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 Abstract: The numbers of applications that use industrial and 

scientific radio frequency bands (ISB) increases every day, 

which creates a problem with the interference of Wireless 

Sensor Networks (WSN) that generally operate at these 

frequencies. The Cognitive Radio Sensor Network (CRSN) 

has been proposed as a promising solution for this problem. 

However, since the sensor nodes are energy saving devices, 

low energy RF spectrum recognition methods are required for 

CRSN. To respond to this need, we propose a new cooperative 

group monitoring scheme for CRSN (CC4C). The CC4C is 

based on constant observation, so it is simple and fast. The 

results of the simulation show that the CC4C causes less time 

delay monitoring and provides significant energy savings 

compared to gross power detection schemes, as well as one 

level monitoring schemes that do not perform Robust 

Detection. 

 

Keywords: Cognitive Radio Sensor Networks, Spectrum of 

Sensitivity, Opportunistic access to radio frequency spectrum, 

Gross observation, Sequential monitoring . 

I. INTRODUCTION 

In recent years, demand for applications that use 

wireless communication has increased exponentially. Most 

of the wireless traffic is generated by people, resulting in 

highly dynamic spectral activity that changes significantly 

in space and time. This trend also affects the ISM bands 

where WSNs usually work. Since ISM bands are 

unlicensed, the WSNs in these bands meet their low 

requirements. However, with a significant increase in 

environmental disturbance, the efficient use of 

conventional WSNs is becoming increasingly difficult 

every day. CRSN has been proposed as a promising 

solution to mitigate interference and increase spectrum use. 

CRSN is a distributed network of wireless cognitive 

radio node sensors that capture an event signal and jointly 

communicate their readings in dynamically accessible 

frequency bands in a multidirectional manner to finally 

meet the specific requirements of the application. [1]  

The CRSN paradigm introduces opportunities for 

opportunistic spectrum access (OSA) to WSN. However, 

OSA comes with the extra weight of the spectrum. In the 

first years of the development of WSN, adding the 

obligation to monitor the spectrum to nodes with limited 

resources will not make sense.  

However, wireless sensor nodes have experienced 

significant improvements over the years. The size of the 

memory has increased from several kilobytes to tens of 

megabytes, its processing capacities have increased from 

the 8-bit CPUs running in lower MHz 32-bit analog 

processors with dynamic clocks that can accelerate up to 

hundreds of  

MHZ and reduce their energy consumption through 

new energy-saving schemes [2]. 

The viability of CRSN has been investigated by 

several investigators [1], [3], [4]. In general, it is accepted 

that WSN may need radio cognitive abilities in the near 

future. As a result, there has recently been an increase in 

the CRSN studies [5], [6]. 

 

The most important problem that must be addressed 

for the implementation of the CRSN is the development of 

energy efficient spectrum surveillance techniques. There is 

a lot of research on the spectrum in the literature. However, 

studies related to radio spectrum surveillance for CRSN are 

limited. In [7] an average access scheme is proposed, 

which includes spectrum sensors. However, it does not use 

multiple channels. If the channel is recorded, the sensors 

are waiting for the next option. In addition, the monitoring 

scheme is simplified and takes high values of SNR. [8] 

Proposes a spectrum monitoring scheme that aims to 

minimize energy consumption due to the spectrum sensors. 

However, the proposed scheme is not practical because it 

requires nodes to solve complex optimization problems in 

order to obtain optimal thresholds for observation. In [9] 

we have proposed a narrow band detection scheme, a CSS 

specially designed for CRSN. The idea was to use the 

correlation of environmental sensor readings to support 

cooperative spectrum decisions. In particular, we have 

developed a censorship scheme that recognizes only low 

correlation nodes to reduce redundancies in cooperative 

surveillance. 

An important radio spectrum capture problem is to 

identify the most promising spectrum surveillance 

channels. Most of the existing solutions do not address this 

issue. Instead, they assume that the most promising 

channels are known or predetermined and focus on details 

of the specific detection scheme. PU activity patterns, 

however, have a significant impact on the spectrum sensor 

[10] [11] as the nodes have to perform the spectrum 

sensors again and again in different channels until an 

available channel is found. In the case of a regular CRN, 

nodes can afford to perform sensors sequentially until a 

free channel is detected. On the other hand, as the CRSN 

nodes are devices with limited energy consumption, it is 

imperative to keep monitoring time to a minimum. 
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Therefore, a mechanism must be created to assess the 

channels that are less likely to be occupied by the PU  

For this purpose, several researchers have proposed 

two research methods. The first stage consists of an 

approximate sensor that is fast but cannot be very precise. 

It is used to find channels that are more likely to be 

available. As the drilling in the wall is not exactly in the 

second stage using a more precise fixed sensor circuit for 

the final decision. The alternative is to continue using 

different channel filters until an available channel is found. 

As the final monitoring requires more time to monitor and, 

therefore, more energy, the two-tier approach is usually 

more efficient in terms of energy. 

The general approach in the two-step surveillance 

literature is to use energy detection as a coarse sensor 

method [12], [13], [14]. There are other approaches, but 

they are either specific to a PU network type such as LTE 

[15], or make some unrealistic assumptions as a predictable 

PU arrival process [16]. According to the best knowledge 

of the authors in the literature, a special spectrum control 

regime specifically developed for CRSN is not designed. 

In this article we present a new thick sensor circuit, 

CC4C. In the next section, we will give you details about 

the work of CC4C. In Section III, we describe the details of 

our results evaluation and simulation. Finally, in Section 

IV, we present our concluding observations  

 

II. EVALUATION AIR-BASED ASSESSMENT 

 

A. Motivation for an approximate study: The cost of 

detection increases as the probability of increasing the PU 

of a channel. Suppose the probability that a channel is 

available at any time is ρ. Let Εs denote the energy 

consumed during the observation of a channel. Then the 

probability of finding a free band in imitation is (1 - p) (i - 1) 

p. 

As the common and the blow are common, the total 

energy consumed is ɩ Es? It is, therefore, the expected E  

energy consumption can be written as E  =Es∑ᶿi=1 (1 - p) (i - 

1) p. The sum is the expected value of the geometric 

distribution, so Ets = Es = p. 

 

Therefore, the energy consumption expected for the 

observation is inversely proportional to the probability of 

deploying an available channel. This suggests that blind 

collection of sensation channels can have prohibitive 

energy costs, especially in the case of saturated spectrum. 

Another issue of the spectrum sensor is that the CR nodes 

have no means to determine whether the detected signal is 

a real PU signal or not. Therefore, even if the signal 

actually belongs to another CRN, it will be taken as PU 

activity. Given this and the expected increase in timely 

access to spectrum in the future, it is reasonable to assume 

that the spectrum will generally be overloaded to some 

extent. Therefore, CR nodes need a means to determine 

which channels are most likely to be available. For this, we 

offer a simple approximate sensor technique that provides 

approximate results for PU spectrum occupancy. Based on 

the results of this approximate detection, the nodes select 

the channels that are most likely to be available and the 

sensitivity to these channels. 

For a thick sensor circuit to be viable, it must be 

simple, fast and energy efficient. Otherwise, only the 

recurrent capture will be more preferable. Our scheme is 

based on Consecutive Probability Ratio Test (SPRT). It is 

shown in [17] that for a false alarm (PF) and lost 

probabilities (PM), SPRT is the detector with the smallest 

average sample size. Therefore, consistent monitoring is 

very appropriate for rapid monitoring. 

 

B. Sequential detection motivation :The basic idea of 

our SPRT-based spectral spectrum tracking scheme is that 

in the SPRT, the average number of samples required to 

detect PU depends on the SNR. As the SNR increases, PU 

detection can be done with fewer samples. So, if we want 

to detect a group of adjacent channels instead of a single 

channel, as the total number of active PUs in these 

channels increases, the total power of the PU signal 

increases. This means that the SNR increases with the 

number of active PUs. 

Now think of a case in which each node performs this 

approximate broadband sequential detection in different 

channel bands. 

It is clear that the average node that decides with the 

smallest number of samples has the most complete set of 

channels because the average SNR experienced by this 

node will be greater than the others. This is the main idea 

behind our approximate monitoring scheme. Next we 

present the theoretical details. 

 

C. Theoretical Context : The SPRT has two threshold 

values, A and B the ratio of the probability probabilities of 

the samples obtained, ƴ, formed as λ = p (ƴ|H1) = p (ƴ|H0). 

A new sample is being tested, ƴƙ 

while λ is between the upper (A) and the upper (B) 

threshold values. If the ratio falls below A, decide H0. If it 

exceeds B ,H1 is decided. Another alternative is to take 

  Then the lower and upper bounds 

will be  = ln (A) and b = ln (B).For the first time, we look 

at the following scenario. The received signal in both 

hypotheses, 

H0: y (t) = n (t) 

H1:y(t)=s(t)+n(t)                                     (1) 

where n (t) is the zero average, the white additive 

Gaussian noise with variability. s (t) is the combination 

of all the PU signals that are present across the broadband 

that we are trying to detect. We do not accept a special PU 

signal because the monitoring scheme must meet the 

detection criteria regardless of the specifications of the PU 

signal. Therefore, we analyze a common case in which it is 

assumed that all PU signals are a random Gaussian process 

with a zero average value and a variance a s2. In practical 

cases, most types of digital modulation have a zero average 

with a signal strength known as variation. In this way, our 

conjecture is significant. 

Similar assumptions have been made about several 

previous works in the literature (eg, [18]). The first step in 
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forming the SPRT is to calculate the thresholds for the 

desired PF =  and PM = [19], 

and B  

 

The first step in forming the SPRT is to calculate the 

thresholds for the desired values PF = α and PM = β [19],A 

≈ β (1-α) and B≈ (1-αβ).One property of successive tests is 

that performance the criteria, that is. The requirements of 

FP and PM can always be met 

if enough samples are taken However, the real the 

number of samples required to meet the criteria in each 

given species the time depends on the current SNR of the 

signal, 

PM at any time depends on the current SNR. The 

expected number of samples for decision making, also 

called ERL, below H0 and H1 for a with PF = α and PM = β 

given as [19], 

 

 
 

where σ2
0 and σ1

2 are the differences for a single 

sample in relevant hypotheses. Without loss of the 

ordinary, we Take the first sample, 

 

 

 
 

             (4) 

is the received signal the 

power of PU k and j is the number of active PUs within the 

group of groups we make a rough feeling. Finall y,  is a 

chi-square 

 

 
 

Distributed with As a result, when the number of 

active PUs in the sensor the broadband region is j, the ERL 

under the respective hypotheses are,  

 

 
 

 
 

Where  

denotes the value of AF when there is a total active PU 

of J of the group of channels detected, a and b are as 

defined in the beginning of this section. Eqn. 7 shows that 

ERL under H1 depends on βj, which depends on the active 

PU number, we calculate βj as follow Let Z0 be the sample 

area for which H0 is resolved  

 

 
 

where N is the number of samples taken to make the 

decision, or is the probability register and the probability 

ratio 

test

 
 

 

Therefore, Z0n is the area of the samples for which H0 

is decide with n samples, that is, 

 

 

 

 
Fig. 1. Expected run length for various number of active PUs. 

 

 
 

We see that Z0
n is the region within the n-dimensional 

hyper here. Z0
n can also be represented in a spherical 

coordinate system measured at n with coordinates 
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Z0n and Z0m are mutually exclusive kits for  m, 

therefore,and you can write as 

 

 
Same

 
 

Where 

 

 
Fig. 2. A sample scenario depicting overlapped sensing idea to 

overcome near-PU problem. 

 

Probability of permeability in the presence of an 

active PU f3j can be written as 

where dVn = dy1dY2 ··· dYn is the differential volume 

element. In spherical coordinates, dVn can be written as 

 
As found in (11), integral boundaries make up 

volume of the hyper sphere, therefore, integral in 

(20) cannot be written as  

 
r (·) is the gamma function given as r (x) = 

1000 tX-le-tdt.We evaluate the definitive integral, 

we have, 

 
where r (a, x) = Ixoo ta-1e-tdt is the upper 

incomplete gamma function. Thus, 

 

By placing f3j in Eqn 7 we can obtain ERL for active j 

PU. The relationship between the expected execution 

length and the number of active PUs is shown in Figure 1 

for PF = 0.01, PM = 0.01, an = 1 and as = 1, Le., 

Normalized Noise and SNR of 0 dB. As you can see 

clearly, the number of samples taken before making the 

decision gives us an approximate idea of how many of the 

channels in the sensitive broadband band are occupied. 

 

D. The problem of nearby PU:CC4C has a weak 

point. Because it depends on the common SNR be an 

indicator of the amount of active PUs if one of the PU is 

too close to the secondary network, CC4C can 

produce unwanted results For example, if PU in a 

group of the channels has twice the output power of 

another PU c another group of channels when only those 

two are active their respective groups of channels, means 

CC4C concludes that the PU group with the most power 

has a double number of the PU in this group where there is 

really only one active PU in each group 

One way to overcome this problem is to use average 

methods We offer two average methods. One is to choose 

two nodes that are farther away from each other to perform 

CC4C of the same group of channels, then collect the 

average of ERL informed by them. With the nodes selected 

in this way, PU which is close to one, will be further from 

the other 

the average results of these two nodes will soften the 

effect of close to the problem of PU 

Another method of averaging is the use of the previous 

method along with the selection of groups of channels in an 

overlapping manner. The idea is illustrated in a simplified 

case in figure 2 a total of five channels across the spectrum. 

Four knots CC4C group surveillance, each of which covers 

two channels, with an ERL superimposed channel for each 

channel is determined by averaging the ERL of the nodes 

that are running approximate sensor for this channel. For 

the example presented case if PU2 represents the near PU 

problem for node 2, node 1 will soften this effect as it is 

farther from PU and ERL of channel 2 is determined by 

averaging. The remaining problem is how to define the 

nodes They are further away from each other. Good 

convergence of 

this would be using spectral correlation specimens of 

the nodes. Due to the probability of greater shading the 

objects between two nodes increase as the distance 

increases,correlation specimens to track the farthest the 

pairs of nodes are more likely to be closer to zero. 

However, exchanging thousands of samples with multiple 

nodes each time Spectrum report is done to calculate this 

correlation is not realistic The information is huge, the 

number of emissions is n 2, unless the total number of 

nodes is n + 1, it is also present channel (s) to transmit this  

information is not known from the capture spectrum is still 

not fulfilled. However, in the CRSN 

Instead, we can use the idea we propose [9]. It should 

be used Correlations of environmental monitoring data 

instead of sharing Spectrum sensor data. Reading the 

sensors in the environment is already regularly sent to the 
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sink as a normal operation of the CRSN. All the neighbors 

listen to these reports. Therefore, in the CRSN, the nodes 

can monitor continuously its correlation with its neighbors, 

which can be used as evaluation to determine nodes that 

are far from anyone other. This makes the CC4C a good 

thick sensor scheme for CRSN. 

 
Fig. 3. Average delay vs PUs occupancy rate 

 
Fig. 4. Average delay vs SNR 

 
 

II. IMPLEMENTATION EVALUATION CC4C 

In this section, we present our results on the 

performance of the CC4C compared to the signaling 

schemes based on approximate signaling (ES). We do not 

include schemes that are specific to a particular type of PU, 

since these schemes will have additional information and 

will be specifically adapted to this PU, the comparison 

would not be fair. In the simulations, we use observation in 

two stages for both cases. We determine the threshold (and 

the number of samples for the case of ES) for the desired 

false alarm probability parameters, PFA = 0: 1 and 

probability of detection, PD = 0: 9. 

The effectiveness of finalization is not the objective of 

this book, so the method chosen is not very important, 

provided that the same method of final touch is used in 

both compared schemes. 

For both methods, we use energy detection with much 

stricter parameters, ie. PFA = 0:01 and PD = 0:99. We also 

include a case in which a coarse detection is not performed 

and the available channel is detected by repeated filtering 

of different channels until an available channel is found. 

We mark this case as NoCS in the figures. 

In both cases CC4C and ES, if an available channel is not 

found at the end of the observation stage, we assume that 

the node that has transmission data must wait until the next 

observation round. We assume that for each 1 ms interval 

an observation cycle is performed (for example, LTE has 

an interval of 1 ms). We note that the delay due to the 

spectrum sensor is the interval between the beginning of 

the approximate detection and the moment when the node 

detects a transmission channel. 

We use the parameters given in [20] for energy 

consumption. Namely, we use the energy consumed for the 

spectrum is Es = IrV ts, where Ir = 19: 7mA is the receive 

current, V = 3V is the supply voltage and ts is the total 

amount of time spent reading the spectrum, including both 

stages.We assume that the entire usable band has 40 

channels. 

The CC4C divides the spectrum into equally sized 

pieces and monitors approximately these pieces at the same 

time. To present a comparatively slow comparison, we 

assume that in the case of ES, multiple nodes make sudden 

changes simultaneously in different parts of the same size 

group. For both methods, we have received 8 nodes that 

perform an approximate monitoring at the same time every 

5 channels. In each simulation, we use a range of 100 

Spectrum Observation Circuits. We test the simulations 

1000 times and present the average value of the results. 

Figure 3 shows the delay due to observation 

patterns as the spectrum becomes full. We see the 

advantage that two-step monitoring schemes provide 

clarity. The one-step scheme causes up to 69.7% delay 

compared to CC4C. CC4C and ES have similar indicators 

with low levels of PU employment, but CC4C has fewer 

delays since the employment rate increases to an 

improvement of 20.75%. 

Figure 4 provides a comparison of the delay to 

increase the SNR values. The one-step observation scheme 

is extremely low in the low SNR regions, so we had to 

increase the graph to see the difference between CC4C and 

ES. However, with the SNR increase, the one-stage circuit 

works better and, in fact, is more advantageous for SNR 

values greater than 0.5, ie -3 dB. This is expected because 

the number of required samples that meet the detection 

criteria decreases rapidly as the SNR increases. At 

approximately -3 dB, the required number of completion 

samples is so low that repetitive detection causes less 

delay. However, keep in mind that getting the desired 

results in high SNR regions is easy. In real-life scenarios, 

CRs typically operate in low SNR regions and the real 

challenge is to meet the monitoring requirements for SNR 

values below -20 dB. In this low SNR region, CC4C causes 

less delay compared to other circuits with up to 10.3% less 

delay compared to ES. 

The comparison of energy consumption as an 

increase in the use of PU is shown in Figure 5. Here, too, 

there is a large difference between two-stage circuits and a 
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one-stage scheme. The one-step scheme consumes 119.4% 

more energy than CC4C. ES also consumes more power 

than CC4C, up to 49.89% difference between the two 

circuits. 

Figure 6 shows the energy consumption of the SNR 

increase. Again, the scheme of one level is implemented 

very poorly in the low SNR regions. CC4C works better 

than other schemes, allowing up to 85.95% conservation 

compared to ES. 

III. CONCLUSIONS 

An approximate spectrum monitoring scheme is 

presented for use in the two-stage spectrum observation 

method for CRSN, CC4C.The CC4C coincides with our 

previous proposal to fine-tune the CRSN, which 

completely forms a two-tier monitoring system, such as 

 

Fig. 5. Average energy consumption vs PUs occupancy rate 

 

Fig. 6. Average energy consumption vs SNR 

both methods use the correlations of the environmental 

readings of the sensor nodes and, once calculated for 

one, can be used by the other. The results of the 

simulation show that CC4C is significantly more 

energy efficient than other circuits. Comparing the 

delay due to the sensor spectrum, we see that the 

CC4C works best in the low SNR region where the 

observation requirements are the most difficult to 

achieve. 
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