obvious time and cost constraints. These 

transactions remain unlabeled until customers discover and 

report frauds, or until a sufficient amount of time has 

elapsed such that non disputed transactions are considered 

genuine. Thus, in practice, most of supervised samples are 

provided with a substantial delay, a problem known as 

verification latency. The only recent supervised 

information made available to update the classifier is 

provided through the alert– feedback interaction. Most 

papers in the literature ignore the verification latency as 

well as the alert–feedback interaction, and unrealistically 

assume that the label of each transaction is regularly made 

available to the FDS, e.g., on a daily basis However, these 

aspects have to be considered when designing a real-world 

FDS, since verification latency is harmful when concept 

drift occurs, and the alert–feedback interaction is 

responsible of a sort of sample selection bias (SSB) that 

injects further differences between the distribution of 

training and test data. Another important difference 

between what is typically done in the literature and the 

real-world operating conditions of Fraud-Detection System 

(FDS) concerns the measures used to assess the fraud-

detection performance. 
 

Most often, global ranking measures, like the area 
under the ROC curve (AUC), or cost-based measures, used, 

but these ignore the fact that only few alerts can be 
controlled everyday, and that companies are very 

concerned of the precision of the generated alerts. The 

main contributions of this paper are as follows. 
 

1) We describe the mechanisms regulating a real-world 
FDS, and provide a formal model of the articulated 
classification problem to be addressed in fraud detection. 
 

2) We introduce the performance measures that are 
considered in a real-world FDS. 
 

3) Within this sound and realistic model, we propose an 

effective learning strategy for addressing the above 

challenges, including the verification latency and the alert– 

feedback interaction. This learning strategy is tested on a 

large number of credit card transactions. This paper is 

organized as follows. We first detail the operating 

conditions of a real-world FDS in Section II, and then in 

Section III model the articulated fraud-detection problem 

and present the most suitable performance measures. 
 

In particular, we deem that it is most appropriate to 

assess the number of detected fraudulent transactions (or 
cards) over the maximum number of transactions (or cards) 

that investigators can check. The main challenges raising 
when training a classifier for fraud-detection purposes are 

then discussed in Section IV. 
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Section V introduces the proposed learning strategy, 

which consists in separately training different classifiers 

from feedbacks and delayed supervised samples, and then 

aggregating their predictions. This strategy, inspired by the 

different nature of feedbacks and delayed supervised 

samples,or cost based measures are used is shown to be 

particularly effective in FDS using sliding window or 

ensemble of classifiers. We validate our claims in 

experiments (Section VI) on more than 75 million e-

commerce credit card transactions acquired over three 

years, which are also analyzed to observe the impact of 

class imbalance and concept drift in real-world transaction 

streams. 
 

Our work builds upon], which is significantly extended 
by describing in detail the real-world operating conditions 
of an FDS and by analyzing the SSB introduced by the 
alert– feedback interaction. Furthermore, the experimental 
section has been largely updated and completed by 
presenting additional analysis over two large data sets. 
 

II. EXISTING SYSTEM 
 
Layers of Controls in an FDS 
 
A. Terminal  

The terminal represents the first control layer in an 

FDS and performs conventional security checks on all the 

payment requests]. Security checks include controlling the 

PIN code (possible only in case of cards provided with 

chip), the number of attempts, the card status (either active 

or blocked), the balance available, and the expenditure 

limit. In case of online transactions, these operations have 

to be performed in real time (response has to be provided in 

a few milliseconds), during which the terminal queries a 

server of the card issuing company. Requests that do not 

pass any of these controls are denied, while the others 

become transaction requests that are processed by the 

second layer of control. 

 
 
B.Transaction-Blocking Rules 
 

Transaction-blocking rules are if-then (-else) 

statements meant to block transaction requests that are 

clearly perceived as frauds. These rules use the few 

information available when the payment is requested, 

without analyzing historical records or cardholder profile. 

An example of blocking rule could be ―IF internet 

transactions AND unsecured Web site THEN deny the 

transaction.‖1 In practice, several transaction-blocking rules 

are simultaneously executed, and transactions firing any of 

these rules are blocked (though cards are not deactivated). 

Transaction blocking rules are manually designed by the 

investigator and, as such, are expert-driven components of 

the FDS. To guarantee real-time operations and avoid 

blocking many genuine transactions, blocking rules should 

be: 1) quick to compute 2) very precise, namely, should 

raise very few false alarms. All transactions passing 

blocking rules are finally authorized. However, the fraud-

detection activity continues after having enriched 

transaction data with aggregated features used to compare 

the current purchase against the previous ones and the 

cardholder profile. These aggregated features include, for 

instance, the average expenditure, the average number of 

transactions in the same day, or the location of the previous 

purchases. The process of computing aggregated features is 

referred to as feature augmentation and is described in 

Section II-B. Augmented features and current transaction 

data are stacked in a feature vector that is supposed to be 

informative for determining whether the authorized 

transaction is fraudulent or genuine. The following layers 

of the FDS operate on this feature vector. 

 

C. Scoring Rules 

Scoring rules are also expert-driven models that 

are expressed as if-then (-else) statements. However, these 

operate on feature vectors and assign a score to each 

authorized transaction: the larger the score, the more likely 

the transaction to be a fraud. Scoring rules are manually 

designed by investigators, which arbitrarily define their 

associated scores. An example of scoring rule can be ―IF 

previous transaction in a different continent AND less than 

1 h from the previous transaction THEN fraud score = 

0.95.‖ Unfortunately, scoring rules can detect only 

fraudulent strategies that have already been discovered by 

investigators, and that exhibit patterns involving few 

components of the feature vectors. Moreover, scoring rules 

are rather subjective, since different experts design 

different rules. 

  

D. Data Driven Model (DDM) 

This layer is purely data driven and adopts a 

classifier or another statistical model to estimate the 

probability for each feature vector being a fraud. This 

probability is used as the fraud score associated with the 

authorized transactions. Thus, the DDM is trained from a 

set of labeled transactions and cannot be interpreted or 

manually modified by investigators. An effective DDM is 

expected to detect fraudulent patterns by simultaneously 

analyzing multiple components of the feature vector, 

possibly through nonlinear expressions. Therefore,the 

DDM is expected to find frauds according to rules that go 

beyond investigator experience, and that do not necessarily 

correspond to interpretable rules. This paper focuses on this 

component of the FDS and proposes a strategy to design, 

train, and update the DDM to improve fraud-detection 

performance. Transactions associated with feature vectors 

that have either received a large fraud score or a high 

probability of being a fraud generate alerts. Only a limited 

number of alerted transactions are reported to the 

investigators, which represent the final layer of control. 
 
E.Investigators  

Investigator are professionals experienced in 

analyzing credit card transactions and are responsible of 

the expert-driven layers of the FDS. In particular, 

investigators design transaction-blocking and scoring rules. 

Investigators are also in charge of controlling alerts raised 

by the scoring rules and the DDM, to determine whether 

these correspond to frauds or false alarms. In particular, 

they visualize all the alerted transactions in a case 

management tool, where all the information about the 
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transaction is reported, including the assigned 

scores/probabilities, which in practice indicate how risky 

each transaction is. Investigators call cardholders and, after 

having verified, assign the label ―genuine‖ or 

―fraudulent‖ to the alerted transaction, and return this 

information to the FDS. In the following, we refer to these 

labeled transactions as feedbacks and use the term alert–

feedback interaction to describe this mechanism yielding 

supervised information in a real-world FDS. Any card that 

is found victim of a fraud is immediately blocked, to 

prevent further fraudulent activities. Typically, 

investigators check all the recent transactions from a 

compromised card, which means that each detected fraud 

can potentially generate more than one feedback, not 

necessarily corresponding to alerts or frauds. In a real-

world FDS, investigators can only check few alerts per day 

as this process can be long and tedious. Therefore, the 

primary goal of a DDM is to return precise alerts, as 

investigators might ignore further alerts when too many 

false alarms are reported. 
 

Features Augmentation  
Any transaction request is described by few 

variables such as the merchant ID, cardholder ID, purchase 

amount, date, and time. All transaction requests passing the 

blocking rules are entered in a database containing all 

recent authorized transactions, where the feature-

augmentation process starts. During feature augmentation, 

a specific set of aggregated features associated with each 

authorized transactions is computed, to provide additional 

information about the purchase and better discriminate 

frauds from genuine transactions. Examples of aggregated 

features are the average expenditure of the customer every 

week/month, the average number of transactions per day or 

in the same shop, the average transaction amount, and the 

location of the last purchases.. show that additional. 

  
informative features can be extracted from the social 

networks connecting the cardholders with merchants/shops. 

Aggregated features are very informative, as they 

summarize the recent cardholder activities. Thus, they 

allow to alert transactions that are not suspicious by 

themselves but might be unusual compared with the 

shopping habits of the specific cardholder. Features 

augmentation can be computationally expensive, and 

aggregated features are often precomputed offline for each 

cardholder on the basis of historical transactions. 

Aggregated features are stacked with the transaction data in 

the feature vector.  

 

Supervised Information Investigator  
Feedbacks are the most recent supervised 

information made available to the FDS, but represent only 

a small fraction of the transactions processed every day. 

Additional labeled transactions are provided by cardholders 

that directly dispute unauthorized transactions .The timing 

of disputed transactions can vary substantially, since 

cardholders have different habits when checking the 

transcript of credit card sent by the bank. Moreover, 

checking disputed transactions entails some necessary 

administrative procedures that might introduce substantial 

delays. All other transactions remain unlabeled: these can 

be either genuine transactions or frauds that were missed 

by the FDS and ignored by the cardholders. However, after 

a certain number of days have passed without cardholder 

dispute, all the unreported transactions are considered 

genuine by default, and inserted in the training set of the 

DDM. Overall, there are two types of supervised 

information: 1) feedbacks provided by investigators that 

are limited in number but refer to recent transactions and 2) 

delayed supervised transactions, which are the vast 

majority for which the labels become available after 

several days (e.g., one month). This latter includes both 

disputed and non disputed transactions.  
System Update  

spending behavior evolves and fraudsters 

continuously design new attacks, and thus their strategies 

also change over time. It is then necessary to constantly 

update the FDS to guarantee satisfactory performance. 

Expert-driven systems are regularly updated by 

investigators who add ad hoc (transaction-blocking or 

scoring) rules to counteract the onset of new fraudulent 

activities and remove those rules liable of too many false 

alerts. However, investigators cannot modify the DDM, 

since it is not interpretable and can be only updated (e.g., 

retrained) on the basis of recent supervised information, as 

shown in Fig. 1. This operation typically requires a large 

number of labeled transactions; therefore, though 

investigators steadily provide feedbacks during the day, the 

classifier is usually updated/re-trained only once ,notably at 

the end of the day, when a sufficient number of feedbacks 

are available. 
 

III. PROBLEM FORMULATION  
Here, we model the classification problem to be addressed 
in a real-world FDS, providing a formal description of the 
alert–feedback interaction and presenting suitable
 performance measures.The proposed learning 
strategy (Section V) and our 

experiments (Section VI) are built upon this model. Let xi 

denote the feature vector associated with the I th authorized 

transaction and ∈{+ ,−} be the corresponding class, where 

+ denotes a fraud and – a genuine  transaction.  To  cope  

with  the  time-variant  nature  of  the transaction  stream,  

a  classifier  K  is  updated  (or  newly retrained) every day. 

In particular ,we denotebyKt−1 the classifier that is trained 

on supervised transactions available up to day t−1. The 

classifier Kt−1 is then used to process the set of 

transactions T t that have been authorized at day t. We 

denote by PKt−1(+|xi) the posterior of Kt−1, namely,  the  

probability  for  xi  to  be  a  fraud  according  to  Kt−1. 

Investigators check only few high risk transactions. Thus, 

we model alerts  as  the  k-most  risky transactions, namely 

At  ={  xi  ∈Tt  s.t. r(xi)≤k} (1) where r(xi) ∈{ 1,...,|Tt|} is 

the rank of xi according to PKt(+|xi), and k > 0 is the 

maximum number of alerts that can be checked by 

investigators. 2 As discussed in Section II-A.5, 

investigators contact the cardholders and provide 

supervised samples to the FDS in the form of feedbacks. In 

particular, feedbacks include all recent transactions from 

the controlled cards, which we model as Ft ={ (xi, yi) s.t. xi 
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is from cards(At)} (2) where cards(At) denotes the set of 

cards having at least a transaction in At. The number of 

feedbacks, i.e.,|Ft|, depends on the number of transactions 

associated with the k controlled cards. After a certain 

verification latency, the labels  of  all  the  transactions  are  

provided  to  the  FDS,  since,  as discussed in Section II-C, 

non disputed transactions are considered genuine. For the 

sake of simplicity, we assume a constant verification 

latency of δ days, such that at day t, the labels of all the 

transactions authorized at day t−δ are provided. We refer to 

these as delayed  supervised samples Dt−δ ={ (xi, yi), xi 

∈Tt−δ}. (3) Note that Ft−δ  ⊂Dt−δ since transactions at 

day t−δ obviously include those that have been  alerted.  

Fig.  2  illustrates  the  different  types  of  supervised 

information available in an FDS. It is worth mentioning 

that, despite our formal description includes several aspects 

and details that have been so far ignored in the fraud-

detection literature, this is still a simplified model. In fact, 

alerts in a real-world FDS are typically raised online while 

transactions are being processed, without having to  rank  

all  transactions  in  Tt.  Similarly,  the  delayed  supervised 

couples do not come all at once, as each disputed 

transactions might take less (or possibly more) than δ days. 

Notwithstanding, we deem that our formulation takes into 

account the aspects of a real-world FDS that are the most 

important ones from a learning perspective, which include 

alerts, alter–feedback interaction, and verification 

latency. We further comment that in principle, since the 

classifier analyzes each feature vector xi independently, it 

does not alert cards receiving several risky transactions 

until any of these enters in the pool  of  the  alerts  (1).  

However,  these  situations  are  particularly relevant  for  

investigators,  and  can  be  handled  either  by  suitable 

scoring rules or feature augmentation, adding for instance 

, a component  that  keeps  track  of  the  scores  of  recent  

transactions. Fraud-detection performance can be 

conveniently assessed in terms of the alert precision Pk(t) , 

which is defined as Pk(t)= |TPk(t)| k (4) where TPk(t) ={ 

(xi, yi) such that xi ∈ At, yi = +}. Thus , P k(t) is the 

proportion of frauds in the alerts

 At. Though the classifier independently

 processes each feature vector, the

 alert precision would be more realistically 

measured in terms of cards rather than authorized 

transactions. In fact, multiple transactions in at from the 

same card should be counted as a single alert, since 

investigators check all the recent transactions when 

contacting cardholders. This implies that k depends on the 

maximum number of cards that the investigators can 

control. In this context, it is more informative to measure 

the detection performance at the card level, such that 

multiple fraudulent transactions from the same card count 

as a single correct detection. Thus, we introduce CPk, the 

card precision, as the proportion of fraudulent cards 

detected in the k cards controlled by the investigators 

CPk(t)= |C+ t | k (5) where C+ t denotes the set of 

fraudulent cards correctly detected at day t, namely, 

fraudulent cards having reported at least one alert. To 

correctly account for those days where less than k cards are 

fraudulent, we define the normalized  

CPk(t) as 

NCPk(t)= 

CPk(t)  (t) 

with  (t) = 1 if γt ≥kγ t k if γt < k  
where  (t) is the maximum value of CPk(t) and γt is the 
number of fraudulent cards at day t. From (6), we have that 

NCPk(t) takes values in the range [0,1], while CPk(t) is in 
[0,1] when γt > k and in [0,(γ t/k)] otherwise. For example,  
if at day t, we have correctly detected 40 fraudulent cards 

(|C+ t |=40) out of the k =100 cards checked by 

investigators, and the overall number of fraudulent cards is 

50 (γt = 50), then CPk(t) =0.4 while NCPk(t) 

=(0.4)/(0.5)=0.8. Note that, since  (t) does not depend on 

the specific classifierKt−1 adopted, when algorithm ―A‖ is 

better than algorithm ―B‖ in terms of CPk, ―A‖ is also 

better than ―B‖ in terms of NCPk. Moreover, because of 

verification latency, the number of fraudulent cards in day t 

(i.e., γt) can be only computed after few days, and therefore 

NCPk cannot be computed in real time. Thus, we 

recommend using CPk for assessing the running 

performance, while NCPk for backtesting, e.g., when 

testing different FDS configurations, as in Section VI-F. 
 

IV RELATED WORKS  
A. Data-Driven Approaches in Credit Card 

Fraud Detection Both supervised [8], [12], [15] and 
unsupervised [11], [14],  
[62] methods have been proposed for credit card fraud 

detection purposes. Unsupervised methods consist in 

outlier/ anomaly detection techniques that consider as a 

fraud any transaction that does not conform with the 

majority. Remarkably, an unsupervised DDM in an 

FDS can be directly configured from unlabeled 

transactions. A well- known method is peer group analysis 

[65], which clusters customers according to their profile 

and identifies frauds as transactions departing from the 

typical cardholder’s behavior (also see [52]). The typical 

cardholder’s behavior has also been modeled by means of 

self-organizing maps [51], [54], [71]. Supervised methods 

are by far the most popular in fraud detection, and exploit 

labeled transactions for training a classifier. Frauds are 

detected by classifying feature vectors of the authorized 

transactions or possibly by analyzing the posterior of the 

classifier [10].Several classification algorithms have been 

tested on credit card transactions to detect frauds, including 

neural networks [1], [12], [28], logistic regression [41], 

association rules [56], support vector machines [66], 

modified Fisher discriminant analysis [47], and decision 

trees [6], [24], [55]. Several studies have reported random 

forest (RF) to achieve the best performance [8], [20], [23], 

[63], [66]: this is one of the reasons why we adopt RFs in 

our experiments. 
 

Performance Measure for Fraud Detection  
The typical performance measure for fraud-

detection problems is the AUC [23], [24], [63]. AUC can 

be estimated by means of the Mann–Whitney statistic [48] 

and its value can be interpreted as the probability that a 

classifier ranks frauds higher than genuine transactions 

[37]. Another ranking measure frequently used in fraud 

detection is average precision [23], which corresponds to 
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the area under the precision– recall curve.While these 

measures arewidelyused in detection problems, cost-based 

measures have been specifically designed for fraud-

detection purposes. Cost-based measures [6], [47], [55] 

quantify the monetary loss of a fraud by means of a cost 

matrix that associates a cost with each entry of the 

confusion matrix. Elkan [29] shows that a cost matrix may 

be misleading because the minimum/maximum loss of the 

problem can change over time. To avoid this problem, 

normalized cost [66] or savings [6] are used to assess the 

performance with respect to the maximum loss. We argue 

that performance measures should also account for the 

investigators availability, as they have to check all the 

alerts raised by the FDS. Given the limited time 

investigators have, only a few alerts can be verified every 

day, and thus an effective FDS should provide investigators 

a small number of reliable alerts. This is the reason why we 

have introduced the alert-precision measures described in 

Section III. 
 

V. PROPOSED LEARNING STRATEGY  
It is important to stress that feedbacks (Ft) and 

delayed samples (Dt−δ) are very different sets of 

supervised samples. The first difference is quite evident: Ft 

provides recent up-to-date information while Dt−δ might 

be already obsolete for training a classifier that is meant to 

analyze transactions that will be authorized the next day. 

The second difference concerns the percentage of frauds in 

Ft and Dt−δ: while the class proportion in Dt−δ is heavily 

skewed toward the genuine class (see the proportions of 

frauds in Table I), the number of frauds in Ft actually 

depends on the detection performance of Kt−1, and high 

precision values might even result in Ft skewed toward 

frauds. The third, and probably the most subtle, difference 

is that supervised couples in Ft are not independently 

drawn, but are instead transactions from cards selected by 

Kt−1 as those that are most likely to have been frauded. As 

such, Ft is affected by SSB and any classifier trained on Ft 

would in principle learn how to label transactions that are 

most likely to be fraudulent.Thus, this might not be in 

principle precise on the vast majority of genuine 

transactions. Our intuition is that feedbacks and delayed 

samples are representative of two different classification 

problems, and thus they have to be separately handled. 

Therefore, our learning strategy consists in training a 

classifier exclusively on feedbacks (i.e., Ft) and a classifier 

exclusively on delayed supervised samples (i.e., Dt), and 

by aggregating their posterior probabilities when 

definingPKt(+|xi) to determine which transactions to alert. 

In the following, we detail the proposed learning strategy, 

where adaptation is performedaccordingto a passive 

approach  and the classifier is updated everyday on a batch 

containing the latest supervised couples available, either 

feedbacks or delayed samples. As in Section III, we 

consider a constant verification latency of δ days. In 

particular, to process the transactions authorized at day t + 

1, we rely on Q days of feedbacks {Ft,...,Ft−(Q−1)}, andM 

days of delayed supervised samples 

{Dt−δ,...,Dt−(δ+M−1)}, and these latter obviously include 

the feedbacks received in the same days (i.e., Fi ⊂ Di, i ≤ t 

− δ). Our learning strategy, which is detailed in Algorithm 

1, consists in separately training a classifier Ft on 

feedbacks Ft =TRAIN({Ft,...,Ft−(Q−1)}) (7) and a 

classifier on delayed supervised samples Dt 

=TRAIN({Dt−δ,...,Dt−(δ+M−1)}) (8) and to detect frauds 

by the aggregation classifier At, whose posterior 

probability is defined as 

PAt(+|x)=αPFt(+|x)+(1−α)PDt(+|x) (9) where 0 ≤ α ≤ 1 is 

the weight parameter that balances the contribution of Ft 

and Dt. Thus, the posterior probability of the classifier Kt, 

which alerts the transactions authorized at day t +1, is 

given by (9). The parameters Q and M that, respectively, 

define how many days of feedbacks and delayed 

supervised samples are used for training our classifiers 

have to be defined considering the overall number of 

feedbacks and the percentage of frauds. The training set of 

Ft approximately contains Q·|Ft|samples (a different 

number of feedbacks might be provided everyday) and this 

has to be a sufficiently large number to train a classifier 

addressing quite a challenging classification problem in 

high dimensions. However, Q cannot be made arbitrarily 

large, not to include old feedbacks. Similar considerations 

hold when setting M, the considered number of days 

containing delayed transactions, which have to includea 

sufficient number of frauds. Note that it is nevertheless 

possible to include in the training set of Ft feedbacks 

received before δ days (Q ≥ δ) and in particular in our 

experiments we used Q =δ+M. The rationale behind the 

proposed learning strategy is twofold. At first, by training a 

classifier (7) exclusively on feedbacks, we guarantee larger 

relevance to these supervised samples, which would be 

otherwise outnumbered by the delayed supervised samples. 

Second, we alert only those transactions that both Ft and Dt 

consider most probably frauds: this follows from the fact 

that, in practice, because of the large number of 

transactions processed everyday, alerts correspond to 

values of PAt that are very close to one. Let us recall that 

Ft, thus also At, is affected by SSB due to alert–feedback 

interaction. The only training samples that are not affected 

by SSB are the delayed supervised samples that, however, 

might be obsolete because of concept drift.  
A. Implementation of the Proposed Learning Strategy In 

our experiments, we implement the proposed learning 
strategy in two different scenarios, which correspond to 
two mainstream approaches for learning Dt. In the former, 
Dt is  
This article has been accepted for inclusion in a future 
issue of this journal. Content is final as presented, with the 
exception of pagination.  
8 IEEE TRANSACTIONS ON NEURAL NETWORKS 
AND LEARNING SYSTEMS  
Algorithm 1 Proposed Learning Strategy Require: M and 
Q, i.e., the number of days of delayed samples and 
feedbacks to use, respectively; Ft and Dt classifiers 
previously trained. Tt+1 ← transactions at day t +1. for 
each transaction x ∈Tt+1 do compute PFt(+,x) compute 
PDt(+,x) compute PAt(+,x) as in (9) rank Tt+1 according 
to PAt(+,·), generate alerts At. if update the classifier then 
Ft+1 ← feedbacks from cards alerted in At. Ft+1 ← 
TRAIN({Ft+1,...,Ft−Q}) Dt+1−δ ← transactions 
authorized at t +1−δ Dt+1 ← 
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TRAIN({Dt+1−δ,...,Dt−(δ+M)}) return Ft,Dt and At 
defined as in (9).  
a sliding window classifier as in [62] and [63], which we 
denote by WD t , while in the latter, Dt is an ensemble of 
classifiers similar to  
[36] and [23], which we denote by ED t . Both the 
classifiers WD t and ED t are trained on delayed samples 
{Dt−δ,...,Dt−(δ+M−1)}.  
However, while WD t employs a unique model to this 
purpose, ED t is an ensemble of M classifiers 

{M1,M2,...,MM} where each individual classifierMi is 

trained on delayed samples of a different day, i.e., Dt−δ−i,i 
=0,...,M−1. The posteriorPED t (+|x) is obtained by 

averaging the posterior probabilities of the individual 

classifiers, i.e., PED t (+|x)=( M i PMi(+|x))/(M). In the 
sliding window case, the proposed learning strategy 

consists in analyzing the posterior of the classifier AW t , 
which aggregates Ft and WD t , i.e., PAW t (+|x) =α 

PFt(+|x) + (1 − α)PWD t (+|x) as in (9). The benchmark to 

compare against AW t is the classifier Wt, which is trained 
on all the supervised transactions referring to the same time 

interval (thus  
mixing delayed samples and feedbacks): 

{Ft,...,Ft−(δ−1),Dt−δ,...,Dt−(δ+M−1)}. Similarly, in the 

ensemble case, the proposed learning strategy consists in 

analyzing the posterior of the classifier AE t , which is 

obtained by aggregating the posteriors of Ftand ED t , i.e., 

PAE t (+|x) = αPFt (+|x)+(1−α)PED t (+|x), as in (9). The 

benchmark to compare against AE t is the classifier Et, 

whose individuals are {M1,M2,...,MM,Ft}, and whose 

posterior PEt(+|x) is estimated by averaging the posterior 

probabilities of all its individuals, i.e., PEt(+|x) = ( M i 

PMi(+|x)+PFt(+|x))/(M +1). In both aggregations AW t and 

AE t , we setα = 0.5 to give equal contribution to the 

feedback and delayed classifier, as better discussed in 

Section VI-F. For all the base classifiers involved (i.e., 

Ft,WD t ,Wt,Mi,i = 1,...,M), we adopt RF   
[13] having 100 tree each. Each tree is trained on a 

balanced bootstrap sample, obtained by randomly 

undersampling the majority class while preserving all the 

minority class samples in the corresponding training set. In 

this way,each tree is trained onrandomlyselected genuine 

transactions and on the 

 

TABLE I DATA SETS 

same fraud examples. This under sampling strategy allows 

one to learn trees with balanced distribution and to exploit 

many subsets of the majority class. At the same time, the 

training times of these classifiers are reasonably low. A 

drawback of undersampling is that we potentially remove 

relevant training samples from the data set, though this 

problem is mitigated by the fact that we learn 100 different 

trees for each base classifier. 
 

VI CONCLUSION  
The majority of works addressing the fraud-

detection problem in credit card transactions (see [5], [23], 

[63]) unrealistically assume that the class of each 

transaction is immediately provided for training the 

classifier. Here we analyze in detail thereal-world working 

conditions of FDS and providea formal description of the 

articulated classification problem involved. In particular, 

we have described the alert–feed back interaction, which is 

the mechanism providing recent supervised samples to 

train/update the classifier. We also claim that, in contrast to 

traditional performance measures used in the literature, in a 

real-world FDS, the precision of the reported alerts is 

probably the most meaningful one, since investigators can 

check only few alerts. Our experiments on two vast data 

sets of real-world transactions show that, in order to get 

precise alerts, it is mandatory to assign larger importance to 

feedbacks during the learning problem. Not surprisingly, 

feedbacks play a central role in the proposed learning 

strategy, which consists intraining a classifier on feedbacks 

and a classifier on delayed supervised samples, and then 

aggregating their posteriors to identify alerts. Our 

experiments also show that solutions that lower the 

influence of feedbacks in the learning process (e.g., 

classifiers that mix feedbacks and delayed supervised 

samples or that implement instance weighting schemes) are 

often returning less precise alerts. Future work concerns 

the study of adaptive and possibly nonlinear aggregation 

methods for the classifiers trained on feedbacks and 

delayed supervised samples. We also expect to further 

increase the alert precision by implementing a learning to 

rank approach [46] that would be specifically designed to 

replace the linear aggregation of the posterior probabilities. 

Finally, a very promising research direction concerns 

semisupervised learning methods [16], [39] for exploiting 

in the learning process also few recent unlabeled 

transactions.  
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