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Abstract—For any fire control system, performance 

improvement of Line Of Sight (LOS) stabilization subsystem 

enhances its mission capabilities. Designing controllers for a 

LOS stabilization subsystem, which is subjected to model 

uncertainty, is an interesting and challenging problem. In this 

paper different control techniques for LOS stabilization 

subsystem are used. The designed controllers are classical 

Proportional-Integral (PI) controller, genetically tuned PI 

controller, Linear Quadratic Regulator (LQR) controller, 

Linear Quadratic Gaussian (LQG) controller, and H∞ 

controller. Their performances in normal conditions are 

compared. They are also compared from robustness to model 

uncertainty point of view. Simulation results are used to 

determine the effectiveness of each controller in normal 

conditions and also when the system is subjected to model 

uncertainty.  

Keywords—Classical Proportional-Integral (PI) Controller; 

Genetically Tuned PI controller; Linear Quadratic Regulator 

(LQR) Controller; Linear Quadratic Gaussian (LQG) 

Controller;  H∞ Controller. 

I. INTRODUCTION 

Stabilized platform has many uses in various 
applications. One of the most common applications is in 
stabilization of the Line Of Sight (LOS) systems. Sensing 
equipments such as, electronic imaging devices, cameras, 
radars, and navigation instruments are operated in moving 
vehicles that may be undertake rotational motion around 
their center of rotations. In such an environment, because 
of the disturbance from the carrier, these equipments 
cannot work normally and finally lose their functions. In 
order to guarantee accurate performance, (LOS) 
stabilization technology is used to isolate LOS sensors 
from carrier disturbance. The LOS stabilization system is 
a system that keeps the sightline of an electro-object sensor 
when it is exposed to external disturbance such as base 
motion[1]. 

The main function of LOS stabilization systems can be 
defined briefly as maintaining or controlling the LOS of 
one object relative to another one. To achieve this function 
many control techniques have been proposed. A composite 
scheme, use a Proportional-integral-derivative (PID) and 
adaptive control to control a gyro mirror of LOS system, is 
proposed by K.K. Tan et al [2]. The effectiveness and 
applicability of the proposed control scheme are verified by 
Simulation and real-time experimental. Another control 
scheme was proposed a proportional-integral-double 
integral (PII2) controller for gyro stabilization electro-
optical platform [3]. In this platform the most important 
index that must be put forward is the zero steady state error 

index. Analysis were firstly done on two classical control 
schemes, the first scheme based on angle feedback using 
gyro designed in frequency domain. The second scheme 
introduced was the rate gyro feedback scheme using PID 
compensator [4]. A stabilized platform has been introduced 
with double closed loop control system. Speed feedback 
loop is designed using PID controller and displacement 
feedback loop is designed using Fuzzy Neural Network 
(FNN) controller. A development of the angular rate 
kinematics equations is represented for the non-linear 
coupled mirror LOS stabilization system [5]. Another 
system for stabilizing platform of a ship carried antenna 
and its core component, is discussed to develop a control 
system composed of three control loops, each of which is 
associated with a single-variable controller [6]. First, PID 
controller was applied; then, Takagi-Sugeno fuzzy 
controller was used for controlling the platform. Simulation 
tests were established and the results have demonstrated the 
effectiveness of the proposed Takagi-Sugeno fuzzy 
controller comparing to the PID controller. 

PID controllers are commonly used in industrial 
controlled systems as a result of the reduced number of 
tuned parameters [7]. Under the linear conditions of the 
process, classic PID controller can reach the required 
performance. But, under the conditions with nonlinear 
constraints and uncertainties the classical PID controller is 
hard to achieve the system desired performance with the 
required accuracy [8]. The uncertainties in the model may 
come from un-modeled dynamics, parameter variations, 
linearization of nonlinear elements, etc. The controller that 
guarantee stability and provide satisfactory performance in 
the presence of model uncertainties, is called robust 
controller [9]. 

In this paper, different control techniques for 
controlling LOS system will be designed and compared to 
select the best technique that achieve acceptable system 
performance and to be robust to model uncertainty.  

II. SYSTEM DESCRIPTION 

The system under investigation is a dual axes stabilized 
platform that consists of inner and outer gimbals, each of 
position is determined by the elevation angle θ1 and the 
azimuth angle θ2 respectively. Two armature current 
controlled DC motor is used to drive each rotating axis. 
The inertial angular velocities in both elevation and 
azimuth directions are measured using two optical fiber 
gyros. In addition, two optical encoders are used to 
measure the angular position of each axis. These gyros and 
encoders are used for feedback control of the system. 
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Figure (1) shows the 3D solid modeling that is designed on 
pro/E software for calculation of the system parameters 
[10]. Figure (2) illustrates the block diagram of the system. 

 

Fig.(1): 3D solid modeling of the dual axis stabilized platform [10]. 
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Fig.( 2): The power train flow chart of the system. 

 

By defining the Euler angles, transformation matrices 
and dynamic equations of the system, the dual axis inertial 
stabilized platform can be represented through the 
following two second order differential equations given in 
(1) and (2) 
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where: 

va(t) Armature volt. 

Km  Motor torque constant. 

Kb Back electromotive-force voltage constant. 

Kf Field winding constant. 

KIf Field winding constant for inner gimbal motor. 

KOf Field winding constant for outer gimbal motor. 

Ra Armature winding resistance (ohms). 

IIy mass moment of inertia around y axis for inner 

gimbal. 

IOz mass moment of inertia around z axis for outer 

gimbal. 

 
The transfer function of a linear, time-invariant, 

differential equation system is calculated as in [11]. By 
taking the Laplace transform for both differential equations 
given in (1) and (2), equation (3) and equation (4) can be 
obtained: 
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Rearranging equation (3) and equation (4), the transfer 

functions of the inner and outer gimbals models as a 
relation between input voltage and output angular position 
can be written as in equation (5) and equation (6): 
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The physical parameters of gimbals, actuators, and 
sensors that used in simulation are listed in table (1). 

Table (1): The physical parameters of the system. 

 Inner gimbal Outer gimbal 

Moment of inertia 0.0289536 Kg.m2 0.01150 Kg.m2 

 

Motor 
parameter 

Type S-50-39-A S-50-39-A 

Ra 6.6 (ohms) 6.6 (ohms) 

La 1.5 (mH) 1.5 (mH) 

Kb 0.098 v/rad/s 0.098 v/rad/s 

Km 0.12 0.12 

Gyro Type ARS-15 MHD ARS-15 MHD 

Scale 
Factor 

1v/(rad/s) 1v/(rad/s) 

III. CONTROLLERS 

The controller should be able to compensate for 
disturbance signals. Although faster angular rate response 
will result in smaller steady state angle tracking errors and 
faster disturbance rejection capabilities, a response that too 
fast will lead to instability. 
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With the above consideration, the following 
specifications are set for both azimuth and elevation 
controllers: 

• Settling time less than 0.25s. 

• Overshoot of less than 20%. 

• Zero steady state error. 

A. Design of PI Controller 

Based on the minimization of integral of time weighted 
absolute error index [12], a PI controller with pre-filter is 
designed as in figure (3). Dynamic performance is 
discussed for settling time, overshoot and steady state error. 

Pre-filter
Step 
input

PID 
controller

Gc

Plant
Gp

+

-
scope

 

Fig.( 3): Block diagram of the plant model under a PI controller. 

 
The optimal PI controller parameters are KP=63.6, 

KI=1300. To improve the overshoot and eliminate the zeros 
in the closed-loop system transfer function, a pre-filter 
GF(s) is designed as: 

𝐺𝐹 =
1300

63.6 𝑆 + 1300
 

 

 (7)  

 
The system response with the pre-filter to a unit step 

input is shown in figure (4). From this figure; the settling 
time TS=0.241s, the percentage overshoot P.O=4.6%, and a 
zero steady state error is achieved. These results obtained 
satisfy all the required performance parameters discussed. 

B. Genatically tuned  PI Controller 

Genetic Algorithm (GA) is a stochastic algorithm 
depending on principles of genetics and natural selection. 
Genetic Algorithms (GAs) are a stochastic global search 
method that simulates the process of regular evolution [13]. 
The tuning of the PI controller parameters (KP, KI) by using 
GA will achieve the optimal values for these parameters 
based on minimizing the Mean Square Error (MSE) of the 
controlled system. 

The block diagram for the controlled system is given in 
figure (5).  

The genetic algorithm parameters chosen for the tuning 
purpose are shown in table (2). 

 

 

 

 

 

 

 

 

The resulting controller parameters chosen using GA 
are KP= 652.167, KI= 60.794. these results produced after 
58 iteration process by using GA toolbox in Matlab [14]. 

Figure (6) shows the resulting output response of the 
system by using values of Genetically tuned PI controller 
parameters. From this figure; the settling time TS=0.0966, 
percentage overshoot P.O=0.077%, and a zero steady state 
error is achieved. 

 

Fig.( 4): step response of PI-controller 
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Fig.( 5): Block diagram of the system controlled using PI controller tuned 

genetically.  

 

Table (2): GA parameters. 

GA property Value / Method 

Population size: 

Max. number of generations: 

58 

200 

Performance index/ fitness function Mean square error 

Selection method Stochastic uniform 

Crossover method Constraint dependent 

Crossover fraction 0.8 

Mutation method Constraint dependent 
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Fig.( 6): Step response of the system by using values of GA controller 

parameters. 

 

C. Design of Linear Quadratic Regulator (LQR) 

Controller 

The theory of optimal control is concerned with 
operating a dynamic system at minimum cost. The Linear 
Quadratic Regulator (LQR) provides an optimal control 
law for a linear system with a quadratic performance index 
by calculating the gain matrix K such that it balances 
between the acceptable response and the amount of control 
energy required by minimizing the performance index [8]. 
This is given in equation (8). 

0

(x Qx )T TJ u Ru dt



   

 

 (8)  

 

where:   
J cost function 

X state vector 

U control vector 

Q weights for the state vector 

R weights for the control vector 

By assuming that matrices Q and R are diagonal, the 
cost function J is reduced to the form given in equation (9): 

2 2 2 2

1 1 1 1       n n m mJ q x q x ru r u      (9)  
 

It is required to find the gain matrix K that minimize 
the cost function J. Minimization of J causes to move x to 
zero with as little control energy and state deviations as 
possible. 

Simulation of the system stabilization loop that 
controlled by LQR controller is carried out and the tuning 
of LQR controller was determined by changing the nonzero 
elements in the Q matrix where Q11 is used to weight the 
outer gimbal angular velocity and Q22 is used to weight the 
inner gimbal angular velocity. The input weighing matrix R 
will remain at 1. Equation (10), and equation (11) show the 
values of Q and R. 

. 

𝑄 = [
700 0

0 110
]  (10)  

 

𝑅 = [
1 0
0 1

]  (11)  

 
The resulting feedback gain matrix K is: 

𝐾 = [
26.359 0.0189
0.0476 10.3905

]  (12)  

 
Figure (7) shows the system response to a unit step 

input. The system requirements discussed are satisfied. The 
controlled system has settling time TS=0.236s, percentage 
overshoot P.O=0%, and zero steady state error.  

 

Fig.( 7): Closed loop response with LQR controller 
 

D. Design of equivalent Linear Quadratic Gaussian (LQG) 

Controller  

 
Linear Quadratic Gaussian (LQG) control system is a 

system that contains a Linear Quadratic Regulator/Tracking 
controller together with a Kalman filter state estimator as 
shown in figure (8).  

 

Fig.( 8): Linear Quadratic Gaussian (LQG) control system [11]. 
 

In full state observer, it is assumed that all the states are 
available for feedback and all measurements are noise free, 
but the observed state vector may be subjected to noise. 
The best estimation of a signal is obtained by combining 
two noisy continuous measurements of the same signal, 
this method was solved by Weiner 1949 [11]. The Kalman 
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filter estimation is based on optimum minimum variance 
which is a complementary form of Kalman filter. 

The goal is to control the system so that the output y(t) 
follows, as close as possible, the commanded output z(t). 

To use LQG with reference input, the state-feedback 
controller is obtained in the form given in equation (13): 

𝑢(𝑥) = −𝑅−1(𝑥)𝐵′(𝑥)[𝑃(𝑥)𝑋(𝑡) − 𝑔(𝑥)] (13) 

where: 

Q(x) is a symmetric positive semi-definite matrix, and 
R(x) is a symmetric positive definite matrix, 

P(x) is a positive-definite solution of the continuous-
time algebraic Riccati Equation (RE) given in (14). 

𝑃(𝑥)𝐴(𝑥) + 𝐴′(𝑥)𝑃(𝑥)
−  𝑃(𝑥)𝐵(𝑥)𝑅−1(𝑥)𝐵′(𝑥)𝑃(𝑥)  
+  𝐶′(𝑥)𝑄(𝑥)𝐶(𝑥)  =  0 

 

(14) 

g(x) is a solution of the continuous-time state dependent 
non-homogeneous equation given in (15). 

𝑔(𝑥) = −([𝐴(𝑥) − 𝐵(𝑥)𝑅−1(𝑥)𝐵′(𝑥)𝑃(𝑥)]′)−1

∗  𝐶′(𝑥)𝑄(𝑥)𝑧(𝑥) 
(15) 

The resulting algebraic RE-derived trajectory is the 
solution of the closed-loop dynamics as in (16). 

𝑥̇(𝑡) = [𝐴(𝑥) − 𝐵(𝑥)𝑅−1(𝑥)𝐵′(𝑥)𝑃(𝑥)]𝑥(𝑡)
+ 𝐵(𝑥)𝑅−1(𝑥)𝐵′(𝑥)𝑔(𝑥)  

(16) 

Simulation of the system stabilization loop that 
controlled by LQG controller is carried out on the system. 
Fig.( 9) shows the output response of the system by using a 
Kalman filter compared to the step response of the system 
in case of using LQR controller. As it can be seen the LQG 
achieve an almost identical response to LQR with settling 
time TS=0.0236, percentage overshoot P.O=0% and zero 
steady state error, in presence of noise and states 
estimation.  

 

Fig.( 9): Step response of the system controlled using LQG compared to the 

step response of the system controlled using LQR (approximately identical). 

 

 
 

E. H∞ Controller 

The methods of H∞ synthesis are especially powerful 
tools for designing robust multivariable feedback control 
systems to achieve singular value loop shaping 
specifications. The standard H∞ control problem is 
sometimes also called the H∞ small gain problem. The 
small gain theorem states that if a feedback loop consists of 
stable systems, and the product of all their gains is smaller 
than one, then the feedback loop is stable. 

Assume that all inputs of the loop are represented by 
V(s), the input V(s) is founded by passing a mathematically 
bounded normalized input V1(s) through a transfer function 
block W(s), called the input weight as shown in figure (10).  

Equation (17) shows this mathematical representation.   

1(s) (s)V (s)V W  
 (17)  
 

 

W(s)
V(s)V1 (s)

 

Fig.( 10): Transformation of a normalized bounded input. 
 

Weighting functions, which reflect the frequency and 
time domain requirements, must be selected. A good 
feedback design for a particular system is obtained by 
selection of the frequency dependent weighting functions. 
At low frequency the system is required to be insensitive to 
disturbances while at high frequency it is required to filter 
out unwanted noise signals. The selection of error and 
output weighting functions does not involve precise rules 
but general guidelines gained from experience practice can 
be outlined. It is difficult to give rules for ensuring certain 
behavior because it is a matter of trade off for satisfying a 
number of conflicting criteria at the same time [11]. 

The H∞ design problem can be formulated as follows; 

The generalized plant P, which is defined from the inputs 
Tuu ][ 21  to the outputs

Tyy ][ 21 , can be expressed in terms 

of its state space realization as in (18): 



















22212

12111

21

)(
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DDC

BBA
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(18) 

It is required to find a stabilizing feedback control law 

2u  such that the norm of the closed-loop transfer function 

matrix 
11uyT  is small [15][16]. 

where: 

)( )()( 22 sysCsu   (19) 

)()()]()()[()( 21

1

22121111
sPsCsPsCIsPsPT uy
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The state-space model of an augmented plant P(s) with 

weighting functions )(sWp
, )(sWu

, and )(sWt
 which 

penalize the error signal, control signal, and output signal, 
respectively, is shown in figure (11). The closed-loop 
transfer function matrix is the weighted mixed sensitivity. 

where, 

S the sensitivity function. 

T the complementary sensitivity function (T=1-S). 

L denotes the loop transfer function (L=PC). 
 

 

Fig.( 11): Augmented Plant P(s). 

 

Simulation of the system stabilization loop that 
controlled by H∞ controller is carried out. Figure (12) 
shows the system step response by using H∞ controller. The 
figure shows a satisfactory response with Settling time 
TS=0.0702, percentage overshoot P.O=8.46% and zero 
steady state error.  

 

Fig.( 12): The system step response by using H∞ controller. 
 

 

IV. RESPONSE COMPARATIVE ANALYSIS 

In this section, all the designed controllers for the 
stabilization loop are compared. Figure (13) shows the step 
responses of the stabilization loop with different designed 
controllers. It can be seen that there are many differences 
between the responses characteristics.  

Table (3) summarizes all the step response parameters 
of the controlled system. It can be seen from figure (13) 
and table (3) that H∞ and genetically tuned PI (GA-PI) 
controllers achieve the best output response. The H∞ 
controller has the fastest settling time of 0.07 s, while the 
PI controller has the slowest settling time of 0.241 seconds. 
For the percentage overshoot, H∞ controller has the highest 
overshoot among all controllers. Finally, all controllers 
achieve a zero steady state error. 

 

Table (3): Comparison of output response parameters of all proposed 
controllers. 

 PI GA-PI LQR LQG H∞ 

Percentage 
overshoot 

4.6% 0.077% 0% 0% 8.4% 

Settling time 0.241s 0.0966s 0.236s 0.236s 0.07s 

Steady state 

error 

0 0 0 0 0 

 

 

         Fig.( 13): Comparison between step responses of all  
proposed control techniques 

 

V. ROBUSTNESS ANALYSIS 

To compare performances of the designed controllers 
from robustness point of view, the system will be subjected 
to some degree of model uncertainty by changing the 
values of payload parameter. 
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A. Robustness of PI controller 

Figure (14) shows the step response of the controlled 
system when the payload is changed up to 50% of its value. 

 The controlled system performance is accepted up to 
9% of the payload original value. For 10% uncertainty, the 
controlled system performance is unacceptable. The 
settling time exceeds the required limit which is 0.25s. The 
output response parameters of the PI controller for 10% 
uncertainty are: settling time = 0.254s, percentage 
overshoot= 5.98%, and zero steady state error. 

By increasing the degree of payload uncertainty up to 
50% the system response is totally unacceptable as it can 
be seen from the figure. The settling time in this case is 
0.29s. 

 

Fig.( 14): Step response of PI controlled system  

by changing payload uncertainty up to 50%.  

 

B. Robustness of GA-PI 

Figure (15) shows the step response of the controlled 
system when the payload is changed up to 70% of its 
original value. 

 The GA-PI controlled system performance is 
acceptable up to 63% of the payload original value. The 
GA-PI controlled system response for 63% uncertainty is 
shown in figure (15). It can be seen from this figure that the 
settling time is 0.25s, the percentage overshoot is 0%, and a 
zero steady state error is achieved. 

By increasing the degree of model uncertainty up to 
70% the system response is totally unacceptable. It can be 
seen from figure (15) that the settling time is 0.32s. 

 

 

C. Robustness of LQR 

Figure (16) shows the step response of the system 
controlled using LQR when the payload is changed up to 
20% of its original value.  

The LQR controlled system performance is acceptable 
up to 9% of the payload original value. The LQR 
controlled system response for 10% uncertainty is 
unacceptable as shown in figure (16). It can be seen from 
this figure that the settling time is 0.259s, the percentage 
overshoot is 0%, and a zero steady state error is achieved. 

By increasing the degree of model uncertainty up to 
20%, the system response is totally unacceptable. It can be 
seen from figure (16) that the settling time is 0.283s. 

 

D. Robustness of LQG 

Figure (17) shows the step response of the system 
controlled using LQG when the payload is changed up to 
50% of its original value.  

The LQG controlled system performance is acceptable 
up to 9% of the payload original value. The LQR 
controlled system response for 10% uncertainty is 
unacceptable as shown in figure (17). It can be seen from 
this figure that the settling time is 0.259s, the percentage 
overshoot is 0%, and a zero steady state error is achieved. 

By increasing the degree of model uncertainty up to 
50%, the system response is totally unacceptable. It can be 
seen from figure (17) that the settling time is 0.36s. 

It can be also noticed that the robustness of the LQR 
and the LQG are similar because the design of the LQG 
controller is based on the design of LQR controller in this 
case. 

 

E. Robutness of H∞ 

Figure (18) shows the step response of the system 
controlled using H∞ controller when the payload is changed 
up to 90% of its original value.  

It can be seen from figure (18) that the H∞ controller 
keeps acceptable system performance when the payload is 
changed up to 90% of its original value. 

The step response of the system controlled using H∞ 
controller when the pay load is changed up to 50% is 
shown in figure (18). It can be seen that the settling time 
obtained is 0.082s, the percentage overshoot is 9%, and the 
steady state error is zero.   

The step response of the system controlled using H∞ 
controller when the pay load is changed up to 90% is also 
shown in figure (18). It can be seen that the settling time 
obtained is 0.096s, the percentage overshoot is 9.2%, and 
the steady state error is zero.   

It can be noticed that the best controller from robust 
performance point of view is the H∞ controller followed by 
the GA-PI controller. 
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Fig.(15): Step response of the system controlled by GA-PI  
when the payload is changed up to 70% 

 
 
 
 

 

Fig.( 16): Step response of the system controlled by LQR controller when the 

payload is changed up to 20%.  

 
 

 

Fig.( 17): Step response of the system controlled by LQG controller when the 

payload is changed up to 50%  
 

 
 

 

 
Fig.( 18): Step response of the system controlled by H∞ controller when the 

payload is changed up to 90%. 
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VI. CONCOLOSION 

Different controllers are designed for LOS subsystem used 

in fire control system. PI controller is designed and its 

parameters are tuned classically and are tuned again using 

GA. LQR, LQG, and H∞ controllers are also designed for 

the LOS stabilization subsystem.  

 

The controlled system performances are compared in 

normal operating conditions and when the system is 

subjected to model uncertainty. It was found that all the 

designed controllers satisfy the system requirements in 

normal operating conditions. The fastest response was for 

H∞ controller followed by GA-PI. Considering the 

percentage overshoot, it was found that the GA-PI is better 

than H∞ controller. But both are acceptable.  

 

The designed controllers are compared when the system is 

subjected to model uncertainty. Robust stability and robust 

performance are considered. From robust stability point of 

view, the simulation results show that the controlled system 

is stable for all controllers when the system is subjected to 

model uncertainty. This is because the system is a low 

order system. From robust performance point of view, the 

simulation results show that the best performance is 

achieved by H∞ controller followed by GA-PI controller. 

 

From the results obtained based on normal operating 

conditions and when the system is subjected to model 

uncertainty, it was found that H∞ controller and GA-PI 

controller are the best in the case studied. 
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