International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Cooperative Caching With Adaptive Asynchronous
Prefetching

Niket Mhatre 1, Ms.Mona Mulchandani 2 Ms.Swara Pampatwar3, Ms.Mayuri Chawala*

Department of Computer Science, Rochester Institute Of Technology, NewYork USA

ndm5134Q@rit.edu

Abstract—

This project presents integration and simulation road map of an
adaptive asynchronous pre-fetching (AAP) schema into the
hint based cooperative caching. Our contribution involves
improving the hint-based algorithm to accommodate AAP pre-
fetching scheme that reduces cache wastage by improving LRU
policy and cache pollution by adapting the degree of pre-fetch.
The two best pre-fetching algorithms have been considered for
comparison, which are — One block look ahead with linear
aggressive pre-fetching and an interval and size prediction-by-
partial-match (IS_PPM). To measure the success of our
proposed integration we have simulated them and provided a
comparison analysis

Keywords— Adaptive ,Asynchronous, Prefetching, hint-based,
cooperative cache.

I.INTRODUCTION

Today’s distributed file systems use a three-level memory
hierarchy namely server disk, server cache and client cache.
Server and client cache play an important part in distributed
file systems because they reduce frequent accesses to the
much slower server disk. The server cache-hits limit the
performance of a distributed file system because any local
cache-miss requires access to the server cache and any
server cache-miss leads to accessing of the server disk.
Previous research [6] has shown that increasing the client
and server cache does reduce disk access but is not as
effective as it appears and is also really expensive. Overall
performance can be improved by distributing additional
memory across clients and introducing a logical layer into
the memory hierarchy of distributed file system [7]. This
logical layer is called the cooperative cache, which allows
clients to access cached blocks from other client’s memory.

Block InTormation

1. Remote
Block
Iookup

Starage

Cache Cache

Other client's cache

Fig. 1 Overview of the cooperative caching system. Client A requests block
information from the manager. Then a client performs a remote lookup into the

other client’s caches (1). If a block is not found in the cooperative cache then

(2) the server lookup is performed. In case of the server cache-miss, (3) a block

is fetched from the storage device.

I1. OVERVIEW OF COOPERATIVE CACHING

Fig. 1 shows a typical architecture of the cooperative caching
system. Cooperative caching architecture involves three main
components namely clients, servers and a manager. The logical
layer of cooperative cache is comprised of client caches and
each client stores a block into the cache for itself as well as for
other clients. Whenever a client requests a block, it will try to
locate it into its own local cache and if it’s not found, it
attempts to fetch it from the cooperative cache. Similarly,
whenever a client replaces an old block, it may either be
forwarded to other clients for storage or discarded, depending
upon the algorithm. The cooperative caching schema must
provide this lookup-and-forwarding mechanism for managing
the blocks. Also, the manager may provide coordination among
the clients for locating and forwarding the blocks. Various
algorithms have been presented with different lookup,
forwarding and coordination strategies. Some of the well-
known algorithms are N-chance [6] by Dahlin et al., Hint based
caching [7] by Sarkar et al. and RoundRobin [1] by Anderson
et al.

Pre-fetching

Although, the above proposed algorithms aim at increasing
overall throughput of the system; there is still a vast scope for
improvements. The cooperative cache offers a huge amount of
aggregate memory that is not used to its potential. In most
cases we can find blocks that are not accessed for many hours.
Using pre-fetching technique, performance can be improved by
replacing these unused blocks with those that might be
requested in the future. Pre-fetching is commonly used along
with cooperative caching to gain additional performance.

Pre-fetching algorithms may be sequential or random based on
the access pattern they follow. Sequential is more popular of
the two since files are generally accessed in a sequential
manner [2]. Sequential pre-fetching algorithms are further
classified into four classes: fixed synchronous, fixed

www.ijert.org

26

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

asynchronous, adaptive synchronous and adaptive
asynchronous [4]. These classifications are based on whether
the algorithm has a fixed or an adaptive degree of pre-fetch and
also if pre-fetching is synchronous or asynchronous.

Pre-fetch degree p

o

|l <
Trigger distance
L—g—>

D Not Accessed . Triggered block x

|:| Accessed

Fig 2. Asynchronous pre-fetching. [4]

With reference to Figure 2, P is current pre-fetch set, G is
triggered distance and X is triggered block at distance of G
from the end of pre-fetch set. Pre-fetching is said to be
synchronous if p number of blocks are read by the client when
a cache miss occurs on block x. On the other hand, in
asynchronous pre-fetching, p blocks are read when there's a
cache hit on block x. Asynchronous pre-fetching allows us to
stay ahead of a read request, and hence reduces the cache miss
ratio. Figure 2 and Algorithm 1 gives an overview of
asynchronous pre-fetching.

Sequential pre-fetching algorithms have two main issues,
namely cache pollution and wastage of pre-fetched blocks [4].
Cache pollution occurs, when pre-fetched blocks replace more
useful blocks. It can happen with an aggressive pre-fetching
policy. Another problem is cache wastage, where pre-fetched

blocks are evicted from the cache before they are used. This is
a more serious problem. It not only overloads the cache by

multiple pre-fetching of the same blocks but also
increases network bandwidth usage unnecessarily.

I1l. RELATED WORK

In this section we will look at a cooperative caching algorithm
and pre-fetching techniques that will give us some background
information required for presenting the proposed idea. We will
first explain basics of hint-based cooperative caching and then
glance into the pre-fetching algorithms.

Cooperative caching algorithm: Hint-Based caching

Sarkar et al. proposed an algorithm using “hints” as means
locating a block. Hints are a probable location of a block and
easy to maintain as opposed to more accurate information in
the traditional tightly controlled approach [hint]. This is
because maintaining facts requires constant synchronization
between the clients and the manager. They also help reduce the
communication overhead with the manager. Hints need be
accurate to achieve a better performance of the system. Hence
the manager obtains the hints from the last client to request the
file, as that client is most likely to have accurate hints.
Tracking each copy of a block in an entire cooperative cache is
prohibitively expensive. Hence the algorithm keeps track of
only the first copy to be cached called as the master copy.

A client starts a block lookup by checking its own local cache.
If the block is not found in the local cache then the client
obtains hints for the blocks from the manager. After getting
hints from the manager, the client forwards the request to an
appropriate client. The client forwards the request to the server
in_case of inaccurate hints. While adding a new block into the
local cache, the algorithm uses the least recently used (LRU)
replacement policy. In this algorithm, forwarding of a replaced
block is more targeted with the help of a best-guess
replacement technique [hint]. In this technique each client
maintains a sorted list that contains oldest block age of other
clients. This list helps the client to identify the target. While
forwarding the block to another client, two clients update this
list by exchanging an oldest block’s age information. To reduce
an overhead, the algorithm forwards only the master copy of
the block and the other copies are discarded. When master
copy is forwarded to the client, it may keep the copy or discard
it based on its own oldest block age. At a given time an oldest
block list may not be up-to-date. Due to this incomplete
information, the client may discard a forwarded master copy, in
which case, it’s forwarded to another cache on the server called
as discarded cache [hint]. All the discarded master copies are
forwarded to this cache for avoiding an expensive disk access.

In this project, the hint-based cooperative caching system is
used since it is more efficient than the other cooperative
caching systems out there [7].

www.ijert.org

27

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Pre-fetching algorithms:
One block lookahead with linear aggressive pre-fetching:

One block lookahead (OBA) is one the most commonly used
pre-fetching algorithm. The idea of the algorithm is simple;
pre-fetch the block following the one requested. Dahlgren et al.
extended an idea of OBA by proposing Mth block lookahead
[3]. In this algorithm, M blocks are pre-fetched instead of just
one. This algorithm takes advantage of the fact that blocks are
accessed sequentially. Cortes et al. proposed linear aggressive
pre-fetching algorithm [2] for the cooperative caching system
using an extended version of one block lookahead. In this
algorithm, the degree of pre-fetch (the number of blocks per
pre-fetch) is fixed. In this paper the author takes advantage of
the huge amount of memory offered by the cooperative caching
system.

Interval and size prediction-by-partial-match

Cortes et al. proposed IS_PPM [2] algorithm for pre-fetching
using an access pattern of the file. Their algorithm is based on
the concept that files are accessed sequentially or strided
pattern [reference] as shown in a Figure 3. The algorithm is
derived from prediction-by-partial-match (PPM) [5], proposed
by Vitter et al.

o)1 |23 |4 |5 |6 |7 (889|102 |12|13 |14 |15 |16 |1¥ | 18

a. strided access pattern

of1 2|3 |4 |5 |6 |7 |8|9|10 |11 |12 |13 (14|15 |16 | 17 |18

b. sequential access pattern

|:| Access blocks

Fig 3: File access pattern.

I:| Not accessed block

The IS_PPM is based on the Markov model, which states that
the probability distribution of the future states is dependent
upon the present and the past states [5]. Using this model, they
construct a graph for predicting an access pattern. Each node in
the graph consists of the size of request and an offset interval.
The offset interval is the difference between the first block of
the current and previous requests. Whenever new request is
made, the system computes the size and an offset interval
between the current and the previous request. Using this
information graph is searched for the node with matching
information. Once the node is found, the system follows the

most updated link and extracts the interval and the size of the
future request from the linked node. In case the node is not
found, then the OBA algorithm is used for pre-fetching the
request.

Adaptive asynchronous pre-fetching

Gill et al. have proposed an adaptive multi-stream pre-fetching
(AMP) algorithm for shared cache. The aim of an algorithm is
to provide online optimization of pre-fetched data and reduce
problem associated with pre-fetching. Adaptive asynchronous
pre-fetching algorithm is an asynchronous and adaptive
algorithm and is an application of AMP in cooperative cache
[reference].lt adapts the value of perfected degree p and
triggered distance g. As per the algorithm, asynchronous pre-
fetching is activated as soon as P is greater than the threshold
(t). The threshold is set to the value of 4. A block at distance
t/2 from the end of perfected set is used as a triggered block.
Whenever there is a cache-hit on a triggered block, p sets of
blocks are pre-fetched and the triggered block position is reset.

Pre-fetch set p

~crement value of 72

—
LRU cache

gered block x

‘_, Trig

Fig 4: File access pattern
Algorithm adapts the values of p and g to reduce the pre-
fetched wastage and cache pollution. For this, the values of p
and g are incremented or decremented as follows. (See Figure
4) If the last block of the current pre-fetched set is not accessed
then it is an indication that the current value of p is too high.
We then decrement the value of p. In this case, the last block
from the pre-fetched set will move to the end of the LRU queue
without being accessed. We can give another chance to such a
block by moving it one position ahead towards the head of the
LRU queue. Whenever the last block in the current pre-fetched
set is hit, we increment the values of p and g.

IV.PROBLEM STATEMENT

One of the main goals of cooperative caching is to maximize
throughput while minimizing the cost of cache maintenance.

www.ijert.org

28

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

The hint-based cooperative caching achieves this optimality by
reducing the workload on the manager. Currently, a block is
fetched into the cache on demand. When a block is requested
for the first time, on every block request cache miss is
associated. We can reduce these cache misses by pre-fetching
the future request. The cooperative cache offers a huge amount
of aggregate memory, which can be well utilized. In many
cases we can find the blocks in the cooperative cache that are

BLOCK_SIZE : Size of individual block
DISK_ACC_TIME : Server disk access time.
CLIENT_CACHE_ACC_TIME: Client cache access time.
SERVER_CACHE_ACC _TIME : Server cache access time.
PROCESSIN_TIME : Processing time for data.
NETWORK_LAT : Network latency time for
data along the network.

MANAGER_NAME : Name of manager

not accessed for hours. Performance can be improved by LOWER_LIMIT : File size lower limit
replacing these unused blocks with more useful ones. Most of UPPER_LIMIT : File size upper limit

the pre-fetching algorithms suffer from the problems of pre- STRIDED : Random seed

fetch wastage and cache pollution due to fixed degree of pre- TYPE : Type of test case

fetch. We can reduce these problems by introducing an
adaptive degree of pre-fetch and improved LRU policy by
making it aware of the pre-fetched blocks.

Hint-based system implementation

We have implemented our system in a simulated environment.
The hint-based system is our base implementation. This section
explains the details of the simulation environment and the
various parameters used.

The simulation environment is implemented using Java. The
system is having five main objects namely Simulator, Server,
Client, Disk and Manager. The disk object emulates the storage
device. It is responsible for set of files and generating the
blocks. The files are represented using class objects with
different file sizes. The server objects are responsible for disk
object, server cache and discarded cache. Each disk read takes
m milliseconds to access a file block, where m is a constant
value set through the configuration file. The client objects are
responsible for simulating the read requests and managing the
local cache. Each remote block access time takes n
milliseconds where n is constant. A remote access time
includes round trip time. It is the total of time taken by a client
to send the message to the remote client and time to transfer the
block. The server cache access time is larger than client cache
access time. The manager object keeps track of the set of hints
for the blocks of a file. In order to keep hints accurate, manager
updates location of the hint to the last client who has opened
the file. The simulator object reads the configuration file and
initiates simulation as per this file. It is also responsible for
output graphs. The parameters we consider for our simulation
are mentioned below. These are maintained by the
configuration files.

NO_OF SERVER
SERVER_DISK_FILES

: Total number of servers

: Total number of files each
server should have. (Files
are simulated with random
file size)
CLIENT_CACHE_SIZE : Size of client’s cache.
SERVER_CACHE_SIZE : Size of server’s cache.

BEST1, BEST2, DISK,
RANDOM

: Total file reads

: Number of applications
running
DISCARDED_CACHE_SIZE : Discarded cache size
PREFETCH_COUNT : Pre-fetch count for OBA

TOTAL_FILE_READ
MAX_APPLICATION

Pre-fetching algorithm integration

Each client keeps track of the number of blocks from a file they
are accessing. The manager in our hint-based cooperative
cache forwards this information as part of the hint to the
requesting clients. The hint-based cooperative caching is the
most decentralized cooperative caching schema. Each of a
client manages its own cache using local information and
contacts the manager only if a block is not present in the local
cache or local hints. In our modified hint-based algorithm, each
of the client manages its pre-fetching locally since each client
has only the local information of the file access pattern.

OBA pre-fetching algorithm is most widely used pre-fetching
scheme. The algorithm has fixed degree of pre-fetch. When a
block is requested we also bring the next three blocks in the
cache before it is requested. For integration of the IS_PPM
pre-fetching scheme, our modified client constructs the graph
of access pattern for the file as discussed in the above section
and store them locally for future use.

For our AAP algorithm, each client initiates the pre-fetching of
the data structure to keep track of P and G values. All
applications running on the client share the same data structure
for P and G. When client initiates block lookup for a first block,
it brings p set of blocks in the sequence and asynchronous pre-
fetching is activated. We initialize the value of P to three and
G to zero. We also need to distinguish between lookup block
and pre-fetched block. For this purpose each block object holds
the pre-fetched flag. Each application maintains its current
pre-fetch set. This set is used to increment and decrement P and
G values as discussed above.

www.ijert.org

29

V.IMPLEMENTATION
METHODOLOGY

AND SIMULATION

Package structure

We have used the discrete event simulation methodology for
our simulation environment. The code structure is housed
under the simulation package as explained below.

A Client — This package contains an abstract class Client,
which is the base class and provides all necessary
methods for client's housekeeping. Hint-Based, OBA,
IS PPM and AAP clients are derived classes and
simulate the respective algorithms as explained in the
Section *. Each client contains LRU cache object as
described below and also maintains global and local hit
counts and total block reads.

A Disk — Package houses different objects to simulate
disks, files and blocks. Disk class generates the
required files and blocks based on pseudo-random
generator. The size of files is driven by
UPPER_LIMT and LOWER_LIMIT parameter of the
configuration file. Block objects contain master, pre-
fetched and accessed flags. Whenever client accesses
the block its access block is set to true. Access and
pre-fetched flag are reset, while forwarding the ‘block
to another client as part of the best-guess replacement

policy.

A Server — Package contains the server object
implementation. The server objects use the same LRU
cache implementations as the clients.

A Cache — This package houses the LRU cache
implementations. This custom implementation allows
us to vary the size of cache.

A Simulator — This is the main package that contains the Start,
Config and Graphgenerator objects. The Config class reads
the necessary simulation parameters from the configuration
file. After reading configuration parameters, an object of the
Start class initiates the simulation. The start class contains
the implementation for generating discrete events. Each
client contains an application that performs the read request
as instructed by the Start object on the respective client.
After completion of all read requests, the Graphgenerator
object collects the necessary data and generates the graphs.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Simulation methodology

We have used synthesized workloads instead of using real
traces. This has allowed us to consider those extreme cases that
otherwise would not be possible in the case of traces. The
cache and the file sizes together impact the performance of the
pre-fetching algorithms. Each of the modified clients runs
multiple applications requesting a different file for reading. We
have used pseudo-random number generator from the PJ
library [cite] for selecting a file from given N number of files.
For given N, it generates random number with 1/N probability.

For our test cases, two types of streams are considered namely
single stream and multiple streams. In the single stream, at a
given time only one application is requesting access to the file
on same client. On the other hand, in multiple streams more
than one application is requesting the files. We have to also
consider different lengths of files for our simulation. Pre-
fetching is affected by number of streams requesting files and
length of the sequences. Hence we have considered four
different test cases — multiple streams with long sequences,
multiple streams with short sequences, single stream with long
sequences and single stream with short sequences. We have
also run three ideal setups for evaluating best-case and worst-
case conditions. These setups provide base conditions for other
test cases.

Experiment and Result Analysis

All the experiments were performed on intel Xeon X3440
processor capable of running 12 threads with 12GB internal
memory. This section provides analysis of an experiment
conducted as described in the proposal section.

Evaluation Metrics

In order to evaluate the performance of the proposed algorithm,
we have used following evaluation metrics.

Average block access time: This is the ratio of time taken by
a client to locate the file block and fetch it into the cache
against total number of clients.

Global cache hit ratio: This is the ratio of the number of
blocks found in other client’s cache against total number
clients. Average local cache miss ratio: This is the ratio of
the number of blocks found in a client’s local cache to total
clients. Disk access time: This is the ratio of the total
number of disk reads against the total number of clients. Pre-
fetch wastage: This is the percentage of pre-fetched wastage
against total number of clients. Pre-fetched wastage is (un

www.ijert.org

30

accessed blocks evicted / total blocks evicted).
Base Cases

All blocks available in local cache

This base case simulates ideal setup where all blocks are
available in the client's local cache. We have to first fill the
client cache with set of files and later tell the clients to read the
same set of files. Figure 5 shows an average access time
comparison between four algorithms for this base case. All the
four algorithm's average access time is same as that of the
client cache access time. This case provides optimal average
time for accessing the file blocks.

Average access time vs No of clients

1.165 T T T T 1 T
Hint based —
OBA
. 1.16 ISePM
g AAP ——
= 1.155 - B
£
[}
£ 1.15
=
&
v 1.145 - B
o
o
<
1.14 - B
1.135 | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200
Number of clients
Fig 5: Average access time VS number of

clients

All blocks available in remote client cache

This base case simulates setup where all requested blocks are
available in peer client's cache. We first fill the client cache
with set of files and later tell the clients to read the set of files
that are not present in their own cache. This case provides base
condition for when the blocks are located in the global cache.
Figure 6 shows an average access time comparison between the
four algorithms. All the pre-fetching algorithms outperform
the hint-based algorithm. Access time for pre-fetching
algorithms is less as compared to the hint-based since time
taken to fetch N blocks one at a time is more than when they
are fetched simultaneously as is the case in the pre-fetching
algorithms.

Average access time vs No of clients

3.8 T ‘ : | — : ‘
i Hint bageBc,iA —_
L T —]
.o FL |SpPM
3 W AAP ——
= 34 |
= jj
£ 320 _
E
@
u 3 _
o
o
<
28 fME* 1
2.6 L ! L | 1 1 1 1 !
0 20 40 60 80 100 120 140 160 180 200

Number of clients

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Fig 6: Average access time VS number of clients
All blocks are read from the disk

This base case simulates setup where all blocks are read from
the disk. We tell each client to read unique set of files. This
case provides the worst-case scenario for all four algorithms.
Figure 7 shows an average access time comparison between the
four algorithms. As observed, the disk access time for the hint-
based algorithm is more than the pre-fetching algorithms.
Modern disks store the file blocks in contiguous memory
locations [reference]. This provides an added advantage while
accessing contiguous blocks. Because of this time for
accessing N blocks in the single 1/0 request is less than that of
N number of 1/O requests. Due to an adaptive degree of pre-
fetch the AAP algorithm outperforms the other three
algorithms with respect to average access time.

Average access time vs No of clients

14 T T T T T I— T T
- Hint hased ———
OBA ——
o 135 1SpPM
Y AAP ———
= 13 - -
£
v
£ 125 - —
E
b
] 12 - -
o
o
<
115 - —
11 I I I I I I I I !
0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig 7: Average access time VS number of clients

Test Cases

In each of the following test case we have run four clients with
the same number of blocks and the same set of files.
Configuration parameters used for each test case are listed in
the appendix A. The collected data for each test case is listed in
a tabular format in the appendix B. We have used the same
time constants for all the test cases in Table 1. All the timings
are in microseconds and the block size is in kilobytes.

Multiple streams with long sequences

In this test case we have used maximum of three applications
on each client. We have used files with long sequences with an
average of 51 blocks per file. Figures 8, 9 and 10 show the
performance comparison between the four algorithms. In
Figure 9, we observe that running multiple applications that are
requesting files with long sequence impacts the cache wastage.
After 40 clients the cache wastage is down to zero. Figure 8
plots the comparison analysis of the average access time for all
the four algorithms. Figure 10 plots local hit and miss, global
hits and disk read ratios. The local miss and hit ratio plots are
proportional to each other. As observed, all the algorithms
produce same global hits and disk reads. This is because all
pre-fetching algorithms are simulated on top of the hint-based
model. In Figure 10 (c), the pre-fetching algorithms show

www.ijert.org 31

fewer number of disk reads as compared to the hint-based

algorithm.
. . 40000
Average access time vs No of clients
‘ T T T T 35000
Hint based —
OBA —— 2 30000
o ISpPM £
2 AAP —— T 25000
(]
c o
o y = 20000
c =]
E a E 15000
[
g 7 2 10000
— 3 5000
2 | | | | | | | | | 0
0 20 40 60 80 100 120 140 160 180 200
Number of clients
Fig 8: Average access time VS Number of clients
Wastage percentage vs no of clients
T T T T Hi It b Id T
A _ 30000
° ISpPM
= AAP ——] 25000
€ 0
I B o
g i E 20000
[}] v
= _ 20 15000
< o 2
g - s
= ~ 10000
[F]
0 —]
0.1 ! 1 ! ! 1 1 1 1 ! 5 5000
0 20 40 60 80 100 120 140 160 180 200 0
No of clients
Fig 9: Perecentage of wastage VS number of clients -5000
Local Hits vs No of clients
30000 T T T T T L T T
oa g Hintbased ———
OBA ——
% 20000 [HCCCTeTT AP —— 30000
S
o 25000
% 15000 - . £
C =
@ T 20000
g 10000 - 8
= < 15000
5000 - = °
8 10000
O bbb ey — g
0 20 40 60 80 100 120 140 160 180 200 =
5000
Number of clients
Fig10: a) Local hit ratio 0

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Local miss vs No of clients

T T T T
N Hint based ———
J|jr OBA ———
L\M_ ISpPM
e — AAP
SRR KN M KX —
M 3 : 5t :

0 20 40 60 80 100 120 140 160 180 200

Number of clients
Figl0: b) Local miss ratio

Disk read vs No of clients

" Hint based ——
OBA _
1SpPM
AAP —— _

I I I ! I I I I I
0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig10:c) Disk read ratio

Global hits vs No of clients

! 1 1 1 1 1 ! ! !
0 20 40 60 80 100 120 140 160 180 200
Number of clients

Fig10 :d) Global hit ratio

Multiple streams with short sequences

In this test case we have used maximum of three applications
on each client. We have used files with short sequences with an

www.ijert.org

32

average of 15 blocks per file. Figures 11, 12 and 13 show the
performance comparison between the four algorithms. Figure
11 plots the comparison analysis of the average access time for
all the four algorithms. Figure 13 plots local hit and miss,
global hits and disk read ratio. As observed, due to short
sequences the average access time is reduced significantly as
compared to long sequences in the case of AAP. This is
because of AAP algorithm adapts to high pre-fetch degree for
short sequences.

Average access time vs No of clients

18 T T T T T T T T
Hint based —
16 OBA ——
1SpPM
U p
g 14 AAP ——— |
s
c 12 4
]
£ 10 _
g
w8 —
[
g
2 6 7
4 s
2 | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200
Number of clients

Fig 11: Average access time VS Number of clients

Wastage percentage vs no of clients

T T T Hint based —
OBA —— -
© ISpPM
o AAP —— 7|
I A
]
g |
[
oD -
©
]
g i
-0.1 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
No of clients
Fig 12: Perecentage of wastage VS number of clients
Local Hits vs No of clients
25000 | ‘ |
int based
OBA
» 20000 ISsPM 4
2 AAP ——
O 15000 [-
o
[Te
o
@ 10000 |- -
0
£
z
5000 + =
0 b |

0 20 40 60 80 100 120 140 160 180 200

Number of clients

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Fig 13: a) Local hit ratio

35000

30000

20000

15000

10000

Number of local miss

5000

0

25000

Local miss vs No of clients

i

X

" Hint based

OBA —— _

ISpPM

+‘+~+—4——4—|—+—¢-_|. — —AAP—

FEIEIH—H—H—H— e

— B & 1)
| | | | 1 | | | |

0

20 40 60 80 100 120 140 160 180 200

Number of clients

Fig 13: b) Local miss ratio

25000

20000

15000

10000

5000

Number of disk reads

-5000

Disk read vs No of clients

" Hint based —
OBA
ISpPM
AAP ———

0

20 40 60 80 100 120 140 160 180 200

Number of clients

Fig 13: ¢) Disk read ratio

30000

25000

20000

15000

10000

Number of global hits

5000

0

Global hits vs No of clients

" Hint based ——

oA
ISpPM
AAP

0

20 40 60 80 100 120 140 160 180 200

Number of clients

Fig 13:d) Global hit ratio

www.ijert.org

33

Single streams with long sequences

In this test case we have run a single application on each client
and used the files with long sequences with an average of 16
blocks per file. Figures 14, 15 and 16 show the performance
comparison between the four algorithms under given
simulation parameters. Figure 14 plots comparison analysis of
the average access time for all the four algorithms. Figure 16
plots local hit and miss, global hits and disk read ratio. Figure
15 shows the ratio of percentage of cache wastage to the total
number of clients. We observe that the cache wastage is less as
compared to the previous test cases.

Average access time vs No of clients

16 _g‘ I I T I T T T T T
Hint based ——

14 3)(*\ OBA —— |
o *\ 1SpPM
8 12 N\ AAP ——
& \
£ |
= ol x |
£
F 8 _
w
w
(')
g 6r A
<C

4 - ————

2 | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig 14: Average access time VS Number of clients

Wastage percentage vs no of clients

T T T
Hint based ——

30000

25000

20000

15000

10000

Number of local hits

5000

40000
35000
30000
25000
20000

15000

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Local Hits vs No of clients

| | |
Hint based ———

T

R

OBA — |
ISpPM
ARP ——

T T o e o I ey I B SR !

0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig 16: a) Local hit ratio

Local miss vs No of clients

oBA ——
1SpPM |
AAP ——

Wastage percentage

0.1 ! L ! ! L L L L !
60 80 100 120 140 160 180 200

No of clients
Fig 15: Perecentage of wastage VS number of clients

Number of local miss

10000

5000
0

T T T T

+ Hint based ——

_1’ OBA 7
- ISpPM
Kﬂ"‘\h+—+—|—|—o——__+ - ___MP— —

A P P R e M *

?%E?EEE‘?‘“‘EP“?\E_Q—M I I !)

0 20 40 60 80 100 120 140 160 180 200

Number of clients

Fig 16: b) Local miss ratio

30000

25000

20000

15000

10000

5000

Number of disk reads

-3000

Disk read vs No of clients

" Hint based
OBA — — _
ISpPM

AAP —— _|

I I I ! I I I I I
0 20 40 60 80 100 120 140 160 180 200

Number of clients

Fig 16: c) Disk read

www.ijert.org

Global hits vs No of clients

30000

25000

20000

15000

Number of global hits

0 ‘I ! ! ! ! ! ! 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig 16: d) Global hit ratio

Single streams with short sequences

In this test case we have again run a single application on each
client. But now we have used files with short sequences with
an average of 15 blocks per file. Figures 17, 18 and 19 show
the performance comparison between the four algorithms.
Figure 19 plots local hit and miss, global hits and disk read
ratio. Figure 17 plots comparison analysis of the average
access time for all the four algorithms. We observe that the
average access time and the cache wastage in the pre-fetching
algorithm are less compared to the previous test cases. This is
because, this test case has only one application running on the
client that requests short sequences.

Average access time vs No of clients

18 T T T T T T T T
Hint based —
16 o OBA ——
Y 14 ISpPM |
E %5\\ AAP ——
e 12 N .
S %
£ 10 i
E
] 8 i
[
o
g 6 :
4 =
2 L L

0 20 40 60 80 100 120 140 160 180 200
Number of clients
Figl7: Average access time VS Number of clients

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

Wastage percentage vs no of clients

Wastage percentage

T T T T T T T

Hint based —
OBA ——
I1SpPM

AAP ——]

40 60 80 100 120 140 160 180

No of clients

Figl8: Perecentage of wastage VS number of

clients

30000

25000

20000

15000

10000

Number of local hits

5000

40000
35000
30000
25000
20000

15000

Number of local miss

10000
5000
0

Local Hits vs No of clients

200

ORI IO — SP

e T T i mee SN

0

20 40 60 80 100 120 140 160 180

Number of clients
Fig 19: a) Local hit ratio

Local miss vs No of clients

200

+
N

\K’"'“\Vw—*_—r o —

HOEFOOOOOC

%?'E'E'B?—E—ﬁ;\nm* | Lo 1

I I I I

Hint based ——
OBA ——
I1SpPM

AAP ———
iR —t

0

20 40 60 80 100 120 140 160 180

Number of clients

Fig 19: b) Local miss ratio

www.ijert.org

200

35

Disk read vs No of clients
25000

I I I I I
e Hint based ———
20000 ™ OBA —
" ISpPM
® AAP ——
Y 15000 —
vy
0
< 10000 .
o
g
e 5000 —
=3
=
0 = h
5000 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Number of clients
Fig 19: c) Disk read
Global hits vs No of clients
30000
25000
H]
=
= 20000
0
o
2 15000
o
g
£ 10000
3
=
5000
0 ".. | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 200

Number of clients
Fig 19: d) Global hit ratio

V .CONCLUSIONS

This project is aimed at reducing the problem of cache wastage

and cache pollution and integration of pre-fetching scheme in

hint-based cooperative caching. The simulation results above

show that AAP algorithm outperforms the other three

algorithms.

e Average access time: Figures 8, 11, 14 and 17 show

that the average access time taken to access the block
is less than that of the other three algorithms. As from

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
ICIAC' 14 Conference Proceedings

the graphs, average access time is less in the test cases
where single application is running.

e Cache wastage: Figures 9, 12, 14 and 18 plot cache
wastage for the four test cases. We have observed that
due to an improved LRU policy of AAP algorithm
cache wastage has reduced significantly in all the four
test cases.

e Disk reads: Figures 10(c), 13(c), 15(c) and 19(c) plot
the total disk reads against total number of clients.
For 3 to 15 clients the total available cache is small
for large pre-fetching of blocks. The AAP algorithm
thus maintains small pre-fetching degree for reducing
cache wastage. Because of this AAP algorithm has
more disk access than OBA and IS_PPM for small
number of clients. As the total memory is increased
the AAP algorithm thus outperforms OBA | IS_PPM
and the hint-based algorithms.

e Local hits/miss ratio: Figures 10(a), (b), 13 (a), (b),
15 (a), (b) and 19(a), (b) plot the local hit and local
miss ratios. Due to asynchronous nature of AAP the
local misses are significantly reduced.

ACKNOWLEDGMENT

I would like to thank Professor Hans Peter Bischof for his
valuable guidance and support throughout implementation of
my master’s capstone project. | would also like to thank
Professor James Heliotis for his valuable inputs on project
document tation.

References

[1] E. Anderson, C. Hoover, and Xiaozhou Li. New algorithms for _le system
cooperative caching. In Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010 IEEE International
Symposium on, pages 437 {440,aug. 2010.

[2] T. Cortes and J. Labarta. Linear aggressive prefetching: a way to increase
the per-formance of cooperative caches. In Parallel Processing, 1999. 13th
International and 10th Symposium on Parallel and Distributed Processing,
1999. 1999 IPPS/SPDP.Proceedings, pages 46{54, April 1999.

[3] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Fixed and adaptive
sequential prefetching in shared memory multiprocessors. In Parallel
Processing, 1993. ICPP 1993. International Conference on, volume 1, pages
56{63, aug 1993.

[4] Binny S. Gill and Luis Angel D. Bathen. Optimal multistream sequential
prefetching in a shared cache. Trans. Storage, 3(3), October 2007.

[5] P. Kristian K. M. Curewitz and J. S. Vitter. Practical prefetching via data
compres-
sion. In SIGMOD Management 1993.

of Data, 257{266,

pages

www.ijert.org 36

