International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 11, November - 2013

Creation of New Chaotic Super Random Number Generators for
Improving the Security of Chaotic Cryptography

'Rakesh Kumar Rai* ’Rakesh Kumar Prajapati”
I.T.S Engineering College, Greater Noida, India*

IJERTV 215110257

Abstract-The importance of random number generator
is very huge in the case of cryptography especially in the
case of chaotic cryptography where we are using chaotic
random numbers. We are generating random number
and apply those numbers on the encryption key. While
in this proposed paper we are trying to implements an
extra parameter so that this will improve the random
number generation process and with this procedure we
are able to increase the security of chaotic
cryptography. The introduction of this extra parameter
will change our logistic equation of random number
generator and after that a series of new random
numbers will generate and that will enhance the
security of chaotic cryptography.

Key Words: RNG, PRNG, TRNG, DBRG,
Cryptography.

I.Introduction

Random numbers are sets of digits (i.e., 0, 1, 2,3,
4,5, 6,7, 8,9) arranged in random order. Because
they are randomly ordered, no individual digit can be
predicted from knowledge of any other digit or group
of digits.

A random number generator is a process that
produces random numbers. Any random process
(e.g., a flip of a coin or the toss of a die) can be used
to generate random numbers. Stat Trek's Random
Number Generator uses a statistical algorithm to
produce random numbers. Random number
generators (RNGs) which have been used for only
military cryptographic applications in the past got
expanding usage for typical digital communication
equipment.

Almost all cryptographic  systems  require
unpredictable  values; therefore RNG is a
fundamental component  for  cryptographic
mechanisms. Generation of public/private key pairs
for asymmetric algorithms and keys for symmetric
and hybrid  cryptosystems  require  random
numbers. The onetime pad, challenges, nonces,
padding bytes and blinding values are created by
using truly random number generators (TRNGSs) [1].
Pseudo-random number generators
(PRNGS) generate bits in a deterministic manner. In
order to appear to be generated by a TRNG,

The pseudorandom sequences must be seeded from a
shorter truly random sequence [2].

A general way to design a chaotic stream cipher is
to generate a random bit stream using chaotic system.
In this paper, we propose a novel random bit
generator through the cross coupling of two chaotic
systems which can be used in the design of a new
chaotic stream cipher as well as in other engineering
applications, where random bit sequences are
required[3].

In recent years, a class of algorithms called chaotic
PRNGs has appeared in the literature. Those chaotic
PRNGs originate from physics. Their state s is a real
in the interval [0 : 1], their output bit is computed as a
function of the state. In the simplest case, if s > 0.5,
then the output is 1, else the output is 0. The state
transition function is a function f: [0 : 1] — [0 : 1]
that exhibits chaotic behavior. Because of this chaotic
behavior, the output is assumed to have desirable
statistical properties.

We have implemented several chaotic PRNGs and
computed their period experimentally. We found that
in all cases, the period lengths are much shorter than
expected. Thus, despite the desirable mathematical
properties of the chaotic functions, their use in
floating point based implementations of PRNGs
cannot be recommended. Our analysis of the logistic
map partly explains the experimental results.

The seed is a number that controls whether the
Random Number Generator produces a new set of
random numbers or repeats a particular sequence of
random numbers. If the text box labeled "Seed" is
blank, the Random Number Generator will produce
a differentset of random numbers each time a
random number table is created. On the other hand, if
a number is entered in the "Seed" text box, the
Random Number Generator will produce a set of
random numbers based on the value of the Seed.
Each time a random number table is created, the
Random Number Generator will produce the same set
of random numbers, until the Seed value is changed.

A random sequence of numbers can be viewed as a
sequence of independent uniform stochastic

www.ijert.org

3777



International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 11, November - 2013

IJERTV 215110257

variables. There are many ways to generate random
numbers (RNGs). The most common methods use
thermal actuations as a source. These systems
typically have man degrees of freedom. Computers
can generate pseudo-random numbers (PRNGs), but
most of these algorithms require a seed (a starting
value). This will eventually lead to repetition and has
the disadvantage that the same sequences will always
be generated from the same seed[4].

I1. Importance of random number generators

The technique of cryptography is always very
important  in  data  authentications,  entity
authentication, data integrity and confidentiality. In
recent years, the cryptographic schemes have
suggested some new and efficient ways to develop
secure encryption. These schemes have typical
structure which performed the permutation and the
diffusion stages alternatively. However, most of
algorithms be faced with some problems such as the
lack of robustness and security. The random number
generators are intransitive in cryptography for
generation of cryptographic keys, allegorically, secret
keys utilized in symmetric cryptosystems and large
numbers is intransitive in asymmetric cryptosystems
because of unpredictable, should better be generated
randomly.

Random number generators can be classified into
three classes which are pseudorandom number
generators (PRNGS), true random number generators
(TRNGs) and hybrid random number generators
(HRNGs). PRNGs use deterministic processes to
generate a series of outputs from an initial seed state.
TRNGs use of non-deterministic source (i.e., the
entropy source), along with some processing function
(i.e., the entropy distillation process) to generate the
random bit sequence.

Random number generators (RNGs) are useful in
every scientific area which uses Monte Carlo
Methods [5].1t is difficult to imagine a scientific area
where Monte Carlo methods and RNGs are not used.
Extremely important is the application of RNGs in
cryptography for generation of cryptographic keys
and random initialization of certain variables in
cryptographic protocol.

I11.Randomness in Cryptography

A pseudorandom number generator (PRNG), also
known as a deterministic random bit
generator (DRBG) is an algorithm for generating a
sequence of humbers that approximates the properties
of random numbers. The sequence is not
truly random in that it is completely determined by a
relatively small set of initial values, called the
PRNG's state, which includes a truly random seed.
Although sequences that are closer to truly random
can be generated using hardware random number
generators, pseudorandom numbers are important in
practice for their speed in number generation and
their reproducibility, and they are thus central in
applications such as simulations (e.g., of physical
systems  with  the Monte  Carlo  method),
in cryptography, and in procedural generation. Good
statistical properties are a central requirement for the
output of a PRNG, and common classes of suitable
algorithms include linear congruential
generators, lagged Fibonacci generators, and linear
feedback shift registers. Cryptographic applications
require the output to also be unpredictable, and more
elaborate designs, which do not inherit the linearity
of simpler solutions, are needed. More recent
instances of PRNGs with strong randomness
guarantees are based on computational hardness
assumptions, and include the Blum Blum
Shub, Fortuna, and Mersenne Twister algorithms.

One tries to apply this notion to generate pseudo-
random number generators (PRNGs) because random
numbers are widely used not only in cryptography
and Monte Carlo applications but also in less obvious
applications (Pecora et al. 1990; L’Ecuyer 1994;
Kocarev & Parlitz 1995; Hidalgo et al. 2001;
Fernandez et al. 2003). We mention just a couple of
them. (i) In spread spectrum techniques, a binary
signal is mixed with a random number sequence, to
spread the spectrum over a wider frequency range.

Using different random number sequences, it is
possible to share a communication channel among
several users (Mazzini et al. 1997; Dinan & Jabbari
1998; Shan et al. 2006; De Micco et al. 2007).
Reduction of electromagnetic interference is another
important benefit of the spread spectrum effect (Setti
et al. 2000; Callegari et al. 2002). (ii) Consider a low-
frequency signal immersed in a high frequency
digital noise. Sampling at time intervals defined by a

www.ijert.org

3778



IJERTV 215110257

random number sequence, the resultant signal
becomes filtered without using any coil or capacitors
that are expensive, especially in power systems.

Truly random numbers are not attainable from
computers, and it is unlikely that we will ever be able
to get them from °‘natural’ sources, since one
commonly assumes that any system is governed by
underlying physical rules and consequently it is
deterministic. A successful strategy to build up a
PRNG is to start with the time series of a simple
nonlinear chaotic map and to apply to it an adequate
randomizing procedure so as to ‘heighten/boost’ its
stochastic nature. Such strategy requires a
quantitative evaluation of the improvement achieved
after effecting the procedure. Gonzalez et al. (2005)
used the statistical complexity measure originally
proposed by Lépez-Ruiz et al. (1995) and later
modified by Lamberti et al. (2004) to quantify the
effectiveness of such randomizing modus operandi
when applied to a Lorenzian chaotic system. It was
also shown there that a widely employed course of
action—the mixing of two chaotic signals—is not
effective in this respect, contrary to what one might
expect.

A new pseudo-random number generator (PRNG)
based on a modified logistic map was proposed by
Liu [6]. Based on this PRNG, a chaotic stream cipher
was designed. Further, a chaotic random number
generator was developed by Wang et al. [7] and
realized it by an analog circuit. In 2006,
Wang et al. [8] proposed a pseudo-random number
generator based on z-logistic map, where the
binary sequence through the chaotic orbit was
realized under finite computing precision.

IV.Super Random Number Generator

In the number generation process initially we are
generating numbers using logistic map
function and this Logistic map is perhaps the simplest
example of a discrete chaotic dynamical
system that exhibits chaotic behavior. This map
models the population growth [9] and can be
expressed as:

X1 = AXn(1= Xp)

Where Xn and A are the initial condition and system
parameters respectively. Where ) varies from 1 to 4.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 11, November - 2013

But after that we want to increase the security of
our encryption algorithm for that purpose we are
introducing an extra parameter and this parameter
will be applied in random number generations and
these chaotic random numbers will applied in chaotic
cryptography to enhance our security at one level, so
that our encryption algorithm will be more secure as
compared to previously given logistic map random
number generation process.

So the introduction of this extra parameter can
generate new series of random numbers this series of
new numbers are known as chaotic random numbers
and the process of this number generation is known
as random number generation. So the logistic
equation in chaos theory is given below

f(Xn):4*Xn-l*(l'Xn-1)

and this logistic equation can generate a  series of
numbers from Xg,X1,Xo. . c.vvvvviveinninnnnn. Xn

X1 =f(Xo)  Similarly f(x,)=f(x,.1)

here X, is the first number and x, is the nth number

But we want to modify this equation and we
generate a new series of numbers these numbers are
known as series of super random numbers and the
technique for this purpose is known as super chaotic
number generators and for that purpose the equation
will modify for the next round. So modified for nth
random number will be given below

f(Xn)=F(Xn-1)*0+(Xn-1)*b

Xn is the nth number and b is an extra parameter
So now below is the detail of the random numbers
which are generated from both the equation

1. Results from unmodified equation
i.e f(X,) =f(Xn.0)

For input Xo=0.1 X3,X2,..+.vvuvvnnnn.n. ,X10
are following

0.09000000000000001
0.08190000000000001
0.07519239000000001
0.06953849448608791

www.ijert.org

3779



International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 11, November - 2013

0.06470289227069623 0.1277691979443516
0.060516428002502905 0.11973458011060908
0.05685418994432079 0.11265992746861916
0.05362179103009588 0.10638390377227734
0.05074649455682061 0.10077878423174194
0.04817128784701519 0.09574239616709067
0.09119216227441952
For input X0=0.2 X1,X2,. ..o eunveennnX10
are following For x=0.1 and b=1 we will get the same result as

0.16000000000000003
0.13440000000000002

like the previous equation which is a unmodified
equation so we can say that it this equation a general
condition for the above given equation.

0.11633664

0.1028024261935104 V.Conclusion

0.09223408736223825

0.08372696049069325 We have proposed a new super chaotic random

0.07671675657768315 number generator that will generate new set

0.07083129583788365 of random numbers those numbers are created

0.06581422336780986 by applying extra parameter so that the key will

0.06148271137030189 modified by those numbers and this key will

provide more better encryption and decryption

And the result from modified equation technique so that the security of chaotic

i.e £(Xn)=f(Xn-)*0+(Xp-1)*b

For X,=0.1 and parameter b=0.

cryptography will increase. So in this paper we are
able to get our objective as previously we have
proposed about an extra parameter.

X0, X et et ,X10 References
are following
[1] Jun B, Kocher P. 1999.The Intel random number generator.
Cryptography Research, Inc. white paper prepared for Inter Corp.
0.09000000000000001 [2] Menezes A.Van Oorschot P & Vanstone S. 1996. Handbook of
' applied cryptology. Boca Raton, FL: CRC Press.
0.08597500000000001
0.08229951234374999 [3] Sandhu G. S. & Berber S. 2009.Theoretical model, simulation
results and performances of a secure Chaos-based multi-user
0.07892966826320519 communication system. International Journal of Network Security,
0.0758286492162171 8(1): 25-30.
0.07296532945567154 [4] Wichmann B. & Hill I. 2006. Generating good pseudorandom
0.07031321874110555 numbers. Computational Statistics &
0.0655550262809923 [5] Niederreiter H. 1992. Random Number Generation and Quasi-
0.06341248170939905 Monte Carlo Methods. Philadelphia, PA: SIAM.
[6] Liu J. 2005.Design of a chaotic random sequence and its
For Xo=0.2 and application. Computer Engineering, 31(18):150-152.
X1iX2sX3se e eveieineniiniiii -X10 [7] Wang Y. Shen H& Yan X. 2005.Design of a chaotic random
are following number generator. Chinese Journal of Semiconductors,26(12):

0.16000000000000003
0.1476
0.13696956000000002

IJERTV 215110257

2433-2439.

[8] Wang L.Wang F. P& Wang Z. J. 2006.Novel chaos- based
pseudo-random number generator. Acta Physica Sinica,
55(8):3964-3968.

[9] May R.M. Nature 261 (1976): 450.

www.ijert.org



