
Creation of New Chaotic Super Random Number Generators for

Improving the Security of Chaotic Cryptography

1
Rakesh Kumar Rai*

2
Rakesh Kumar Prajapati

*

I.T.S Engineering College, Greater Noida, India*

Abstract-The importance of random number generator

is very huge in the case of cryptography especially in the

case of chaotic cryptography where we are using chaotic

random numbers. We are generating random number

and apply those numbers on the encryption key. While

in this proposed paper we are trying to implements an

extra parameter so that this will improve the random

number generation process and with this procedure we

are able to increase the security of chaotic

cryptography. The introduction of this extra parameter

will change our logistic equation of random number

generator and after that a series of new random

numbers will generate and that will enhance the

security of chaotic cryptography.

Key Words: RNG, PRNG, TRNG, DBRG,

Cryptography.

I.Introduction

 Random numbers are sets of digits (i.e., 0, 1, 2, 3,

4, 5, 6, 7, 8, 9) arranged in random order. Because

they are randomly ordered, no individual digit can be

predicted from knowledge of any other digit or group

of digits.

 A random number generator is a process that

produces random numbers. Any random process

(e.g., a flip of a coin or the toss of a die) can be used

to generate random numbers. Stat Trek's Random

Number Generator uses a statistical algorithm to

produce random numbers. Random number

generators (RNGs) which have been used for only

military cryptographic applications in the past got

expanding usage for typical digital communication

equipment.

 Almost all cryptographic systems require

unpredictable values; therefore RNG is a

fundamental component for cryptographic

mechanisms. Generation of public/private key pairs

for asymmetric algorithms and keys for symmetric

and hybrid cryptosystems require random

numbers. The onetime pad, challenges, nonces,

padding bytes and blinding values are created by

using truly random number generators (TRNGs) [1].

Pseudo-random number generators

(PRNGs) generate bits in a deterministic manner. In

order to appear to be generated by a TRNG,

The pseudorandom sequences must be seeded from a

shorter truly random sequence [2].

 A general way to design a chaotic stream cipher is

to generate a random bit stream using chaotic system.

In this paper, we propose a novel random bit

generator through the cross coupling of two chaotic

systems which can be used in the design of a new

chaotic stream cipher as well as in other engineering

applications, where random bit sequences are

required[3].

 In recent years, a class of algorithms called chaotic

PRNGs has appeared in the literature. Those chaotic

PRNGs originate from physics. Their state s is a real

in the interval [0 : 1], their output bit is computed as a

function of the state. In the simplest case, if s ≥ 0.5,

then the output is 1, else the output is 0. The state

transition function is a function f : [0 : 1] → [0 : 1]

that exhibits chaotic behavior. Because of this chaotic

behavior, the output is assumed to have desirable

statistical properties.

 We have implemented several chaotic PRNGs and

computed their period experimentally. We found that

in all cases, the period lengths are much shorter than

expected. Thus, despite the desirable mathematical

properties of the chaotic functions, their use in

floating point based implementations of PRNGs

cannot be recommended. Our analysis of the logistic

map partly explains the experimental results.

 The seed is a number that controls whether the

Random Number Generator produces a new set of

random numbers or repeats a particular sequence of

random numbers. If the text box labeled "Seed" is

blank, the Random Number Generator will produce

a different set of random numbers each time a

random number table is created. On the other hand, if

a number is entered in the "Seed" text box, the

Random Number Generator will produce a set of

random numbers based on the value of the Seed.

Each time a random number table is created, the

Random Number Generator will produce the same set

of random numbers, until the Seed value is changed.

 A random sequence of numbers can be viewed as a

sequence of independent uniform stochastic

3777

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110257

variables. There are many ways to generate random

numbers (RNGs). The most common methods use

thermal actuations as a source. These systems

typically have man degrees of freedom. Computers

can generate pseudo-random numbers (PRNGs), but

most of these algorithms require a seed (a starting

value). This will eventually lead to repetition and has

the disadvantage that the same sequences will always

be generated from the same seed[4].

II. Importance of random number generators

 The technique of cryptography is always very

important in data authentications, entity

authentication, data integrity and confidentiality. In

recent years, the cryptographic schemes have

suggested some new and efficient ways to develop

secure encryption. These schemes have typical

structure which performed the permutation and the

diffusion stages alternatively. However, most of

algorithms be faced with some problems such as the

lack of robustness and security. The random number

generators are intransitive in cryptography for

generation of cryptographic keys, allegorically, secret

keys utilized in symmetric cryptosystems and large

numbers is intransitive in asymmetric cryptosystems

because of unpredictable, should better be generated

randomly.

 Random number generators can be classified into

three classes which are pseudorandom number

generators (PRNGs), true random number generators

(TRNGs) and hybrid random number generators

(HRNGs). PRNGs use deterministic processes to

generate a series of outputs from an initial seed state.

TRNGs use of non-deterministic source (i.e., the

entropy source), along with some processing function

(i.e., the entropy distillation process) to generate the

random bit sequence.

 Random number generators (RNGs) are useful in

every scientific area which uses Monte Carlo

Methods [5].It is difficult to imagine a scientific area

where Monte Carlo methods and RNGs are not used.

Extremely important is the application of RNGs in

cryptography for generation of cryptographic keys

and random initialization of certain variables in

cryptographic protocol.

III.Randomness in Cryptography

 A pseudorandom number generator (PRNG), also

known as a deterministic random bit

generator (DRBG) is an algorithm for generating a

sequence of numbers that approximates the properties

of random numbers. The sequence is not

truly random in that it is completely determined by a

relatively small set of initial values, called the

PRNG's state, which includes a truly random seed.

Although sequences that are closer to truly random

can be generated using hardware random number

generators, pseudorandom numbers are important in

practice for their speed in number generation and

their reproducibility, and they are thus central in

applications such as simulations (e.g., of physical

systems with the Monte Carlo method),

in cryptography, and in procedural generation. Good

statistical properties are a central requirement for the

output of a PRNG, and common classes of suitable

algorithms include linear congruential

generators, lagged Fibonacci generators, and linear

feedback shift registers. Cryptographic applications

require the output to also be unpredictable, and more

elaborate designs, which do not inherit the linearity

of simpler solutions, are needed. More recent

instances of PRNGs with strong randomness

guarantees are based on computational hardness

assumptions, and include the Blum Blum

Shub, Fortuna, and Mersenne Twister algorithms.

 One tries to apply this notion to generate pseudo-

random number generators (PRNGs) because random

numbers are widely used not only in cryptography

and Monte Carlo applications but also in less obvious

applications (Pecora et al. 1990; L’Ecuyer 1994;

Kocarev & Parlitz 1995; Hidalgo et al. 2001;

Fernandez et al. 2003). We mention just a couple of

them. (i) In spread spectrum techniques, a binary

signal is mixed with a random number sequence, to

spread the spectrum over a wider frequency range.

 Using different random number sequences, it is

possible to share a communication channel among

several users (Mazzini et al. 1997; Dinan & Jabbari

1998; Shan et al. 2006; De Micco et al. 2007).

Reduction of electromagnetic interference is another

important benefit of the spread spectrum effect (Setti

et al. 2000; Callegari et al. 2002). (ii) Consider a low-

frequency signal immersed in a high frequency

digital noise. Sampling at time intervals defined by a

3778

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110257

random number sequence, the resultant signal

becomes filtered without using any coil or capacitors

that are expensive, especially in power systems.

 Truly random numbers are not attainable from

computers, and it is unlikely that we will ever be able

to get them from ‘natural’ sources, since one

commonly assumes that any system is governed by

underlying physical rules and consequently it is

deterministic. A successful strategy to build up a

PRNG is to start with the time series of a simple

nonlinear chaotic map and to apply to it an adequate

randomizing procedure so as to ‘heighten/boost’ its

stochastic nature. Such strategy requires a

quantitative evaluation of the improvement achieved

after effecting the procedure. González et al. (2005)

used the statistical complexity measure originally

proposed by López-Ruiz et al. (1995) and later

modified by Lamberti et al. (2004) to quantify the

effectiveness of such randomizing modus operandi

when applied to a Lorenzian chaotic system. It was

also shown there that a widely employed course of

action—the mixing of two chaotic signals—is not

effective in this respect, contrary to what one might

expect.

 A new pseudo-random number generator (PRNG)

based on a modified logistic map was proposed by

Liu [6]. Based on this PRNG, a chaotic stream cipher

was designed. Further, a chaotic random number

generator was developed by Wang et al. [7] and

realized it by an analog circuit. In 2006,

Wang et al. [8] proposed a pseudo-random number

generator based on z-logistic map, where the

binary sequence through the chaotic orbit was

realized under finite computing precision.

IV.Super Random Number Generator

 In the number generation process initially we are

generating numbers using logistic map

function and this Logistic map is perhaps the simplest

example of a discrete chaotic dynamical

system that exhibits chaotic behavior. This map

models the population growth [9] and can be

expressed as:

Xn+1 = λXn(1− Xn)

Where Xn and λ are the initial condition and system

parameters respectively. Where λ varies from 1 to 4.

 But after that we want to increase the security of

our encryption algorithm for that purpose we are

introducing an extra parameter and this parameter

will be applied in random number generations and

these chaotic random numbers will applied in chaotic

cryptography to enhance our security at one level, so

that our encryption algorithm will be more secure as

compared to previously given logistic map random

number generation process.

 So the introduction of this extra parameter can

generate new series of random numbers this series of

new numbers are known as chaotic random numbers

and the process of this number generation is known

as random number generation. So the logistic

equation in chaos theory is given below

f(xn)=4*xn-1*(1-xn-1)

and this logistic equation can generate a series of

numbers from x0,x1,x2………………….,xn

x1 =f(x0) Similarly f(xn)=f(xn-1)

here x0 is the first number and xn is the nth number

 But we want to modify this equation and we

generate a new series of numbers these numbers are

known as series of super random numbers and the

technique for this purpose is known as super chaotic

number generators and for that purpose the equation

will modify for the next round. So modified for nth

random number will be given below

f(xn)=f(xn-1)*b+(xn-1)*b

xn is the nth number and b is an extra parameter

So now below is the detail of the random numbers

which are generated from both the equation

1. Results from unmodified equation

i.e f(xn) =f(xn-1)

For input x0=0.1 x1,x2,……………..,x10

are following

0.09000000000000001

0.08190000000000001

0.07519239000000001

0.06953849448608791

3779

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110257

0.06470289227069623

0.060516428002502905

0.05685418994432079

0.05362179103009588

0.05074649455682061

0.04817128784701519

For input x0=0.2 x1,x2,……….....x10

are following

0.16000000000000003

0.13440000000000002

0.11633664

0.1028024261935104

0.09223408736223825

0.08372696049069325

0.07671675657768315

0.07083129583788365

0.06581422336780986

0.06148271137030189

And the result from modified equation

i.e f(xn)=f(xn-1)*b+(xn-1)*b

For x0=0.1 and parameter b=0.5 x1,

x2,x3,……………………,x10

are following

0.09000000000000001

0.08597500000000001

0.08229951234374999

0.07892966826320519

0.0758286492162171

0.07296532945567154

0.07031321874110555

0.06784963120699389

0.0655550262809923

0.06341248170939905

For x0=0.2 and b=0.5

x1,x2,x3,……………………………..,x10

are following

0.16000000000000003

0.1476

0.13696956000000002

0.1277691979443516

0.11973458011060908

0.11265992746861916

0.10638390377227734

0.10077878423174194

0.09574239616709067

0.09119216227441952

 For x=0.1 and b=1 we will get the same result as

like the previous equation which is a unmodified

equation so we can say that it this equation a general

condition for the above given equation.

V.Conclusion

 We have proposed a new super chaotic random

number generator that will generate new set

of random numbers those numbers are created

by applying extra parameter so that the key will

modified by those numbers and this key will

provide more better encryption and decryption

technique so that the security of chaotic

cryptography will increase. So in this paper we are

able to get our objective as previously we have

proposed about an extra parameter.

References

[1] Jun B, Kocher P. 1999.The Intel random number generator.
Cryptography Research, Inc. white paper prepared for Inter Corp.

[2] Menezes A.Van Oorschot P & Vanstone S. 1996. Handbook of
applied cryptology. Boca Raton, FL: CRC Press.

[3] Sandhu G. S. & Berber S. 2009.Theoretical model, simulation
results and performances of a secure Chaos-based multi-user

communication system. International Journal of Network Security,

8(1): 25-30.

[4] Wichmann B. & Hill I. 2006. Generating good pseudorandom

numbers. Computational Statistics &
Data Analysis, 51 (3): 1614 -1622.

[5] Niederreiter H. 1992. Random Number Generation and Quasi-

Monte Carlo Methods. Philadelphia, PA: SIAM.

[6] Liu J. 2005.Design of a chaotic random sequence and its
application. Computer Engineering, 31(18):150-152.

[7] Wang Y. Shen H& Yan X. 2005.Design of a chaotic random
number generator. Chinese Journal of Semiconductors,26(12):

2433-2439.

[8] Wang L.Wang F. P& Wang Z. J. 2006.Novel chaos- based

pseudo-random number generator. Acta Physica Sinica,

55(8):3964-3968.

[9] May R.M. Nature 261 (1976): 459.

3780

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110257

