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Abstract - Recent advancements in robotics and computer 

science are pushing the boundaries of exploration and our 

understanding of intelligent systems. These systems have the 

potential to interact with one another to solve difficult tasks, 

such as exploring a new planet or providing emergency 

assistance. Our research focuses on studying the interaction 

between an autonomous robot and drone and how they 

perceive and understand the environment to perform a given 

task. Utilizing advanced path-planning algorithms, image 

processing techniques, and various sensors for localization, the 

robot and drone can interact with the environment to solve 

generic tasks, such as finding an optimal path around a series 

of obstacles if the path is blocked utilizing a Greedy approach. 

Furthermore, the system is an adaptive learning model. The 

drone autonomously takes off and lands following the 

directions from the robot, increasing battery duration while 

providing the robot with additional sensory information. The 

robot and drone are two separate intelligent systems that work 

together solving different tasks utilizing the same dataset for 

learning and interacting. 

 
Keywords: Localization, Path-Planning, Cooperative-Agents, 

Navigation 

 

INTRODUCTION 

Autonomous systems are becoming more prevalent as 

technology continues to exponentially grow and deep 

networks are utilized to train machines to certain situations. 

In machine learning, researchers train the robot to generate 

statistical probabilities of an event given some input. 

Artificial intelligence takes it one step further using the 

results generated to make a decision to further advance the 

system. Therefore, an autonomous system needs to be able 

to reason about its environment using the data it has 

previously gathered to complete its goal. However, in the 

process, the autonomous system's framework should allow 

for unsupervised learning for a system is to be considered 

truly intelligent.  

 

 
Figure 1: Titan: Cooperative Robot-Drone Agents 

 
The following paper introduces Project Titan consisting of 

Atlas (All-Terrain Localizing Autonomous System) (robot) 

and Calypso (drone) that work together to solve a specific 

task as shown in Fig 1. Our work was greatly inspired by the 

revolutionary work done by [10,17]. [17] demonstrates a 

fully autonomous system capable of delivering medical 

supplies to a person in a mock-up disaster scenario [17]. [10] 

presents an approach for object avoidance utilizing the 

Wavefront technique mapping algorithm for path planning. 

Titan is a cooperative system that employs a robot as the 

central hub and a drone providing assistance. The drone is 

responsible for serving as a second pair of eyes for the robot. 

[17] utilizes an on-board computer on the drone to find 

obstacles and relay the information to the robot. [10] utilizes 

an overhead camera for path planning assistance. 

 

Dissimilar to [17], our system does not implement a feature 

to remove obstacles from the generated path utilizing a 

robotic arm demonstrated in [17]. Therefore, our system 

requires the robot to find a path around the obstacles if 

possible. Path planning is the challenging task of finding the 

shortest path through a series of obstacles once detected. The 

objects do not need to be recognized, but their position, 

orientation, and boundaries must be determined. There are 

multiple ways to achieve this task, including Canny edge 

detection and color thresholding. Once the objects are 

detected, their position relative to the robot and end goal 

must be determined to generate a sequential movement plan 

for the robot while checking for new environment variables. 

Many autonomous robots utilize stereo or monocular vision 
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on the robot to plan their movements, giving the robot a 

forward sense of direction. Object occlusion presents a 

problem for these algorithms as some objects may be 

blocking others that would interfere with the local path 

generated by the robot. In general, there are four steps in 

autonomous navigation summarized by [14]: 

1. Perceiving and modeling the environment. 

2. Localizing the vehicle within the environment. 

3. Planning and deciding the vehicle's desired motion. 

4. Executing the vehicle's desired motion. 

 
To remedy the problem of object occlusion and low 

confidence, the robot is accompanied by an autonomous 

drone that is responsible for mapping out terrain ahead of the 

robot. In addition to the forward-facing camera on the robot, 

the drone allows for a top-down aerial view of the terrain in 

front of the robot. The aerial perspective is preferred because 

the drone is capable of seeing all objects within its range of 

view. The robot's forward-facing camera only provides a 

limited range of viewing at an angle and essential depth 

information is lost. 

 

Our work specifically focuses on the cooperative interaction 

between two intelligent systems tasked with finding the 

optimal shortest path utilizing the data gathered by both. 

Image processing is done initially on the robot’s forward 

facing camera and supplemented by the drone’s ground 

camera if the robot is not able to generate a path to the end 

goal or a path with a low confidence is generated. If either 

of these conditions are present, the robot launches the drone 

to perform terrain localization and mapping, which is 

processed locally on the robot and fed to the central hub that 

makes the final decision. The drone is equipped with 

autonomous landing utilizing similar vision processing 

techniques.  

 

The following paper is organized as follows. Section II 

describes related work in path-planning, localization, and 

cooperative-agents. Section III provides details on the 

implementation of the robot and drone image processing and 

localization techniques. Section IV depicts the current 

system in practice followed by discussion and future 

research. 

 
LITERATURE REVIEW 

Intelligent systems encompass the challenges current and 

historic mathematicians, biologists, psychologists, and 

neuroscientists strive to understand and reverse engineer. 

The roots of artificial intelligence some contend spurred 

from the 1956 Dartmouth Summer Research Project on 

Artificial Intelligence (AI) where pioneers of the field met 

to discuss current and future research in the accelerating 

field [1]. The workshop was based on a proposal in 1955 that 

outlined research plans to study automatic computers, 

neuron nets, abstractions, and self-improvement [2]. The 

field of computer science and artificial intelligence has 

grown exponentially since its creation; however, the current 

challenges researchers face echo its origin. The specific 

work focused on in this paper encompasses these 

fundamental ideas in relation to an intelligent system. 

 

An intelligent system, according to our working definition, 

is any entity capable of reasoning about its environment 

abstractly, envisioning and creating solutions to problems, 

acting independently, but respective to other objects and 

entities in the environment. It is synonymous with the core 

concepts of an autonomous vehicle or system, which can be 

summarized as a ̀ `self-acting and self-regulating" and ̀ `able 

to operate in and react to its environment without outside 

control" [14]. Irrespective to the complexity of a given task, 

the autonomous robot should provide a generalized solution, 

whether it is completing the task or determining that the goal 

is unobtainable.  

 
The following literature focuses on relevant path planning 

algorithms. It is important to note the this review 

encompasses the most prevalent, although there are many 

more solutions. The most notable algorithms can be divided 

into two categories: deterministic/heuristic-based 

algorithms and probabilistic/sampling-based algorithms 

[13]. These algorithms are anytime algorithms which are 

``able to trade off running time and solution quality in 

domains where quick reactions are required" [13]. However, 

utilizing the solutions to sub-problems, better results are 

directly proportional to the amount of time given. For 

example, [14] introduces the ARA* algorithm that handles 

the drawbacks of traditional A* and [15] utilizes Rapidly-

exploring Random Trees (RRTs) to quickly generate a 

solution and continue to improve given enough time. In this 

paper our implementation assumes a static environment but 

has features to compensate for dynamic events in the 

environment, such as a person suddenly walking in front of 

the robot. 

 
A* and D* Variants 

The A* algorithm is a popular path finding algorithm 

designed to move from one position to another without 

colliding with an obstacle [18]. It ̀ `uses heuristic knowledge 

in form of approximations of the goal distances to focus the 

search and solve search problems much faster than 

uninformed search methods" [20]. It has been used in many 

autonomous projects, for example in [17]. Any change in the 

environment that would affect the graph forces the algorithm 

to recompute. However, Trovato notes that typically only a 

few nodes or arrows change. Exploiting this fact, the 

Differential A* algorithm was developed that was designed 

``to adapt the pre-exisiting stable solution-graph to the new 

changes and produce a new solution-graph to one that would 

have been generated from complete initialization and A*" 

[18]. The original A* algorithm has many modifications, 

including LPA* (Lifelong Planning A*) [19], which lead to 

the creation of D* Lite around 2002 [20]. D* Lite is similar 

to its predecessor D*, but different algorithmically as it 

``uses only one tie-breaking criterion when comparing 

priorities" [20]. 

 

Another branch from the original A* algorithm was the 

Focused D* Algorithm which is a ``full generalization of A* 

for dynamic environments" [21]. In an environment where 

variables may be changing, the A* algorithm needs to 
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recompute a path which can be computationally expensive. 

The autonomous system must either pause or risk running 

into an object on the wrong path. Stentz stresses the 

importance of rapid re-planning and discusses how ``The D* 

algorithm (Dynamic A*) plans optimal traverses in real-time 

by incrementally repairing paths to the robot's state as new 

information is discovered" [21]. It is important to note that 

the Focus Dynamic A* (D*) can ``achieve a speedup of one 

to two magnitudes(1) over repeated A*" [23].  

 

Furthermore, following the developments of D* and D* 

Lite, the Delayed D* algorithm was created to solve the 

same problems, but be significantly more efficient [22]. It is 

important to note that these algorithms can be application 

specific and many options should be considered before 

concrete implementation. For example, Koenig and 

Likhachev describe how LPA*, D*, and D* Lite have 

several disadvantages, such as it being ``difficult to prove 

them correct and that there are situations where they are 

slower than standard A*"[24]. Therefore, they proposed 

Adaptive A* around 2006 that ̀ `expands no more states than 

standard A* and thus cannot be slower than standard A* 

(except for a small number of bookkeeping actions)" [24]. 

Further work has been done, such as 3D Field D* that 

expends from D* and D* Lite algorithms ``that uses 

interpolation to produce less costly paths through 2D grids" 

[25]. Anavatti et al. provide a more detailed description of 

these dynamic re-planning algorithms [12]. 

 

Bug Algorithm Family 

The Bug algorithm family is a solution to navigating 

unknown environments without having to generate a map of 

the environment or store any information. An introduction 

to the family of Bug algorithms is described in [13]. A 

generic summary of a Bug algorithm is to move towards the 

end goal until an object is encountered. The robot follows 

the perimeter of the object (either left or right) keeping track 

of the optimal distance to the robot. Once a direct path 

towards the object is present, the robot will break from the 

object and head towards the end goal. The Bug algorithm 

family makes three assumptions about the robot [13]: 

 
1. The robot is a point object. 

2. The robot has perfect localization ability. 

3. The robot has perfect sensors. 

 

This approach eliminates the need to generate a map of the 

environment and instead focus on the most immediate points 

relative to the goal. The algorithm does have the ability to 

recognize if the goal is not reachable and will terminate [13]. 

 

Road Maps: Rapidly exploring random trees (RRT) 

Anavatti et al. introduce multiple road map methodologies 

and some of its models [12]. They defined a road map as ``a 

graph that finds connections between a robot's free spaces as 

a set of one-dimensional (1D) curves" [12]. Our research 

was interested in a specific type of road map known as a 

Rapidly exploring random trees (RRT). In the RRT model, 

``a planner beings at the start location and randomly expands 

a path, or tree, to cover the configuration space away from 

previously constructed vertices’, thereby allowing the 

planner to rapidly search large and high-dimensional spaces" 

[12]. 

 

A RRT contains similar proprieties to a probabilistic road 

map [26]. For example, ``both are designed with as few 

heuristics and arbitrary parameters as possible" which 

``tends to lead to better performance analysis and 

consistency of behavior" [26]. LaValle also describes the 

unique advantage of RRTs being that ``they can be directly 

applied to nonholonomic and kinodynamic planning" [26]. 

Further proprieties of RRTs can be read in [26]. This method 

can be further expanded by growing trees from the goal and 

start until common ground is discovered to create a link [27]. 

 

Potential Fields 

In potential fields, the robot can be viewed as a magnet being 

pulled to its counterpart (goal) while avoiding forces that 

push it away. The forces of the applied to the robot 

determine the respective direction of motion [12]. The robot 

is ultimately attracted to the end goal; however, it is 

influenced more by the local forces than the global forces 

[12]. A strong repulsive force, such as an object directly in 

front of the robot, will cause the robot to react drastically 

altering its course. [12] describes how local minima can 

prevent the robot from reaching its goal. Intricit details of 

these potential fields can be explored in [28,29]. 

 

Brief Localization Overview 

Localization and mapping of an unstructured, noisy 

environment has seen numerous advances; however, it 

remains a prominent challenge for current autonomous 

mobile robots. Research from Smith and Cheeseman in the 

late 1980s [4,5] created the foundation for SLAM or 

simultaneous localization and mapping that was further 

developed by Whyte et al. in the early 1990s [6-8]. 

Subsequent work has been done utilizing CML or 

concurrent mapping and localization [9]. 

 

In general, path planning algorithms strive to answer three 

questions [12]: 

 

1. Completeness - Does a solution exist? 

2. Optimality - Is finding the lowest cost path 

guaranteed? 

3. Time Complexity - How long does it take to find a 

solution? 

 

Following processing of the initial images taken by the 

robot, is an apparent solution exist, whether it is a global or 

local optimum? Depending on the situation, steps can be 

taken to achieve local end goals that will eventually 

converge to the global goal. If the global goal is not present 

within the image, the robot should try to determine a local 

solution and proceed in any movement necessary to reduce 

the distance to the goal. However, in some situations, a local 

solution may not be initially present. For example, consider 

a situation where a small wall or series of obstacles 

completely blocks the path of the robot to its end goal. There 

are multiple solutions to this problem. If the robot had access 
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to a vertical ground-facing camera, it could evaluate the 

environment from above. However, this is not applicable in 

practice in an unknown environment, such as planet 

exploration. 

 

Cooperative-Agents 

The benefits of exploiting the advantages of unmanned 

aerial vehicles (UAVs) and unmanned ground vehicles 

(UGVs) are gaining traction in the field of autonomous 

systems. Saska et al. outline the general consensus of UAVs 

and UGVs. UAVs are characterized by short-flight durations 

(approximately 10 minutes) and limited payloads [32]. 

Furthermore, UGVs are capable of running for extended 

periods of time and carrying heavy payloads. However, 

given the size of the UGV, ``their movement is limited by 

obstacles and terrain traversability" [32]. These cooperative 

systems are capable of exploration, providing search and 

rescue assistance, and much more. 

 

Generalized Purpose 

Saska et al. introduced a cooperative system capable of 

visiting places of interest [32]. The system consists of a 

primary UGV whose navigation is initially trained by a 

security guard who guides the robot that generates a map 

along the way. Once trained, the robot is capable of 

traversing the learn path autonomously [32]. To get the most 

out of their UAV, the UAV only performs its tasks of 

scanning the area of interest and then returning to land on 

the helipad on the UGV. The UAV spends limited time in 

the air to assure that the system can support many more 

flights than continuous flying. It only becomes active to 

assess areas inaccessible by the UGV [32]. Our 

implementation features a similar setup; however, our focus 

is primarily on object detection and avoidance utilizing 

efficient path planning algorithms.  

 

Cantelli et al. also present a system that utilizes a UAV that 

autonomously follows a ground robot [33]. The motivation 

for their system was supported by the need for an increased 

field of view to best decide the subsequent navigation 

strategy [33]. The operator is only responsible for 

controlling the UGV while the UAV collects images to build 

traversability maps [33]. Titan employed similar image 

processing techniques to detect objects in images using 

thresholding, white/back pixel extraction, and noise removal 

[33]. Further information about similar systems is 

extensively discussed in their paper [33].  

 

Cooperative agents are becoming more prevalent as shown 

in current literature, although there is much to do. 

Cooperative systems entail two or more entities working 

together to solve a task. Our robot-drone system is one 

example that is currently being researched. Hausman et al. 

describe a system of multiple robots that ``estimate the 

position of a moving target using on board sensing" [34]. For 

example, multiple drones could be responsible for tracking 

two ground robots. They briefly outline the benefits being a 

``reduction in tracking uncertainty, increased coverage, and 

robustness to failure" [34]. Hsieh et al. introduce a 

framework where a human operator can ``deploy a 

heterogeneous team of autonomous air and ground robots to 

cooperatively execute tasks", such as target search and 

surveillance ``within an urban environment while providing 

high-level situational awareness for a remote human 

operator" [35]. Garzon et al. present a similar system to our 

own that maps a large, unknown outdoor environment [36]. 

A drone flies above the robot to providing additional 

information to the robot for localization and mapping [36]. 

Our research is similar, however, it is primarily more 

focused on the path-planning and did not incorporate GPS 

information into our model. 

 

Search and Rescue Applications 

Among recent advances in cooperative autonomous 

systems, the range of applications is still being realized. 

They have been used to find simulated mines [37] and have 

been considered for planetary exploration [38]. 

Furthermore, they have been used in various search and 

rescue scenarios. As discussed previously, part of our work 

was motivated by research conducted by [17], however, 

there are many more examples of similar situations. For 

example, rescuers utilized UGVs and UAVs to access 

damage to buildings and other areas following two major 

earthquakes in Mirandola, Italy [39]. A few more examples 

of relevant literature concerning autonomous robots in 

disaster and search/rescue situations can be read in [40,41]. 

 

 

IMPLEMENTATION 

Titan was originally conceived as an exploration robot 

stemming from its capabilities to navigate rough terrain and 

avoid dynamic obstacles utilizing a drone and advanced 

computer vision mapping and object detection algorithms. 

The past decade has brought about a new era of exploration 

as NASA deployed and landed Curiosity, a manual and 

autonomous rover, on Mars to explore the origins of life. The 

rover has the capability to receive location commands, but it 

is ultimately up to the robot to make the appropriate 

movements to reach the goal, subsequently avoiding 

obstacles if present. Similarly, our mobile robot has the 

capability to navigate an unknown environment utilizing 

onboard sensors and vision.  

 

 
 

Figure 2: IG42-SB4, 4WD All-Terrain Robot 
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Figure 3: (Left) Sabertooth 2x25 Motor Controller, (Right) Arduino Mega 

2560 

 

 
Figure 4: Example of Packetizied-Serial commands 

 
 

The robot is accompanied by a drone companion that serves 

as another pair of ‘eyes’ for the robot. The robot and drone 

are separate entities that work together to solve a given task. 

For example, if there were a series of obstacles ahead of the 

robot, the drone would be launched to map out the terrain 

ahead and plan a path through the obstacles utilizing a 

combination of localization and grid mapping using a 

Greedy Best-First Search approach. Information from the 

drone is relayed to the on-board computer on the robot that 

processes the images which pipes the information to the 

central hub. Both the robot and drone entities are connected 

through the central hub which makes the final decision of 

movement based on the information received from the robot 

and drone.  

 

Robot 

Titan is a custom built exploration robot that navigates 

autonomously utilizing a drone and on-board sensors. The 

robot is an IG42-SB4, 4WD All Terrain Robot Platform 

purchased from SuperDroid Robots as shown in Fig 2. The 

robot is powered by two 12V batteries in series and has the 

capability of moving approximately 25 lbs [30]. The robot 

has four IG42 24VDC 078 RPM Gear Motors that move 

each of the 10 inch wheels.  

 

The motors are controlled via the Sabertooth Dual 25A 

motor driver utilizing Packetized serial communication as 

shown in (Left) Fig 3. the robot can be controlled using only 

one line of communication in S1 on the motor controller. 

Simplified Serial requires approximately two seconds 

between commands, which was not feasible for our project. 

However, a drawback to using Packetized Serial Model is 

that is a one-direction interface. No information can be 

recieved from the motor controller. For the purposes of our 

implementation, the robot's behavior was acceptable and 

there was a need to correct utilizing information from the 

attachable motor encoders. Furthermore, Packetized Serial 

allows for multiple motors controllers to be connected as the 

commands are directed to each respective device using the 

address byte. An example of how to send a movement 

command to the robot can be viewed in Fig 4.   

 

 
Figure 5: Client GUI for interacting with the system 

 

 
Figure 6: AR.Drone 2.0 

 
 

The central hub on the robot is a Raspberry Pi 3. It is 

responsible for handling requests from the user and making 

the final decision regarding autonomous actions. The robot 

can be controlled in two ways. It can be controlled manually 

from a computer on the local network or can operate 

autonomously, moving forward and avoiding obstacles until 

it is stopped. For manual control, the client launches a GUI 

programmed using the Tkinter module that is used to 

connect to the robot as shown in Fig 5. First, a TCP 

connection is established between the robot and client. Next, 

a JpegStream is initialized on the Pi using SimpleCV. The 

feed from the Logtech C920e camera attached to the robot 

is displayed in the GUI and can be accessed by anyone on 

the local network that has the IP address of the Pi. 
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Once the client has successfully connected and the stream is 

visible, the user can manually drive the robot. In instances 

where the network connection is suddenly dropped, the 

robot is programmed to turn around and head back in the 

direction of its previous connection and reestablish. The 

GUI also gives the client the ability to enter the system into 

autonomous mode, where the robot will begin moving 

towards a goal, for example a red circle. The details of the 

implementation are discussed in an upcoming section. The 

Raspberry Pi 3 is connected via USB to an Arduino Mega 

2560, which serves as a direct communication to the motor 

controller as shown in (Right) Fig 3. 

 
AR Drone 2.0 

The drone used to accompany Atlas is the AR Drone 2.0 by 

Parrot Inc. The platform is very lightweight at 390 grams 

with the internal frame and 420 grams with the external 

frame [31]. The drone has a 720p 30fps front facing camera. 

It also has a ground-facing camera that  utilized for 

positioning and object detection. The drone has an ARM 

Cortex A8 1 Ghz 32-bit processor and it communicates with 

via a Linux machine [31]. The drone is a flying hot-spot and 

is easily connected with the Linux machine (Raspberry Pi 3) 

for control. It includes a variety of different sensors 

including an Accelerometer, Magnetometer, Pressure 

sensor, Altitude ultrasound sensor, and vertical camera [31]. 

 
The AR drone 2.0 is a relatively stable platform that was 

used to capture images from above for the robot. As shown 

in Fig 6, the drone resides on a wooden platform on top of 

the robot. On the wooden platform is a red circle, which is 

what the robot utilizes to autonomously land. The 

autonomous landing is performed by thresholding the image 

to detect the red circle, finding the respective contours in the 

image and their center, and finally minimize the distance 

between the center coordinates of the image and the position 

of the red circle. 

 

Robot Path Planning 
The robot path planning algorithm employs two generic 

strategies for solving the problem of finding the shortest 

path. As discussed in our literature review, there are many 

ways to solving the path finding problem and each of them 

has their advantages and disadvantages. The motivation for 

our approach comes from [10,17]. The first part of the 

algorithms stems from our own creation of a three parameter 

check. First the robot checks if something is in front of it. If 

there is, it checks the left and right at a respective 45 degree 

angle. If not object is immediately present within one of the 

other two vectors, the robot turns ands heads in that direction 

as a novel form of obstacle avoidance. As shown in the 

second and third images in Fig 7, the detection algorithm is 

capable of detecting single and multiple objects in the scene 

and their position relative to the robot. The green/red box is 

the respective width of the robot. As long as no objects are 

within the bounds of that box, it is assumed that the robot 

can pass safely through. However, as stated previously, if an 

object is present, more measures need to be taken. 
 

 

 

 

 
Figure 7: Top: No object detected, Middle: Single object detected, 

Bottom: Multiple objects detected 
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Figure 8: Grid approach inspired by [10] utilizing Best-First Search 

 
DRONE PATH PLANNING 

The motivation for Titan's object detection system was 

partially motivated by the research conducted by Chandak et 

al. utilizing the Wavefront technique mapping algorithm for 

efficient object detection and path planning [10]. Our 

approach uses a drone with a ground-facing camera to take 

pictures of the terrain in front of the robot. The image 

received from the drone undergoes a series of steps depicted 

in Fig 9. First, a Gaussian blur is applied to the image to 

reduce noise and provide more accurate contour detection. 

Second, the image undergoes thresholding utilizing 

OpenCV’s inRange function. The color of the floor is 

initially known and the respective HSV values were 

computed. The noise variation in the floor was eliminated by 

the Gaussian blur. The filter is applied to the image and any 

object that is not of that color will be white in the output 

image. Following Chandak et al. approach, a grid is imposed 

abstractly onto the image. Any sector containing white is 

deemed to have an object. The grid is not present in the 

actual computation. It was added for visual representation. 

 

Our approach currently implements a Greedy Best-First 

Search algorithm to find the quickest and shortest path to the 

local end. As depicted in Fig 8, the green circle represents 

the center of the robot and the blue 'x' represents the ending 

position. This is the local end goal. The drone was flying at 

approximately 160cm. The global goal is to reach the red 

circle which the drone can see with its forward facing 

camera. The drone flies ahead of the robot and takes a 

picture of the terrain for the robot to analyze and compute a 

path to the other side of the image without hitting any 

obstacles. If such a path is not present, given the number of 

obstacles detected in the image utilizing OpenCV's contour 

functions, the drone will fly higher to capture more of the 

scene, or an A* algorithm utilized by [17] in their mock-

disaster scenario will be employed. 

 

 
Figure 9: Generic operation to detect objects and landing 

platform 

 
The end goal of the robot is local, as it is a further means of 

reaching the final goal. The local goal of the robot is to 

traverse the empty grid while avoiding objects. The program 

use an A* algorithm to find the shortest path to the goal, 

motivated by similar work conducted by Geus et al [11]. The 

AR parrot drone flies at approximately 73cm from the 

ground, which allows us to calculate the approximate size of 

each element of the matrix in inches. Therefore, given the 

current orientation of the robot, a series of movement 

commands are generated sequentially and fed to the motor 

controller. 
 

CONCLUSION 

The future of Project Titan is bright as many projects are 

currently under development. A future paper will describe 

the autonomous landing portion of the drone on the moving 

platform including a detailed analysis of current techniques. 

In addition, although the primary purpose is exploration, it 

is also designed to be social, learning robot. In future 

iterations, the robot will be able to recognize and not just 

detect objects utilizing Convolutional Neural Networks built 

using Keras and a Tensorflow backend. Similar to research 

currently being conducted in the autonomous car industry, 

the CNN should be able to recognize objects that can and 

cannot be run over. The robot currently stops at all objects, 

even if it is a piece of paper lying on the ground. To OpenCV 

and our image processing techniques, it is equivalent to a 

large rock. The ability to 'think' abstractly about an object is 

crucial to the success of future object detection/recognition 

tasks. 

 

Furthermore, future iterations of the system will have 

multiple, smaller drones rather than one larger one. 

Significantly more data can be gathered using three vertical 

cameras than a single one. If the robot needed to be 

employed in a search and rescue operation, three 

independent drones have a much better chance at finding a 

person or object quickly than a single drone. Three 

independent drones also widens the connectivity of the 

cluster. 
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