
Correctness of Implementation in Class Level

Testing by Attribute Equivalence

M. Malarvizhi

R. Sathya

Department of Computer Science Department of Computer Science

Sri Manakula Vinayagar Engineering College Sri Manakula Vinayagar Engineering College

Puducherry, India Puducherry, India

Abstract—In Software testing, the testing of object oriented

software is indispensable in recent years. In that, class level

testing is the mostly focused part among object oriented

abstractions. Since the oracle problem the main objective of

class level testing is to test the correctness of implementation of

operations. In the existing system, the test cases are tested by

observation using canonical specification. It covers each other.

Since, testing of these test cases increases the test inputs. To an

exhaustive level, these issue can be eliminated by considering

random testing in the place of above testing. In our proposed

system, instead of random testing we employ Adaptive Random

Testing (ART) algorithms and techniques that have been used

for more effectiveness. We intend a progressive conviction of

Adaptive Random Testing Algorithm in class level testing of

object oriented software. The new finding technique to ensure

the testing of attribute equivalence of operation can maximized

the test coverage.

Keywords—Software testing; Object Oriented Software;

Adaptive Random testing; Test case generation.

I. INTRODUCTION

 Testing is a natural process that should be performed

throughout the whole development process. Software testing

is a significant technique for estimating the clarity of a

software product. Into the Lifecycle of software development

software testing is also a time consuming and high cost

activity. The goal of testing is to detect software failures so

that defects may be determined and corrected. The aim of

software testing often entail examination of the code as well

as execution of that code in various environments and

weather as well as analyzing the aspects of code: does it do

what it is supposed to do and do what it needs to perform. In

the current culture of software development, a testing

organization may be displace from the development team.

The basic difficulty in testing is finding a test set that will

uncover the faults in the program. Exhaustively testing all

realistic input/output unit is excessively expensive. The

number of test cases increases exponentially with the number

of input/output variables. Subdivide the input domain into

comparable classes. The traditional approach and object

oriented approach is the two ways to improve the projects of

Software engineering development. The traditional approach

used in the development of procedural programming. Another

one used for object oriented projects such that object oriented

programming like c++ and Java. In dealing with complexity

the object oriented approach to software development has a

decided advantage over the traditional approach. Object-

oriented programming consists of several different levels of

abstraction; namely the algorithmic, class, cluster, and system

level. The testing of object-oriented and conventional

programming is similar at the algorithmic level and system

level. Testing at the class level and the cluster levels presents

new challenges. The class level is composed of the

interactions of methods and data that are encapsulated within

a given class. The object oriented paradigm is founded on

several important concepts such as inheritance, encapsulation,

dynamic binding, polymorphism etc. These concepts lead to

complex relationships among various program elements. The

specific aspect and properties of an object-oriented approach

extend resulting software systems more authenticate,

maintainable, and reusable. However, an object-oriented

testing also exhibits new challenges to software testing, as a

software system is now dignified of classes of objects and has

specific features not found in other programming paradigms.

 New testing problems arise from the following facts: (1)

Programs in an object-oriented system are not necessarily

executed in a predefined order; the sequence of invocation of

methods in a class is not specified explicitly; and there are

more variations in combining methods in the same class or

across different classes. (2) Furthermore, it is mandatory to

derive an algorithm for determining the observational

equivalence of the output objects so as to judge the

correctness of implementations based on class level testing

[6] [3]. Formal specifications are mathematically based

techniques whose purpose are to help with the

implementation of systems and software. That are used to

describe a system, to measure its behavior, and to aid in its

design by verifying key properties of interest through

rigorous and effective reasoning tools As major formal

method for defining the functional requirements of object

oriented software, the random testing is very important with

many benefits, including improvements in the automation and

effectiveness of test case generation. Black-box testing

methods, such as random testing and boundary value

analysis, can produce test data with high speed and low cost.

Random testing is a naïve method for generating test data,

and has been widely adopted by most popular testing tools. A

test case d is an element of input domain d D. A test case

gives a valuation for all the input variables of the program,

test cases are chosen randomly until a stopping condition is

1107

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041111

International Journal of Engineering Research & Technology (IJERT)

met. This might be the detection of a failure, the completion

of a predefined number of tests, or the expiration of a set time

limit. Respective random testing techniques and algorithms

select test inputs using a uniform distribution, while others

employ a non-uniform dispersion

II. RELATED WORKS

 The random testing, which is one of the most used

automated testing techniques in practice. The general purpose

of random testing is to generate as many test cases as possible

in such a way that they help uncover as many faults or hit as

many coverage targets as possible. The idea behind Random

Testing is to send random input to the system under test

(SUT) [15]. The input is generated from some distribution

over the input domain. The output is verified with an oracle

that determines if the system under test is acting as specified

and expected. The impossibility of exhaustiveness for any

non-trivial program, requiring testers to come up with

strategies for selecting inputs to be tested in the time

available. One possible strategy is random testing. It has

several advantages: comprehensive practical lack of bias,

applicability, relieve of enforcement in an automatic testing

tool, no suspended for selecting inputs out of the set of all

inputs. Several other strategies for input generation have been

proposed (symbolic execution, object fields, genetic

algorithm etc.), but none of these strategies reaches the level

of applicability and the speed of execution of random testing

[2].

A. Object Oriented Testing

 The testing process for object-oriented software is decisive

because these languages have been generally used in

developing progressive software systems. Numerous efficient

test input selection methods for object-oriented software have

been suggested state-of-the-art algorithms yield very poor

code coverage (e.g., less than 50%) on prominence software.

Therefore, one significant and yet dispute problem is to

generate expected input entities for recipients and arguments

that can reach better code coverage (such as branch analysis)

or help unveil faults. The Capture-based Automated Test

Input Generation for Objected-Oriented Unit Testing

(CAPTIG) [12]. It guided input and method selection that

increase code coverage. We anticipate our approach can

achieve higher code coverage with a reduced duration of time

with smaller amount of test input. Three input selection

approaches that collectively help achieve higher code

coverage with a small set of test cases. a) Simplified distance-

based Selection collects the farthest test input from the used

values with lower computation cost than ARTOO [9]. b) On-

demand Input Creation immediately generates needed inputs.

c) Type-based Selection. It capture class usage patterns that

reveal method invocation orders only applicable for capture-

based input generation technique. It need to be applied to

other input generation technique. The testing of object-

oriented systems with emphasis on developing a preliminary

taxonomy of faults it identifies a set of candidate testing

methods [11]. The testing process for object-oriented

programs is compared and contrasted with the traditional

advent of unit testing and integration testing. The change of

insistence for testing from the practice themselves, to the

testing of the interaction between practices via the data-

members of a class is accomplished by the employment of a

state-based technique which individually tests the description

and practices of the data-members [13]. The class testing, that

is, the complication of extracting test cases for desirably

implementing interactions among gather of classes. This

technique uses data-flow analysis for deriving a suitable set

of test case specifications for interclass testing and

automatically generate feasible test cases that satisfy the

derived specifications using symbolic execution and

automated deduction. To improve the implemented prototype

to reduce some of its limitations and on identifying additional

systems to be used as subjects for experimentation [16].

B. Test case generation

 The test case generation process provides the subtype

association to tolerate testing instruction on base classes to be

inherited by derived classes. The subtype relation is specified

along the formal specification and test model, and enhances

on the efficiency of testing using the class inheritance

hierarchy [14]. The object-oriented test tools based on the

technique cannot be described clearly, and various real time

applications not evaluated clearly. For generating random test

cases that have been experimentally demonstrated to have

greater fault-detection capacity than simple random testing. A

very low failure rate may not be effectively detected. It’s not

suitable for complex data structures as input [5]. ART is

based on various empirical observations showing that many

program faults result in failures in contiguous areas of the

input domain, known as failure patterns. The relationships

between the information available to the software tester is not

cleared. The effectiveness of testing strategies is simple [4].

The impossibility of exhaustiveness for any non-trivial

program, requiring testers to come up with strategies for

selecting inputs to be tested in the time available. ARTOO

reduces the number of tests generated until the first fault is

found [8]. It also uncovers faults that the random strategy

does not find in the time allotted. But the less performance

changes to the object distance calculation would affect

ARTOO’s fault finding ability. To select the test data with

high fault-revealing capability is a critical problem in the

field of software testing. This is addressed by the Two Point

Partitioning algorithm [7]. This method usually reveals the

potential faults with the large amount of test inputs, so its

cost-benefit is not very sound. The Centroidal Voronoi

Tessellations proposed for better test case coverage of the

input field [1].

The RBCVT method cannot be considered as an independent

approach since it requires an initial set of input test cases and

it leads cost effective system. A canonical description of a

class with actual implications, an absolute execution, meets

all the empirically comparable test cases if and only if it

fulfills all the empirically non-comparable test cases [10]. An

impossible task in software testing because of the need to

verify an infinite number of behavioral outcomes even for

one single test case. In this new work we proposed the new

Adaptive random Testing algorithm for test case generation.

1108

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041111

International Journal of Engineering Research & Technology (IJERT)

 III. PROPOSED SYSTEM

 In this work deals with existing system which describes

the object oriented testing. It poses the challenging issue of

test case generation for large scale input domain and

checking the correctness of implementation in the class level

testing. It described as an oracle problem. This includes 2

aspects that are testing the equivalent and non-equivalent

operations. The equivalence of terms can be tested for

checking of interactions among various operations. In the

class level testing of object oriented software describes in the

previous work the testing of all equivalent test cases if and

only if testing of all non-equivalent test cases. The canonical

specification of a class with proper imports a complete

implementation, the testing of observationally equivalent test

 cases and the testing of observationally non-equivalent test

cases cover each other. It has been pointed out, therefore, that

the testing of observationally non-equivalent test cases is

necessary and cannot be ignored even after exhaustive testing

of observationally equivalent test cases. The canonical

specification contains specified preconditions, it cannot cover

all the possible test inputs. Therefore it leads to the

minimized test coverage. The testing of attributively

equivalent test cases and attributively non-equivalent test

cases cover each other

which can be described in Fig.1. The

set of attributes in any class is finite and simple .The class

level testing utilizes the adaptive random testing for the

effective test case generation. The randomized test case

algorithm can be applied.

 The class level testing of object oriented software is an

oracle problem. It describes the testing of correctness of

implementation. The testing includes 2 aspects that are

testing the equivalent and non-equivalent ground terms

(sequence of operations).

Testing of equivalent terms

checking of interactions among operations in the terms

 In this section, the class can be analyzed from the source

code. Here we consider the object oriented or c++ source

code. The analyzing information should repository to reduce

the redundancy. The control flow graph of the analyzed class

can be resolved by the data-flow analyser

and

symbolic

executor. The data flow analyser consist of definitions which

using association. Symbolic executor comprised the

execution precondition. From these processes the test case

generator sequence can be identified. Then test cases can be

generated which can be shown in Figure 2.

Fig.1: testing of equivalence and non-equivalence cover each other.

 These problems can be addressed by the new Adaptive

Random Testing algorithm as follows:

Randomized test case algorithm

Consider the whole input as a test regions, the first test case

can be randomly choosed.

i. The current sequence test regions can be partitioned into

attributes.

ii. The test case which has the higher probability for

furthest away from the previously executed test case

can be selected as the next test case.

iii. If the test case is a failure-causing input, report fault

detection and terminate.

iv. Otherwise, partition the current test region into equal

size.

v. Again the same as (iii).

 In this section the proposed system is comprised the

following functions.

1109

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041111

International Journal of Engineering Research & Technology (IJERT)

Fig.2: Software architecture for the test case generator

The source code is consider as several classes. The member

function and the method sequence of each class is tested. The

sub class can be inherited from the each class. From the

derived sub class new attributes are identified. Finally the

interactions among those attributes to be tested.

 The major advantages of proposed system are 1) It reduce

the computational complexity while testing the large scale

input domain.2) by using the random technique automization

can be applied.3) these leads to improve the system

efficiency.4) this new adaptive random algorithm should

maximize the test coverage.

CONCLUSION

 Random testing is an auspicious technology that has been

proven to be emphatic, but whose intensive rely upon the

conditions of test algorithm condition. In this paper, it have

described Randomized Test Case Algorithm for checking the

correctness of implementation in Class Level testing of

Object Oriented Software by Attributive Equivalence. It have

proven that Randomized Test Case Algorithm is capable to

accomplish better coverage of complex, real Java application

units, while sustaining the most convenient aspect of

randomized testing, the proficiency to develop maximized

test case coverage directly. It have also shown that were able

to optimize the system efficiency and simplify the time

consuming. Randomized test case algorithm improves

Automization. In this way Adaptive Random Testing

increases the system efficiency. An attribute of an object is a

visible property of that object. Attributive Equivalence and

Attributive non Equivalence of object is tested in class level

testing of Object Oriented Software.

As future work, we will also study the application of

ARTOO to select test cases from Attributively Equivalence

by defining the object distance of nonequivalent terms with a

view to spreading the test cases evenly in the Attributive

Equivalence. This will alleviate the users from having to

assume the regularity hypothesis and make decisions on the

maximum numbers of iterations for cyclic paths.

REFERENCES

[1] Ali Shahbazi, Andrew F. Tappenden, James Miller, ―Centroidal

Voronoi Tessellations— A New Approach to Random Testing,‖ IEEE

TRANSACTIONS SOFTWARE ENGINEERING, VOL. 39, NO. 2,

FEBRUARY 2013.

[2] Anand S, Burke E, Chen T.Y, Clark J, Cohen M.B, Grieskamp W,
Harman M, Harrold M.J, and McMinn P, ―An orchestrated survey on

automated software test case generation,‖ Journal of Systems and

Software, 2013, doi: 10.1016/j.jss.2013.02.061
[3] Chan W.K, Tse T.H,‖ Oracles are Hardly Attain’d, And Hardly

Understood: Confessions of Software Testing Researchers,‖ The
Symposium on Engineering Test Harness 2013 co-located with The

13th International Conference on Quality Software (QSIC 2013)

[4] Chen T.Y; Kuo, F.C; Merkel, R.G; Tse, T.H ―Adaptive Random
Testing: The ART of test case diversity,‖ Journal of Systems and

Software, 2010, v. 83 n. 1, p. 60-66.

[5] Chen T.Y, Merkel R.G, Eddy G, and Wong P.K, (2004). ―Adaptive
Random Testing Through Dynamic Partitioning,‖ Proc. of the 4th Int’l

Conference on Quality Software (QSIC’04), IEEE CS Press, Braun-

schweig, Germany, pp. 79–86.
[6] Chen BH.Y, Tse T.H, Chan F.T, and Chen T.Y, ―In black and white: an

integrated approach to class-level testing of object-oriented programs,‖

ACM Transactions on Software Engineering and Methodology, vol. 7,
no. 3, pp. 250–295, 1998.

[7] Chengying Mao,‖ Adaptive Random Testing Based on Two-Point

Partitioning,‖ Informatica 36 (2012) 297–303.
[8] Ciupa I, Leitner A, Oriol M, and Meyer B, ―ARTOO: adaptive random

testing for object-oriented software,‖ Proceedings of the 30th

International Conference on Software Engineering (ICSE ’08), pp. 71–
80, ACM, 2008.

[9] Ciupa I, Leitner A, Oriole, and Meyer, ―Object distance and its

application to adaptive random testing of object-oriented programs,‖ In
RT ’06: Proceedings of the 1st International Workshop on Random

Testing (2006), ACM Press, New York, NY, USA, pp. 55–63.

[10] Huo Yan Chen, Tse T.H,‖ Equality to Equals and Unequals: A Revisit
of the Equivalence and Nonequivalence Criteria in Class-Level Testing

of Object-Oriented Software, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, TSE-2013-03-0084.R1
[11] Jane Huffman Hayes, ―Testing of Object-Oriented Programming

Systems (OOPS): A Fault-Based Approach‖ Science Applications

International Corporation.

[12] Jaygarl, Hojun, "Capture-based Automated Test Input Generation"

(2010).Graduate Theses and Dissertations.Paper 11894.

[13] Turner C.D, Robson D.J,‖ The Testing of Object-Oriented Programs‖
Computer Science Division School of Engineering and Computer

Science (SECS) University of Durham, Durham, England, Technical

Report: TR-13/92.
[14] Tse T.H, Zhinong Xu,‖ Test Case Generation for Class-Level Object-

Oriented Testing,‖ Proceedings of the 9th International Software

Quality Week (QW '96).
[15] Victor carlsson,‖ Adaptive Random Testing of a Trading System,‖

Master’s Thesis in Computer Science (30 ECTS credits) TRITA-CSC-

E 2011:067 ISRN-KTH/CSC/E--11/067--SE ISSN-1653-5715
[16] Vincenzo Martena, Alessandro Orso, Mauro Pezze,‖ Interclass Testing

of Object Oriented Software‖.

1110

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041111

International Journal of Engineering Research & Technology (IJERT)

