

Cost Estimates & Optimization of Queries

Distributed Databases

Ridhi Kapoor

Department of Computer Science & Engineering, Guru Nanak Dev University Amritsar, Punjab, India

Abstract--Query optimizers are critical to the efficiency of modern

relational database systems. If a query optimizer chooses a poor

query execution plan, the performance of the database system in

answering the query can be very poor. This paper describes the

focus given on computing and analyzing the performance of joins,

semi joins and Cartesian product via comparative analysis of

Processing cost, Communication cost and Total cost in distributed

database system. A component in the database management

system called the Query Optimizer decides how to pick an efficient

execution plan. For this the optimizer deploys cost-based

optimization. Approximate execution costs are calculated for

various plans, and one with low cost is chosen. The execution cost

is a weighted function of the system resources needed to execute

the query. Examples of such system resources are the CPU time or

the number of I/O operations. In order to come up with reasonable

cost estimates, the optimizer needs to estimate the size of

sub-queries. This is important, for instance, when choosing the

join order of the relations. To estimate the sizes of sub-queries, the

optimizer needs to know the selectivity of the query predicates.

Index Terms —Cost Based Query Optimizers, Distributed

Databases, Query Optimization, Response Time, Selectivity,

Total Time.

I. INTRODUCTION

 A DDB query is answered by joining tables [8]. In a

distributed database, tables reside on different nodes of a

computer network; to join tables, data must be moved

between nodes. Consequently, the cost of a distributed query

includes a processing cost (the joins) and a

transmission/communication cost [1]. In a query, the order of

joins is not specified. Distributed query optimization

involves finding an efficient order for the required joins.

Before moving a large table across the network, it may be

possible to reduce its size by restricting it to just those rows

that are related to the table to which it will be joined.

However, to effect this reduction, another table must be sent

across the network and an additional join performed. As the

number of tables in a query increases, the number of possible

join schedules grows at least exponentially; an exhaustive

search for the minimum cost schedule is not feasible.

Optimizer needs the selectivity of a query, i.e., the number of

records that qualifies to a query, in order to generate an

efficient query execution plan. The query optimizer can

generate several execution plans for the same query. To

choose the execution plan having the response time close to

the optimal, the optimizer is based on a cost model.

Distributed Database [2]: - A database that consists of two

or more data files located at different sites on a computer

network.

Query consists of operations on tables. Most commonly

performed operations are

Select (σ): Returns tuples that satisfy a given predicate

Project (π): Returns attributes listed

Join (⋈): Returns a filtered cross product of its arguments

Set operations: Union, Intersect, and Difference

Query Processing:-It is defined as the activities involved in

parsing, validating, optimizing and executing a query. The

main aim of query processing is to transform a query written

in high level language(eg.SQL) into efficient and correct

strategy expressed in low level language(implementing

low-level language).

High level user query -> Query Processor ->low-level

data manipulation commands.

Query Optimization:-It refers to the process by which the

best execution strategy for a given query is found from a set

of alternatives. Query optimization is a part of query

processing. The main aims of query optimization are to

choose a transformation that minimizes resource usage,

reduce total execution time of query and also reduce response

time of query.

Cost Based Query Optimization:-It assigns an estimated

"cost" to each possible query plan, and chooses the plan with

the smallest cost [1]. Costs are used to estimate the runtime

cost of evaluating the query, in terms of the number of I/O

operations and CPU requirements, and other factors

determined from the dictionary. The search space can

become quite large depending on the complexity of the SQL

query.

II. DISTRIBUTED COST MODEL

One of the hardest problems in query optimization is to

accurately estimate the costs of alternative query plans.

Optimizers cost query plans using a mathematical model of

query execution costs that relies heavily on estimates of the

cardinality, or number of tuples, flowing through each edge

in a query plan [3]. Cardinality estimation in turn depends on

estimates of the Selection factor of predicates in the query.

An optimizer cost model includes cost functions to predict

the cost of operators, and formulas to evaluate the sizes of

results.

Cost function (in terms of time) I/O cost + CPU cost +

Communication cost [7].

 Total Time/Cost It is the sum of all times/cost.

Generally—

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost ∗ no. of instructions

I/O cost = unit disk I/O cost ∗ no. of disk I/Os

Communication cost = message initiation + transmission

Tcost (queries) =Ncost+Ccost

Where, Tcost is Total cost, Ncost is Network Processing Cost

and Ccost is the Communication Cost in Distributed

Processing environment.

 Ncost (Processing Cost) can be calculated as:-

3275

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60819

Ncost= (local*localc) + (remote1*remote1c) +

(remote2*remote2c) + (remote3*remote3c) +

(remote4*remote4c) +…. + (remoteN*remoteNc).

Where localc, remote1c, remote2c, remote3c… remoteNc is

the processing cost of local, remote1, remote2,

remote3 …remoteN site resp.

 Ccost (Communication Cost) can be calculated as:-

Ccost=(local*clocal)+(remote1*cremote1c)+(remote2*crem

ote2c)+(remote3*cremote3c)+(remote4*cremote4c)+…. +

(remoteN*cremoteNc).

Where clocal, cremote1c, cremote2c, cremote3c…

cremoteNc is the communication cost of local, remote1,

remote2, remote3 …remoteN site resp.

 Response Time Elapsed time between the

initiation and the completion of a query

Response time = CPU time + I/O time + communication time

CPU time = unit instruction time *no. of sequential

instructions

I/O time = unit I/O time *no. of sequential I/Os

Communication time [5] = unit msgs initiation time * no. of

sequential msgs + unit transmission time * no. of sequential

bytes.

III. SELECTIVITY

The selectivity factor is defined as the ratio of number of

rows of result to the cardinality of the base table.

Selectivity factor of each operation for relations

For joins

Join Selectivity Factor is defined as the ratio of the number of

rows participating in the Join to the total number of rows in

the Cartesian product of relations.

SF (R, S) =card(R S)/card(R) * card(S)

For semi joins

Fraction of R-tuples that join with S-tuples. An

approximation is the selectivity of A in S

SF⊳<(R ⊳<A S) = SF⊳< (S.A) = card (πA

(S))/card(dom[A])

For Cartesian product

It is also called CROSS PRODUCT or CROSS JOIN. It

combines the tuples of one relation with all the tuples of the

other relation.

Card(R × S) = card(R) *card(S)

IV. RELATED WORK

Doshi, Pankti, and Vijay Raisinghani (Advances in

Computing, Communication, and Control. Springer

Berlin Heidelberg, 2013. 1-13)"k-QTPT: A Dynamic

Query Optimization Approach for Autonomous Distributed

Database Systems.” has discussed Query processing in a

distributed database system requires the transmission of data

between sites using communication networks. Distributed

query processing is an important factor in the overall

performance of a distributed database system. In distributed

query optimization, complexity and cost increases with

increasing number of relations in the query. Cost is the sum

of local cost (I/O cost and CPU cost at each site) and the cost

of transferring data between sites. Mariposa, Query Trading

(QT) and Query Trading with Processing Task Trading

(QTPT) are the query processing algorithms developed for

autonomous distributed database systems. However, they

incur high optimization cost due to involvement of all nodes

in generating optimal plan. We present our solution k-QTPT,

to reduce the high optimization cost incurred by QTPT. In

k-QTPT, only k nodes participate in generating optimal plans.

Golshanara, Ladan, Seyed Mohammad Taghi Rouhani

Rankoohi, and Hamed Shah-Hosseini(Knowledge and

Information Systems (2013): 1-32)"A multi-colony ant

algorithm for optimizing join queries in distributed database

systems."In this paper, for the first time, a multi-colony ant

algorithm is proposed for optimizing join queries in a

distributed environment where relations can be replicated but

not fragmented. In the proposed algorithm, four types of ants

collaborate to create an execution plan. Hence, there are four

ant colonies in each iteration. Each type of ant makes an

important decision to find the optimal plan. In order to

evaluate the quality of the generated plan, two cost models

are used—one based on the total time and the other on the

response time. The proposed algorithm is compared with two

previous genetic-based algorithms on chain, tree and cyclic

queries. The experimental results show that the proposed

algorithm saves up to about 80 % of optimization time with

no significant difference in the quality of generated plans

compared with the best existing genetic-based algorithm.

Mishra, Ms Anju, Ms Gunjan Nehru, and Mr

AshishPandey(International Journal of Engineering 1.6

(2012))"Dynamic Programming Solution for Query

Optimization in Homogeneous Distributed Databases"-The

“multiple query optimization” (MQO) tries to reduce the

execution cost of a group of queries by performing common

tasks only once, whereas traditional query optimization

considers single query at a time An optimal dynamic

programming method for such high dimensional queries has

the big disadvantage of its exponential order and thus we are

interested in semi-optimal but faster approaches.

Stone, Paul D., et al. "Query Execution and Maintenance

Costs in a Dynamic Distributed Federated Database."
submitted to ACITA (2012) - The cost of query evaluation

in a Dynamic Distributed Federated Databases (DDFD)

depends on the topology connecting the database nodes

together. Different topologies provide opportunities to adopt

a variety of query optimization strategies and topology also

influences the efficiency of these strategies. It describes a

number of strategies to optimize join queries and then derive

cost estimation formulae. The costs of maintaining these

topologies are also formulated and compared. Costs formulas

are defined at a coarse grained level, using a small number of

parameters and derive only the dominant or average

behaviors of the queries and topologies considered. This

approach is intended to provide insights to likely

optimization candidates, leading to further refinement of the

models.

V. RESULTS AND ANALYSIS

I have performed query optimization using the MATLAB to

choose a good execution strategy for a given query [5]. It can

3276

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60819

20 40 60 80 100 120 140 160
0

50

100

150

Size

C
o
s
t

Join cost V/s Semijoin cost V/s Cartesian product

Cartesian product

Join cost

Semijoin cost

be observed from previous studies that MATLAB is usually

better in choosing a good execution strategy than a traditional

query optimization approach that uses a crisp cost model.

Using MATLAB we have explored method to establish a

good cost model [6][7]for Distributed Environment and by

investigating existing algorithms based on cost model. The

mathematical equations are easily modeled using MATLAB

interface which has proved helpful to save the time in cost

calculations. In this study DDBMS is developed using 1

Local and 4 Remote sites and the databases are selected

randomly by the system in order to make comparative

analysis of effect of JOINS, SEMI-JOINS and CARTESIAN

PRODUCT on query cost estimation and makes clear

justification that which is the best query operation to be

applied and also gives the clear view of effect of query

operations on Processing Cost, Communication Cost and

Total Cost.

Graphical Results

 JOINS v/s SEMI JOINS v/s CARTESIAN

PRODUCT

One of the interesting questions is when the query has to be

executed with Join, Semi Join and Cartesian product. The

selection of Join, Semi Join and Cartesian product in

distributed system directly depends upon the data

transmission from one site to another. In this study the major

fact that came out is that joins and semi-joins are more useful

than Cartesian product when small proportion of table is to be

retrieved and cost is to be reduced and also semi joins are

found more useful than join when the data transmission from

one site to another is more.

VI. CONCLUSIONS

Accurate cost estimation is very important in distributed

databases, because errors can have a huge impact on actual

execution cost. The cost-based approach generally chooses

an execution plan that is as good for large queries with

multiple joins or multiple indexes [10][11]. The cost-based

approach also improves productivity by eliminating the need

to tune database statements on our own. The most important

task for the CBO is to design an execution plan for an SQL

statement. The CBO takes an SQL statement and tries to

weigh different ways (plan) to execute it. It assigns a cost to

each plan and chooses the plan with the smallest cost. The

cheapest plan is the one that will use the least amount of

resources (CPU, Memory, I/O, etc.) to get the desired output.

VII. REFERENCES

[1] Mishra,Ms Anju,Ms GunjanNehru, and Mr

AshishPandey. "Dynamic Programming Solution

for Query Optimization in Homogeneous

Distributed Databases." International Journal of

Engineering 1.6 (2012).

[2] Liu, Mengmeng. "Efficient optimization and

processing for distributed monitoring and control

applications." Proceedings of the on

SIGMOD/PODS 2012 PhD Symposium. ACM,

2012.

[3] Xu, Zichen, Yi-Cheng Tu, and Xiaorui Wang.

"PET: reducing database energy cost via query

optimization." Proceedings of the VLDB

Endowment 5.12 (2012): 1954-1957.

[4] Golshanara, Ladan, Seyed Mohammad Taghi

Rouhani Rankoohi, and Hamed Shah-Hosseini. "A

multi-colony ant algorithm for optimizing join

queries in distributed database systems."

Knowledge and Information Systems (2013): 1-32.

[5] Bausch,Daniel, Ilia Petrov, and Alejandro

Buchmann.

"Makingcost-basedqueryoptimizationasymmetry-a

ware." Proceedings of the Eighth International

Workshop on Data Management on New Hardware.

ACM, 2012.

[6] Chandramouli, Badrish, et al. "Accurate latency

estimation in a distributed event processing system."

Data Engineering (ICDE), 2011 IEEE 27th

International Conference on. IEEE, 2011.

[7] P.Stone,P.,P.Dantressangle,G.Bent,A.Mowshowitz,

A.Toce,andB.Szymanski.Relationalalgebra-coarseg

rained query cost modelsfor ddfds. In Proceedings

of the Fourth Annual Conference of ITA, 2010.

[8] Catania, Barbara, and Lakhmi Jain. "Advanced

Query Processing: An Introduction." Advanced

Query Processing. Springer Berlin Heidelberg,

2013. 1-13.

[9] G.Bent.Hyperd: Analysis and performance

evaluation of a distributed hypercube database

databases. In Proceedings of the Sixth Annual

Conference of ITA

[10] A. Toce, A. Mowshowitz, P. Stone, P.

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Size

C
o
s
t

Processing cost V/s Communication cost V/s Total cost

Processing cost

Total cost

Communication cost

3277

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60819

4

Dantressangle, and G. Bent. Hyperd: A hypercube

topology for dynamic distributed federated

databases.In Proceedings of the Fifth Annual

Conference of ITA, 2011.

[11] Görlitz, Olaf, and Steffen Staab. "Federated data

management and query optimization for linked open

data." New Directions in Web Data Management 1.

Springer Berlin Heidelberg, 2011. 109-137.

[12] Stone, Paul D., et al. "Query Execution and

Maintenance Costs in a Dynamic Distributed

Federated Database." submitted to ACITA (2012).

3278

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60819

