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Abstract— Fault tolerant control of dynamic processes is 

investigated in this paper using an auto-tuning of Adaptive PID 

controller. A fault tolerant control scheme is proposed composing 

an auto-tuning Adaptive PID controller based on an adaptive 

neural network model. The model is trained online using the 

Unscented Kalman filter (UKF) algorithm to learn system post-

fault dynamics. Based on this model, the Adaptive PID controller 

adjusts its parameters to compensate the effects of the faults, so 

that the control performance is improved. The auto-tuning 

algorithm for the Adaptive PID controller is derived with the 

Lyapunov method and therefore, the model predicted tracking 

error is guaranteed to desired point asymptotically.  

Keywords - Adaptive NN models; auto-tuning Adaptive PID; 

Unscented Kalman filter (UKF); fault tolerant control. 

I. INTRODUCTION 
With fast increase in difficulty of modern control systems, 

the importance of the fault tolerant control (FTC) concept and 
technology has been appreciated and accepted by industry. 
Control system stability and reliability are not only vital for 
some projects where stringent safety conditions apply, e.g., 
nuclear power stations and passenger airplanes, but also 
essential for significant productions, since most of present 
industrial plants are complex and often include a number of 
subsystems which may balance for the effects of sensor faults 
and element malfunction.   

This requires solutions that are very costly in both hardware 
and development attempt. Therefore, FTC is very important 
from the viewpoint of safety, as well as reduced production 
costs. FTC offers the ability to avoid accidental process shut 
downs from simple faults, e.g. in instrumentation and control 
loops that could develop into production loss or plant failures. 
Recently, FTC in most real industrial systems are appreciated 
by hardware redundancy. For example, the majority-voting 
scheme is used with redundant sensors to cope with sensor 
faults [1]. However, due to two main limitations of the 
hardware redundancy, high cost, and taking more space, 
solutions using analytical redundancy [1] have been 
investigated over the last two decades.  

 
There are generally two different approaches using 

analytical redundancy: 1) passive approaches, and 2) active 
approaches. Passive approaches use robust control techniques 
to design closed-loop systems so that it is numb to certain 
faults, e.g., [2]. In recent times, an elegant design method of 
passive approach was proposed by Chen et al. [3], in which the 
linear matrix inequality (LMI) method was used to synthesis 
the consistent controller. Different faults were formulated as 
constraints in the method and were considered in the optimal 

design using LMI.  While the design example showed the 
stability and maintenance of suitable system performance, a 
limitation is that the method is based on an accurate linear state 
space model and therefore, is not capable of controlling 
nonlinear processes for which an accurate analytical model is 
usually not available.  

In addition, because the passive approaches consider fault 
tolerance in only the stage of controller design without taking 
adaptation when faults occur, the amplitude of the faults that 
can be allowable is usually limited. Active approaches use 
online fault adjustment information and reconfigurable 
controllers. When a fault is identified using analytical or 
hardware redundancy, the controller is reconfigured to 
guarantee the post-fault stability and maintain acceptable 
performance. Active FTC has been explored using different 
methods including the feedback linearization [4], control law 
rescheduling [5], and model following control [6].  

Reconfigurable control against plant component faults has 
been studied using state feedback, where the feedback gain 
matrix was designed using linear quadratic regulation method 
[7], the pseudo inverse method [8] and eigen structure 
assignment method [9]. However, these studies were also based 
on linear models so that they are not suitable for nonlinear 
processes. Model predictive control (MPC) has been employed 
in FTC [10], [11], where an adjustable objective function was 
optimized based on a simple linear model. The model was 
expected to learn the post-fault dynamics if the amplitude of 
the fault is not too large. The research utilizing this method is 
active and the models used are extended to nonlinear models. 

 

Figure 1.  Structure of the NN-based Auto-tuning PID control system 
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II. STRUCTURE OF FTC SCHEME 

The aim of the FTC is to obtain a control variable to force 
the process to track the preferred trajectory when the process is 
not subject to any error, while to keep up the system constancy 
and to make progress from the performance degradation high-
speed when fault occurs in the process. Allowing for that 
element or organic processes are difficult and their 
mathematical models are usually unfamiliar, an active fault 
tolerant control approach is developed in this section.  

 
The control design includes two parts, one is using a NN to 

model the process and the model is made adaptive to hold the 
dynamics change caused by the fault, another is an auto-tuning 
PID controller based on the model. When the model captures 
the post-fault dynamics, the PID controller is modified to 
balance the degradation of system stability and performance. 
The MLP model is online modified with the model calculation 
error using the EKF algorithm. The modified model is used to 
calculate process output at next sample time. The prediction is 
used by the auto-tuning algorithm to derive an optimal control 
variable. 

In Fig.1 PID controller adapts its parameters in the way that 
the produced control variable will drive the NN model output 
to track the desired reference. A recursive auto-tuning 
algorithm derived using the Lyapunov method will make the 
optimal control that is guaranteed to minimize a squared 
tracking error. The wide line between the model used for 
prediction and that to be adapted indicates that the formation 
and weights are shared between the two models. 

 

III. ADAPTIVE NEURAL NETWORK MODEL 

A. NN Model 
To model the system dynamics and also to capture the time-

varying dynamics of the process, an adaptive Multi Layer 
Perceptron (MLP) network model is developed. The NARX 
model used for this multivariable nonlinear system is
 

            kenky,,...1ky...,,ndku...,,1dkugky yu    (1) 

where 
pRy  and 

mRu  are the sampled process output 

and input vectors, and ny and nu are the output and input order, 
d is the input transmission delay, e is the measurement noise 

and  •g is the vector valued nonlinear function. Similarly, the 

MLP network model used is : 
 

            kenky,,...1ky...,,ndku...,,1dkuĝkŷ yu      (2)   

where 
pRŷ  is the estimated process output by the NN 

model and  •ĝ is an approximated nonlinear function of  •g . 

The MLP network with one hidden layer of neurons is 

implemented.    khWkŷ y   (3) 

where 
 1qpy RW  is the weight matrix connecting 

output and hidden layers,   1qRkh   is the hidden layer 

output vector where each entry is transformed from the 
corresponding entry in z(k) by using a sigmoid activation 

function as :       
 kzii

ie1

1
kzfkh




 ,   

i = 1, 2, …, q                                             (4) 

              kxWkz h          (5)  

      

where  1nqh RW   is the weight matrix connecting the 

hidden and input layers,   nRkx  where n = mnu + pny + 1  is 

the network input vector. Thus x(k) and h(k) are defined by :  
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with the last entry introducing bias to the hidden layer. 
 

B. UKF – Based Training Algorithm 

UKF Training The UKF algorithm for NN training is 
similar to that of EKF; again, all the connecting weights are 
organized as a state vector, but now the state is calculated 
through unscented transformation [12], [13] and propagated 
analytically through nonlinear system without the need to 
evaluate the Jacobian matrix. The generic  

UKF can be summarized as in the following steps. 
STEP 1)     Initialization 

               
 

   T
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ŵwŵwEP

wEw




         

     (8) 
 
STEP 2)     Calculation of the sigma points 

 

  
 kL
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
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  
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
     (9) 

where i = 1,2,…,L and L is the state dimension. The 
parameter k is used to control the covariance matrix.  

 
STEP 3)     Time Update 
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ŵŵP

ŵ
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STEP 4)     Measurement update 
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ŷyŵG
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C. NN based UKF algorithm 

We attempt to improve the algorithm in [14] under the 
framework of UKF and apply the new method to the problem 
of nonlinear filtering. The state evolution equation and 
observation equation are given as 

 

  kkk

kk1k

vxhy

nxfx




      (13) 

where nk and vk represent process noise and observation 
noise, respectively. We denote ek as the error between true 

model and the a priori known mathematical model  kxf̂ , 

namely e(k)=f(k) -  kxf̂ . We can adjust the weighs of the NN 

through the observation if and only if the observability 

condition is met. When 0)wx(g)k(e kk  , the error is 

well approximated, and the more accurate model becomes the 
sum of f(xk)and the NN approximation, so we have : 
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   (14) 

If we represent the augmented state vestors as 

 
T

T
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a
k

wxx  , then the above equations(write the equation 
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Because the observation is only related with the state x, the 

equation   kkk vxhy   remains unchanged. Now the 

estimation of 
a
k

x̂ based on the new model (15) and the noisy 

observation   kkk vxhy  . Once given 
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we can get 1L2 a    vectors 
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(i=0,1,…,2La, and La is the dimension of 
a
k

x ), according to 

the equation  
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   (18) 

and at instant k-1 , then the filtering procedure of NN-aided 
UKF can be carried out recursively in the similar way ,but now 

1k,i1k/k,i    and  k1k|k,i1k|k,i x,gy     are replaced 

by  w
1k,i

x
1k,i

a ,f


 and  x
1k|k,i1k|k,i xhy   , respectively. 

The Procedure of applying the UKF algorithm to the 
adaptive model is given as follows: 

Step 1)    Obtain the past process output yk and past control 
variable u at sample time k to form NN model               input 
vector xk in (4). 

Step 2)      Obtain the current process measurement output 
yk which is used as the training target. 

Step 3)     Update the error covariance matrix kP using (10) 

& (11). 
Step 4)    Implement the UKF based training algorithm (13)  

- (18) 
The developed adaptive MLP model is evaluated by 

modeling the simulated CSTR process and this is described in 
Section V. 

 
 

IV. AUTO TUNING FOR ADAPTIVE PID 

CONTROLLER 
In this paper, an adaptive neural model is proposed for the 

multivariable PID controller based on self-learning algorithm. 
The PID controlled tracking error is evaluated using model 
prediction and then an optimal set of PID parameters is 
iteratively approached. Thus, minimum squared tracking error 
can be obtained. The discrete-time multivariable PID controller 
is considered as : 

           
   
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1keke
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d
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 
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(19) 

where   p
T Rke  is the process tracking error defined as 

:      kykyke dT   

where   p
d Rty   is the desired trajectory, T is the 

sampling time, pm
p RK  , pm

i RK  and 

pm
d RK  are PID controller parameter matrices, and m is 

the number of input. To estimate the optimum PID parameters, 

 kKp ,  kKi  and  kKd , a parameter vector 

  mp3
pid Rk  is formulated as : 
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where  kk
jp ,  kk

ji  and  kk
jd denotes the jth row in 

 kKp ,  kKi  and  kKd , j = 1, 2,…, m. 
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Inorder to obtain the optimal control variable in each 
sample period k, an iterative algorithm is developed which 
minimizes the objective function of the predictive tracking 
error. These tuned PID parameters are used at the end of 
sample period to produce control variable. Here the sample 
time is expressed as k and i denotes the iterative step within 
each sample period. Inorder to avoid confusion with the 
iterative step i, variable at sample time “(k)” is change to “|k” 

in the iterative process, such as   kpidpid k  . 

 On predicting  kpid ,   mp3
pid Riˆ  is used to denote 

the optimum PID parameters in the iterative process. The PID 
auto-tuning algorithm is defined as : 

           ieiKiˆiˆiˆ1iˆ
tpidpidpidpidpid        (21) 

where  iKpid  is the gain matrix,   p
t Rie  is the NN 

model tracking error and eT is the process tracking error. 

   iŷyie k|dt   

    kX,iûĝiŷ 
                                   (22) 

where p
k|d Ry   is the desired output at sample time k, 

 iŷ is the NN model output in iterative step i within the 

sample period.  iŷ is a function of the predicted optimal 

control variable,   mRiû  such that : 

       
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iK|EiK|eiKiû

1kTkT
dkpidikTp


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with     




k

1j

jpidkpid ekE|E .     (24) 

In order to derive the gain matrix in Kpid at each iterative 
step i, such that the convergence of the NN model output to the 
desired process output is guaranteed, a discrete-time Lyapunov 
function is chosen as follows: 

       ieieiV t
T

t                    (25) 

where  is a positive constant and thus, V(i) is positive 
definite. For V(i) calculation, define 

     ie1ieie ttt  . In discrete time operation, 

 iˆ
pid can be approximated by the derivative of 
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Then, the increment of the Lyapunov function,  iV  is 

expressed as : 
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where the gain matrix  iKpid  is given as : 
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Then
 iV

becomes, 
       ieie12iV t

T
t

.  

If  < 1 is chosen, then 
 iV

 is always negative. In the 

design of the gain matrix,  < 1 is chosen as the learning rate to 
adjust the self-learning speed of the PID parameters. Due to 
this, the predictive tracking error will converge to zero. 

Thus, when the gain matrix  iKpid is chosen according to 

(28), the PID parameter vector,  kˆ
pid will asymptotically 

converge to the optimal value at each sampling time in the 
sense of driving the model tracking error to minimum value.  

The Tracking performance of Auto –tuning PID controller 
is as shown in figure. 2  

 

 
 
 

 
 

Figure 2.  Tracking performance of Auto tuning PID controller  
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The PID auto-tuning procedure is as follows: 
Step 1)    For each sample time k, form the NN model input 

vector X(k) by obtaining the desired trajectory  1kyd  the 

past control variable u (k) and the past process output y (k). 
Step 2)    Implement the PID auto-tuning algorithm given in 

(22), (28), and (21) in iterative form to predict         the 

optimum PID parameter vector,  kˆ
pid . The value at the last 

sample time  1kpid   is assigned to be the initial value 

 0ˆ
pid . 

Step 3)    Calculate the optimal control variable  iû  in 

(23) by applying the obtained  iˆ
pid  to the PID        

controller. 

Step 4)    Calculate the model output,  iŷ   and model 

tracking error,  iet  in (22) by applying the                  

obtained  iû  to the NN model at each iteration step, i. 

Step 5)    Repeat Step 1 to Step 4 until the NN model 
tracking error, is less than a pre-specified threshold or a 
specified bound to the iterative step is reached. 

Step 6)    Set  kpid  to be equivalent to  finalpid i̂  , and 

then apply it to the PID controller in the process. 
 

CONCLUSION 
The proposed system employs an adaptive PID controller to 

compensate the fault effects. The convergence of the predicted 
tracking error for auto-tuning algorithm is derived with 
Lyapunov method. In UKF algorithm, the post-fault dynamics 
can be modeled in time and thus, the degradation in the process 
tracking performance and in system relative stability is quickly 
recovered. The adaptive NN model is online trained with 
measurement process input output data and consequently, the 
effects of sensor faults will also be modeled. Thus, the sensor 
faults are not tolerable with the developed method. This leads 
to a process tracking error of the size of the occurred sensor 
fault. The research work can be undergone on sensor fault 
tolerance in processes with unknown dynamics. The potential 
applications include different industrial processes with 
multivariable and nonlinear dynamics. 
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