
Cooperative Caching With Adaptive Asynchronous 

Prefetching 
Niket Mhatre 

1
, Ms.Mona Mulchandani

 2 
Ms.Swara Pampatwar

 3
, Ms.Mayuri Chawala

 4
 

 Department of Computer Science, Rochester Institute Of Technology, NewYork USA 

ndm5134@rit.edu 

 

Abstract—  
This project presents integration and simulation road map of an 

adaptive asynchronous pre-fetching (AAP) schema into the 

hint based cooperative caching.  Our contribution involves 

improving the hint-based algorithm to accommodate AAP pre-

fetching scheme that reduces cache wastage by improving LRU 

policy and cache pollution by adapting the degree of pre-fetch. 

The two best pre-fetching algorithms have been considered for 

comparison, which are – One block look ahead with linear 

aggressive pre-fetching and an interval and size prediction-by-

partial-match (IS_PPM).  To measure the success of our 

proposed integration we have simulated them and provided a 

comparison analysis 

 

Keywords— Adaptive ,Asynchronous, Prefetching, hint-based, 

cooperative cache. 
I.INTRODUCTION 

Today’s distributed file systems use a three-level memory 

hierarchy namely server disk, server cache and client cache. 

Server and client cache play an important part in distributed 

file systems because they reduce frequent accesses to the 

much slower server disk. The server cache-hits limit the 

performance of a distributed file system because any local 

cache-miss requires access to the server cache and any 

server cache-miss leads to accessing of the server disk. 

Previous research [6] has shown that increasing the client 

and server cache does reduce disk access but is not as 

effective as it appears and is also really expensive.  Overall 

performance can be improved by distributing additional 

memory across clients and introducing a logical layer into 

the memory hierarchy of distributed file system [7]. This 

logical layer is called the cooperative cache, which allows 

clients to access cached blocks from other client’s memory.    

 

Fig. 1  Overview of the cooperative caching system. Client A requests block 

information from the manager. Then a client performs a remote lookup into the 

other client’s caches (1).  If a block is not found in the cooperative cache then 

(2) the server lookup is performed. In case of the server cache-miss, (3) a block 

is fetched from the storage device. 

 II. OVERVIEW OF COOPERATIVE CACHING  

 

Fig. 1 shows a typical architecture of the cooperative caching 

system. Cooperative caching architecture involves three main 

components namely clients, servers and a manager. The logical 

layer of cooperative cache is comprised of client caches and 

each client stores a block into the cache for itself as well as for 

other clients.  Whenever a client requests a block, it will try to 

locate it into its own local cache and if it’s not found, it 

attempts to fetch it from the cooperative cache. Similarly, 

whenever a client replaces an old block, it may either be 

forwarded to other clients for storage or discarded, depending 

upon the algorithm. The cooperative caching schema must 

provide this lookup-and-forwarding mechanism for managing 

the blocks. Also, the manager may provide coordination among 

the clients for locating and forwarding the blocks. Various 

algorithms have been presented with different lookup, 

forwarding and coordination strategies.  Some of the well-

known algorithms are N-chance [6] by Dahlin et al., Hint based 

caching [7] by Sarkar et al. and RoundRobin [1] by Anderson 

et al.   

     Pre-fetching  

 

Although, the above proposed algorithms aim at increasing 

overall throughput of the system; there is still a vast scope for 

improvements. The cooperative cache offers a huge amount of 

aggregate memory that is not used to its potential. In most 

cases we can find blocks that are not accessed for many hours.  

Using pre-fetching technique, performance can be improved by 

replacing these unused blocks with those that might be 

requested in the future. Pre-fetching is commonly used along 

with cooperative caching to gain additional performance.   

 

Pre-fetching algorithms may be sequential or random based on 

the access pattern they follow. Sequential is more popular of 

the two since files are generally accessed in a sequential 

manner [2]. Sequential pre-fetching algorithms are further 

classified into four classes: fixed synchronous, fixed 

26

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



asynchronous, adaptive synchronous and adaptive 

asynchronous [4]. These classifications are based on whether 

the algorithm has a fixed or an adaptive degree of pre-fetch and 

also if pre-fetching is synchronous or asynchronous. 

 

Fig 2. Asynchronous pre-fetching. [4] 

 

    With reference to Figure 2, P is current pre-fetch set, G is 

triggered distance and X is triggered block at distance of G 

from the end of pre-fetch set. Pre-fetching is said to be 

synchronous if p number of blocks are read by the client when 

a cache miss occurs on block x. On the other hand, in 

asynchronous pre-fetching, p blocks are read when there's a 

cache hit on block x. Asynchronous pre-fetching allows us to 

stay ahead of a read request, and hence reduces the cache miss 

ratio. Figure 2 and Algorithm 1 gives an overview of 

asynchronous pre-fetching. 

Sequential pre-fetching algorithms have two main issues, 

namely cache pollution and wastage of pre-fetched blocks [4]. 

Cache pollution occurs, when pre-fetched blocks replace more 

useful blocks. It can happen with an aggressive pre-fetching 

policy. Another problem is cache wastage, where pre-fetched 

blocks are evicted from the cache before they are used. This is 

a more serious problem. It not only overloads the cache by 
multiple pre-fetching of the same blocks but also 

increases network bandwidth usage unnecessarily. 

 

III. RELATED WORK 

In this section we will look at a cooperative caching algorithm 

and pre-fetching techniques that will give us some background 

information required for presenting the proposed idea. We will 

first explain basics of hint-based cooperative caching and then 

glance into the pre-fetching algorithms.  

 

 

Cooperative caching algorithm:  Hint-Based caching 

 

Sarkar et al. proposed an algorithm using ―hints‖ as means 

locating a block. Hints are a probable location of a block and 

easy to maintain as opposed to more accurate information in 

the traditional tightly controlled approach [hint]. This is 

because maintaining facts requires constant synchronization 

between the clients and the manager. They also help reduce the 

communication overhead with the manager.  Hints need be 

accurate to achieve a better performance of the system. Hence 

the manager obtains the hints from the last client to request the 

file, as that client is most likely to have accurate hints. 

Tracking each copy of a block in an entire cooperative cache is 

prohibitively expensive. Hence the algorithm keeps track of 

only the first copy to be cached called as the master copy.  

 

A client starts a block lookup by checking its own local cache. 

If the block is not found in the local cache then the client 

obtains hints for the blocks from the manager. After getting 

hints from the manager, the client forwards the request to an 

appropriate client. The client forwards the request to the server 

in case of inaccurate hints. While adding a new block into the 

local cache, the algorithm uses the least recently used (LRU) 

replacement policy. In this algorithm, forwarding of a replaced 

block is more targeted with the help of a best-guess 

replacement technique [hint]. In this technique each client 

maintains a sorted list that contains oldest block age of other 

clients. This list helps the client to identify the target. While 

forwarding the block to another client, two clients update this 

list by exchanging an oldest block’s age information. To reduce 

an overhead, the algorithm forwards only the master copy of 

the block and the other copies are discarded.  When master 

copy is forwarded to the client, it may keep the copy or discard 

it based on its own oldest block age. At a given time an oldest 

block list may not be up-to-date. Due to this incomplete 

information, the client may discard a forwarded master copy, in 

which case, it’s forwarded to another cache on the server called 

as discarded cache [hint]. All the discarded master copies are 

forwarded to this cache for avoiding an expensive disk access.  

 

In this project, the hint-based cooperative caching system is 

used since it is more efficient than the other cooperative 

caching systems out there [7].   

27

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



Pre-fetching algorithms:  

One block lookahead with linear aggressive pre-fetching: 

 

One block lookahead (OBA) is one the most commonly used 

pre-fetching algorithm.  The idea of the algorithm is simple; 

pre-fetch the block following the one requested. Dahlgren et al. 

extended an idea of OBA by proposing Mth block lookahead 

[3]. In this algorithm, M blocks are pre-fetched instead of just 

one. This algorithm takes advantage of the fact that blocks are 

accessed sequentially. Cortes et al. proposed linear aggressive 

pre-fetching algorithm [2] for the cooperative caching system 

using an extended version of one block lookahead.  In this 

algorithm, the degree of pre-fetch (the number of blocks per 

pre-fetch) is fixed. In this paper the author takes advantage of 

the huge amount of memory offered by the cooperative caching 

system.   

Interval and size prediction-by-partial-match  

 

Cortes et al. proposed IS_PPM [2] algorithm for pre-fetching 

using an access pattern of the file. Their algorithm is based on 

the concept that files are accessed sequentially or strided 

pattern [reference] as shown in a Figure 3. The algorithm is 

derived from prediction-by-partial-match (PPM) [5], proposed 

by Vitter et al.   

 

 

Fig 3: File access pattern. 

 

 

The IS_PPM is based on the Markov model, which states that 

the probability distribution of the future states is dependent 

upon the present and the past states [5]. Using this model, they 

construct a graph for predicting an access pattern. Each node in 

the graph consists of the size of request and an offset interval. 

The offset interval is the difference between the first block of 

the current and previous requests. Whenever new request is 

made, the system computes the size and an offset interval 

between the current and the previous request. Using this 

information graph is searched for the node with matching 

information.  Once the node is found, the system follows the 

most updated link and extracts the interval and the size of the 

future request from the linked node. In case the node is not 

found, then the OBA algorithm is used for pre-fetching the 

request.  

 

Adaptive asynchronous pre-fetching  

 

Gill et al. have proposed an adaptive multi-stream pre-fetching 

(AMP) algorithm for shared cache. The aim of an algorithm is 

to provide online optimization of pre-fetched data and reduce 

problem associated with pre-fetching. Adaptive asynchronous 

pre-fetching algorithm is an asynchronous and adaptive 

algorithm and is an application of AMP in cooperative cache 

[reference].It adapts the value of perfected degree p and 

triggered distance g. As per the algorithm, asynchronous pre-

fetching is activated as soon as P is greater than the threshold 

(t). The threshold is set to the value of 4.  A block at distance 

t/2 from the end of perfected set is used as a triggered block. 

Whenever there is a cache-hit on a triggered block, p sets of 

blocks are pre-fetched and the triggered block position is reset.  

 

Fig 4:  File access pattern 

Algorithm adapts the values of p and g to reduce the pre-

fetched wastage and cache pollution.  For this, the values of p 

and g are incremented or decremented as follows.  (See Figure 

4) If the last block of the current pre-fetched set is not accessed 

then it is an indication that the current value of p is too high. 

We then decrement the value of p. In this case, the last block 

from the pre-fetched set will move to the end of the LRU queue 

without being accessed. We can give another chance to such a 

block by moving it one position ahead towards the head of the 

LRU queue. Whenever the last block in the current pre-fetched 

set is hit, we increment the values of p and g. 

IV.PROBLEM STATEMENT 

 

One of the main goals of cooperative caching is to maximize 

throughput while minimizing the cost of cache maintenance. 

28

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



The hint-based cooperative caching achieves this optimality by 

reducing the workload on the manager. Currently, a block is 

fetched into the cache on demand. When a block is requested 

for the first time, on every block request cache miss is 

associated. We can reduce these cache misses by pre-fetching 

the future request. The cooperative cache offers a huge amount 

of aggregate memory, which can be well utilized. In many 

cases we can find the blocks in the cooperative cache that are 

not accessed for hours. Performance can be improved by 

replacing these unused blocks with more useful ones. Most of 

the pre-fetching algorithms suffer from the problems of pre-

fetch wastage and cache pollution due to fixed degree of pre-

fetch. We can reduce these problems by introducing an 

adaptive degree of pre-fetch and improved LRU policy by 

making it aware of the pre-fetched blocks.  

 

Hint-based system implementation  

 

We have implemented our system in a simulated environment. 

The hint-based system is our base implementation. This section 

explains the details of the simulation environment and the 

various parameters used.  

 

The simulation environment is implemented using Java.  The 

system is having five main objects namely Simulator, Server, 

Client, Disk and Manager. The disk object emulates the storage 

device. It is responsible for set of files and generating the 

blocks. The files are represented using class objects with 

different file sizes. The server objects are responsible for disk 

object, server cache and discarded cache. Each disk read takes 

m milliseconds to access a file block, where m is a constant 

value set through the configuration file.  The client objects are 

responsible for simulating the read requests and managing the 

local cache. Each remote block access time takes n 

milliseconds where n is constant. A remote access time 

includes round trip time. It is the total of time taken by a client 

to send the message to the remote client and time to transfer the 

block. The server cache access time is larger than client cache 

access time.  The manager object keeps track of the set of hints 

for the blocks of a file. In order to keep hints accurate, manager 

updates location of the hint to the last client who has opened 

the file. The simulator object reads the configuration file and 

initiates simulation as per this file. It is also responsible for 

output graphs. The parameters we consider for our simulation 

are mentioned below. These are maintained by the 

configuration files.  

 

NO_OF_SERVER  : Total number of servers 

SERVER_DISK_FILES : Total number of files each 

server should have. (Files 

are simulated with random 

file size)  

CLIENT_CACHE_SIZE : Size of client’s cache. 

SERVER_CACHE_SIZE : Size of server’s cache. 

BLOCK_SIZE  : Size of individual block  

DISK_ACC_TIME : Server disk access time.  

CLIENT_CACHE_ACC_TIME: Client cache access time. 

SERVER_CACHE_ACC_TIME : Server cache access time.  

PROCESSIN_TIME : Processing time for data. 

NETWORK_LAT : Network latency time for 

data along the network. 

MANAGER_NAME  : Name of manager  

LOWER_LIMIT  : File size lower limit 

UPPER_LIMIT  : File size upper limit 

STRIDED  : Random seed 

TYPE   : Type of test case 

BEST1, BEST2, DISK, 

RANDOM 

TOTAL_FILE_READ  : Total file reads 

MAX_APPLICATION  : Number of applications 

running  

DISCARDED_CACHE_SIZE : Discarded cache size  

PREFETCH_COUNT  : Pre-fetch count for OBA 

 

 

Pre-fetching algorithm integration  

 

Each client keeps track of the number of blocks from a file they 

are accessing. The manager in our hint-based cooperative 

cache forwards this information as part of the hint to the 

requesting clients. The hint-based cooperative caching is the 

most decentralized cooperative caching schema. Each of a 

client manages its own cache using local information and 

contacts the manager only if a block is not present in the local 

cache or local hints. In our modified hint-based algorithm, each 

of the client manages its pre-fetching locally since each client 

has only the local information of the file access pattern.   

 

OBA pre-fetching algorithm is most widely used pre-fetching 

scheme. The algorithm has fixed degree of pre-fetch. When a 

block is requested we also bring the next three blocks in the 

cache before it is requested.  For integration of the IS_PPM 

pre-fetching scheme, our modified client constructs the graph 

of access pattern for the file as discussed in the above section 

and store them locally for future use.  

 

For our AAP algorithm, each client initiates the pre-fetching of 

the data structure to keep track of P and G values. All 

applications running on the client share the same data structure 

for P and G. When client initiates block lookup for a first block, 

it brings p set of blocks in the sequence and asynchronous pre-

fetching is activated.  We initialize the value of P to three and 

G to zero.  We also need to distinguish between lookup block 

and pre-fetched block. For this purpose each block object holds 

the pre-fetched flag.  Each application maintains its current 

pre-fetch set. This set is used to increment and decrement P and 

G values as discussed above.   

 

 

29

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



V.IMPLEMENTATION AND SIMULATION 

METHODOLOGY 

Package structure  

 

We have used the discrete event simulation methodology for 

our simulation environment. The code structure is housed 

under the simulation package as explained below.  

 

 Client – This package contains an abstract class Client, 

which is the base class and provides all necessary 

methods for client's housekeeping. Hint-Based, OBA, 

IS_PPM and AAP clients are derived classes and 

simulate the respective algorithms as explained in the 

Section *. Each client contains LRU cache object as 

described below and also maintains global and local hit 

counts and total block reads.  

 

 Disk – Package houses different objects to simulate 

disks, files and blocks.  Disk class generates the 

required files and blocks based on pseudo-random 

generator.  The size of files is driven by 

UPPER_LIMT and LOWER_LIMIT parameter of the 

configuration file. Block objects contain master, pre-

fetched and accessed flags. Whenever client accesses 

the block its access block is set to true. Access and 

pre-fetched flag are reset, while forwarding the block 

to another client as part of the best-guess replacement 

policy.   

 

 Server – Package contains the server object 

implementation. The server objects use the same LRU 

cache implementations as the clients.  

 

 Cache – This package houses the LRU cache 

implementations. This custom implementation allows 

us to vary the size of cache.    

 

 Simulator – This is the main package that contains the Start, 

Config and Graphgenerator objects. The Config class reads 

the necessary simulation parameters from the configuration 

file.  After reading configuration parameters, an object of the 

Start class initiates the simulation.  The start class contains 

the implementation for generating discrete events. Each 

client contains an application that performs the read request 

as instructed by the Start object on the respective client.  

After completion of all read requests, the Graphgenerator 

object collects the necessary data and generates the graphs.   

 

Simulation methodology 

 

We have used synthesized workloads instead of using real 

traces. This has allowed us to consider those extreme cases that 

otherwise would not be possible in the case of traces. The 

cache and the file sizes together impact the performance of the 

pre-fetching algorithms. Each of the modified clients runs 

multiple applications requesting a different file for reading. We 

have used pseudo-random number generator from the PJ 

library [cite] for selecting a file from given N number of files. 

For given N, it generates random number with 1/N probability.  

 

For our test cases, two types of streams are considered namely 

single stream and multiple streams. In the single stream, at a 

given time only one application is requesting access to the file 

on same client. On the other hand, in multiple streams more 

than one application is requesting the files. We have to also 

consider different lengths of files for our simulation. Pre-

fetching is affected by number of streams requesting files and 

length of the sequences. Hence we have considered four 

different test cases – multiple streams with long sequences, 

multiple streams with short sequences, single stream with long 

sequences and single stream with short sequences. We have 

also run three ideal setups for evaluating best-case and worst-

case conditions. These setups provide base conditions for other 

test cases.  

Experiment and Result Analysis  

All the experiments were performed on intel Xeon X3440 

processor capable of running 12 threads with 12GB internal 

memory. This section provides analysis of an experiment 

conducted as described in the proposal section.  

Evaluation Metrics  

 

In order to evaluate the performance of the proposed algorithm, 

we have used following evaluation metrics.   

 

Average block access time: This is the ratio of time taken by 

a client to locate the file block and fetch it into the cache 

against total number of clients. 

 

Global cache hit ratio: This is the ratio of the number of 

blocks found in other client’s cache against total number 

clients. Average local cache miss ratio: This is the ratio of 

the number of blocks found in a client’s local cache to total 

clients.  Disk access time: This is the ratio of the total 

number of disk reads against the total number of clients. Pre-

fetch wastage: This is the percentage of pre-fetched wastage 

against total number of clients. Pre-fetched wastage is (un 

30

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



accessed blocks evicted / total blocks evicted).  

Base Cases  

All blocks available in local cache 

This base case simulates ideal setup where all blocks are 

available in the client's local cache.  We have to first fill the 

client cache with set of files and later tell the clients to read the 

same set of files. Figure 5 shows an average access time 

comparison between four algorithms for this base case.  All the 

four algorithm's average access time is same as that of the 

client cache access time.  This case provides optimal average 

time for accessing the file blocks.    

 
Fig 5: Average access time VS number of 

clients 

All blocks available in remote client cache 

This base case simulates setup where all requested blocks are 

available in peer client's cache. We first fill the client cache 

with set of files and later tell the clients to read the set of files 

that are not present in their own cache. This case provides base 

condition for when the blocks are located in the global cache. 

Figure 6 shows an average access time comparison between the 

four algorithms.  All the pre-fetching algorithms outperform 

the hint-based algorithm. Access time for pre-fetching 

algorithms is less as compared to the hint-based since time 

taken to fetch N blocks one at a time is more than when they 

are fetched simultaneously as is the case in the pre-fetching 

algorithms.  

 

 

Fig 6: Average access time VS number of clients 

All blocks are read from the disk 

 

This base case simulates setup where all blocks are read from 

the disk. We tell each client to read unique set of files. This 

case provides the worst-case scenario for all four algorithms. 

Figure 7 shows an average access time comparison between the 

four algorithms. As observed, the disk access time for the hint-

based algorithm is more than the pre-fetching algorithms.  

Modern disks store the file blocks in contiguous memory 

locations  [reference].  This provides an added advantage while 

accessing contiguous blocks.  Because of this time for 

accessing N blocks in the single I/O request is less than that of 

N number of I/O requests.   Due to an adaptive degree of pre-

fetch the AAP algorithm outperforms the other three 

algorithms with respect to average access time.   

 
Fig 7: Average access time VS number of clients 

Test Cases  

In each of the following test case we have run four clients with 

the same number of blocks and the same set of files. 

Configuration parameters used for each test case are listed in 

the appendix A. The collected data for each test case is listed in 

a tabular format in the appendix B. We have used the same 

time constants for all the test cases in Table 1. All the timings 

are in microseconds and the block size is in kilobytes.  

Multiple streams with long sequences 

 

In this test case we have used maximum of three applications 

on each client. We have used files with long sequences with an 

average of 51 blocks per file. Figures 8, 9 and 10 show the 

performance comparison between the four algorithms.  In 

Figure 9, we observe that running multiple applications that are 

requesting files with long sequence impacts the cache wastage. 

After 40 clients the cache wastage is down to zero. Figure 8 

plots the comparison analysis of the average access time for all 

the four algorithms.  Figure 10 plots local hit and miss, global 

hits and disk read ratios. The local miss and hit ratio plots are 

proportional to each other. As observed, all the algorithms 

produce same global hits and disk reads. This is because all 

pre-fetching algorithms are simulated on top of the hint-based 

model.  In Figure 10 (c), the pre-fetching algorithms show 

31

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



fewer number of disk reads as compared to the hint-based 

algorithm.  

 
Fig 8: Average access time VS Number of clients 

 
Fig 9: Perecentage of wastage VS number of clients 

 
Fig10: a) Local hit ratio  

 
Fig10:   b) Local miss ratio 

 
Fig10:c) Disk read ratio  

 
Fig10 :d) Global hit ratio 

 

Multiple streams with short sequences 

In this test case we have used maximum of three applications 

on each client. We have used files with short sequences with an 

32

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



average of 15 blocks per file. Figures 11, 12 and 13 show the 

performance comparison between the four algorithms. Figure 

11 plots the comparison analysis of the average access time for 

all the four algorithms.  Figure 13 plots local hit and miss, 

global hits and disk read ratio.  As observed, due to short 

sequences the average access time is reduced significantly as 

compared to long sequences in the case of AAP.  This is 

because of AAP algorithm adapts to high pre-fetch degree for 

short sequences.   

 
Fig 11: Average access time VS Number of clients 

 
Fig 12: Perecentage of wastage VS number of clients 

 
 

Fig 13: a) Local hit ratio 

 
Fig 13: b) Local miss ratio 

 
Fig 13: c) Disk read ratio 

 
Fig 13:d) Global hit ratio 

33

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



Single streams with long sequences 

In this test case we have run a single application on each client 

and used the files with long sequences with an average of 16 

blocks per file.  Figures 14, 15 and 16 show the performance 

comparison between the four algorithms under given 

simulation parameters.  Figure 14 plots comparison analysis of 

the average access time for all the four algorithms.  Figure 16 

plots local hit and miss, global hits and disk read ratio. Figure 

15 shows the ratio of percentage of cache wastage to the total 

number of clients. We observe that the cache wastage is less as 

compared to the previous test cases.  

 
Fig 14: Average access time VS Number of clients 

 
Fig 15: Perecentage of wastage VS number of clients 

 

 
Fig 16: a) Local hit ratio 

 
Fig 16: b) Local miss ratio 

 
Fig 16: c) Disk read 

34

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



 
Fig 16: d) Global hit ratio 

Single streams with short sequences 

In this test case we have again run a single application on each 

client. But now we have used files with short sequences with 

an average of 15 blocks per file.  Figures 17, 18 and 19 show 

the performance comparison between the four algorithms. 

Figure 19 plots local hit and miss, global hits and disk read 

ratio.   Figure 17 plots comparison analysis of the average 

access time for all the four algorithms. We observe that the 

average access time and the cache wastage in the pre-fetching 

algorithm are less compared to the previous test cases.  This is 

because, this test case has only one application running on the 

client that requests short sequences.  

 
Fig17: Average access time VS Number of clients 

 
Fig18: Perecentage of wastage VS number of 

clients

  
Fig 19: a) Local hit ratio 

 

 

  
Fig 19: b) Local miss ratio 

35

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings



  
Fig 19: c) Disk read 

 
Fig 19: d) Global hit ratio 

V .CONCLUSIONS 

This project is aimed at reducing the problem of cache wastage 

and cache pollution and integration of pre-fetching scheme in 

hint-based cooperative caching. The simulation results above 

show that AAP algorithm outperforms the other three 

algorithms.   

 Average access time: Figures 8, 11, 14 and 17 show 

that the average access time taken to access the block 

is less than that of the other three algorithms.  As from 

the graphs, average access time is less in the test cases 

where single application is running.  

 Cache wastage: Figures 9, 12, 14 and 18 plot cache 

wastage for the four test cases. We have observed that 

due to an improved LRU policy of AAP algorithm 

cache wastage has reduced significantly in all the four 

test cases.  

 Disk reads: Figures 10(c), 13(c), 15(c) and 19(c) plot 

the total disk reads against total number of clients.  

For 3 to 15 clients the total available cache is small 

for large pre-fetching of blocks. The AAP algorithm 

thus maintains small pre-fetching degree for reducing 

cache wastage. Because of this AAP algorithm has 

more disk access than OBA and IS_PPM for small 

number of clients. As the total memory is increased 

the AAP algorithm thus outperforms OBA , IS_PPM 

and the hint-based algorithms.  

 Local hits/miss ratio:  Figures 10(a), (b), 13 (a), (b), 

15 (a), (b) and 19(a), (b) plot the local hit and local 

miss ratios. Due to asynchronous nature of AAP the 

local misses are significantly reduced.  

ACKNOWLEDGMENT 

I would like to thank Professor Hans Peter Bischof for his 

valuable guidance and support throughout implementation of 

my master's capstone project. I would also like to thank 

Professor James Heliotis for his valuable inputs on project 

document tation. 

References 
 

[1] E. Anderson, C. Hoover, and Xiaozhou Li. New algorithms for _le system 

cooperative caching. In Modeling, Analysis Simulation of Computer and 
Telecommunication Systems (MASCOTS), 2010 IEEE International 

Symposium on, pages 437 {440,aug. 2010. 

[2] T. Cortes and J. Labarta. Linear aggressive prefetching: a way to increase 
the per-formance of cooperative caches. In Parallel Processing, 1999. 13th 

International and 10th Symposium on Parallel and Distributed Processing, 
1999. 1999 IPPS/SPDP.Proceedings, pages 46{54, April 1999. 

[3] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Fixed and adaptive 

sequential prefetching in shared memory multiprocessors. In Parallel 
Processing, 1993. ICPP 1993. International Conference on, volume 1, pages 

56{63, aug 1993. 

[4] Binny S. Gill and Luis Angel D. Bathen. Optimal multistream sequential 

prefetching in a shared cache. Trans. Storage, 3(3), October 2007. 

[5] P. Kristian K. M. Curewitz and J. S. Vitter. Practical prefetching via data 

compres- 
sion. In SIGMOD Management of Data, pages 257{266, 1993.

 

36

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ICIAC' 14 Conference Proceedings


