

Controlled MPPT Algorithm for A Distributed Wireless PV Based Irrigation System

¹Geetha. K. S, ²M. Vasudevan

¹PG Student ,²Assistant Professor, Department of ECE,
Parisutham Institute of Technology and science,
Thanjavur, Tamilnadu, India

Abstract — In our paper, we tend to implement wireless sensing element network based mostly automatic plant irrigation system exploitation embedded microcontroller. The soil wetness sensing element detects the wetness level of the soil and transmits the knowledge to the microcontroller through wireless network. A Wireless medium for ZIG-BEE transmit and receive the info. The Microcontroller is employed to manage the irrigation motor each at transmitter and receiver facet. chase the utmost wall plug (MPP) of a electrical phenomenon array is an important a part of a electrical phenomenon (PV) System. PV system performance average losses square measure of concerning 2 hundredth – twenty fifth in electricity production. The causes square measure mismatching losses, partial shadows, variations in current – voltage characteristics of PV modules attributable to producing processes, variations within the orientations and inclinations of star surfaces, and temperature effects. A hybrid and adaptative most Peak Power chase (MPPT) Algorithms is planned to trace the height power delivered by a electrical device beneath partial shading and quick dynamical environmental conditions to maximise the alternative energy harvested from the electrical phenomenon modules.

Keywords: most wall plug (MPP), most Peak Power chase (MPPT), electrical phenomenon (PV), Protrude and Observe (P & O), Pulse dimension Modulation (PWM)

1. INTRODUCTION

Energy crisis and environmental problems like pollution and warming result ar driving researchers towards the event of renewable energy sources. during this context, electrical phenomenon (PV) systems ar gaining associate degree increasing interest and that they are getting a really competitive answer. to beat the matter of low energy conversion potency of PV modules and to urge the utmost doable potency, it's necessary to optimise the planning of all PV system parts. moreover, it's conjointly necessary to produce PV systems with MPPT controllers so as to draw the utmost electric power from the PV modules underneath varied masses and part conditions. most wall socket following is vital in solar energy systems as a result of it reduces the solar panel value by decreasing the quantity of star panels required to get the required output power. electrical phenomenon grid performance depends on native irradiance and temperature conditions [1-5]. The minimum part within the producing of PV systems is that the PV module. A typical panel consists of thirty six series-connected star cells, with associate open-circuit voltage

(Voc) close to 20 V and a short-circuit current (Isc) around three A. As a result, it becomes necessary to cluster PV modules till the specified current and voltage levels achieved.

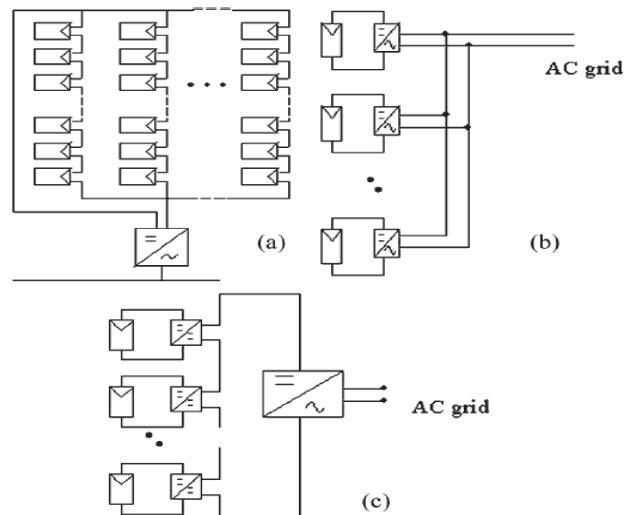
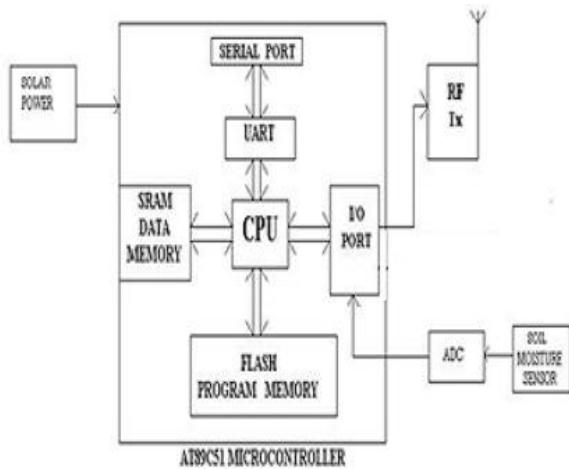


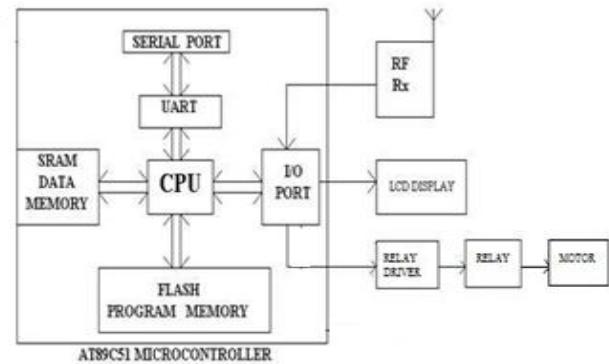
Fig. 1 Configurations for PV systems. (a) Centralized system. (b) AC modules. (c) Modular system.


The potency of business PV modules is concerning Bastille Day Sixteen Personality Factor Questionnaire. However, PV systems show further losses to the tune of twenty fifth in several cases [6]. If these losses aren't thought-about throughout the PV style section might cause unrealistic estimations. things of losses becomes worst in complicated configurations like those integrated in roofs and facades, additionally to the load mismatching, variations in current– voltage (I–V) characteristics, shadows, dust, losses in convertor, low-radiation losses and MPPT losses in PV systems. additional variety of PV modules once interconnected along for higher power necessities brings a large quality of maintenance and management operations since a failure in one PV module placed at a giant facade is troublesome to notice. Localization of failures during a PV system is extremely necessary in any condition and even additional in larger PV systems. Thus, a fast detection of failures would avoid energy losses attributable to malfunctions of PV systems. A typical topologies of PV modules is shown in Fig. 1.

II. REVIEW OF IMPROVED MPPT TECHNIQUE

Many MPPT management techniques are formed for this purpose within the last decades [7-11]. they'll be generally classified as: Voltage feedback based mostly ways that compare the PV operative voltage with a reference voltage so as to get the PWM management signal to be applied to the DC-DC convertor. Current feedback based mostly ways that use the PV module short current as a feedback so as to estimate the optimum current reminiscent of the most power. Power based mostly ways that square measure supported reiterative algorithms to trace ceaselessly the MPP through the activity of the present and voltage.

III. HARDWARE


a) *Transmitter side*

The SMS senses the moisture content and gives digital data through ADC. The microcontroller gets the signal and gives 8-bit data. The WSN transmits only 1-bit data so an encoder(HT640) used in the transmitter side. The encoder encodes the 8-bit data to single bit which is easier for transmission

b) *Receiver Side*

The information of the direction of the irradiation amendment allows the MPPT to use completely different optimized chase schemes for the various cases of accelerating, decreasing, or steady irradiance. once the irradiance is dynamic chop-chop this strategy results in quicker and higher chase, whereas in steady-state conditions it results in lower oscillations round the MPP. he simulations and experimental results show that the planned that provides a fast and correct chase even in no time dynamic environmental conditions.

The frequency of wireless network of 433.92MHz that transmits the signal from transmitter aspect to receiver aspect. The decoder (HT648) is employed in receiver aspect that decodes the only bit information into 8-bit information. The microcontroller supports 8-bit information in order that the method is controlled as per the signal.

IV. PROPOSED MPPT ALGORITHM

The overall flow of the proposed algorithm is shown in Fig. 2.

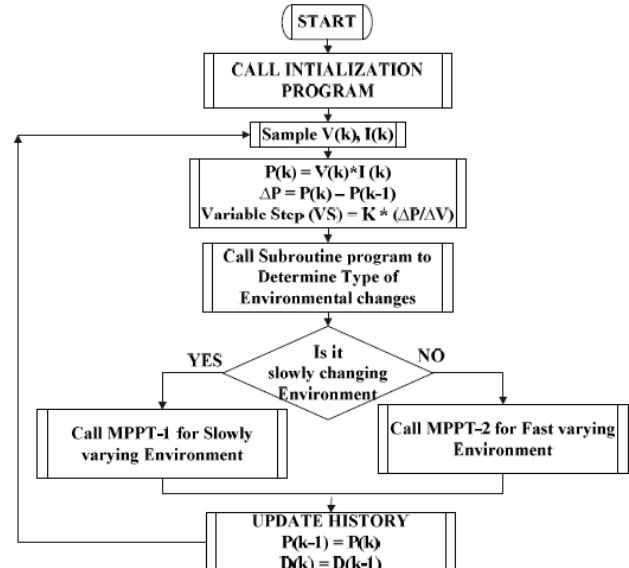


Fig. 2. Flow chart of the proposed hybrid MPPT algorithm.

The first step is that the data formatting routine, the data formatting routine shall set the PV array in operation purpose voltage to seventy eight of the measured worth of the circuit voltage. The P& O algorithmic program doesn't use the precise power out of the solar array, however a distinction within the proportional power. the quantity of power modified has no result on the algorithmic program. For this reason, the precise power out of the solar array isn't needed, that permits US to use the linear relationship of the PWM's duty cycle and also the star panels current. The power drawn from the PV array with a beer step size contributes to quicker dynamics however excessive steady state oscillations, leading to a relatively low potency. If iteration step size is tiny, then the ability drawn from the PV array can have slower dynamics. This downside is removed

by victimization the second algorithmic rule i.e. progressive MPPT with variable step size. during this algorithmic rule if the in operation purpose is way from MPP, it will increase the step size that permits a quick pursuit ability. If the in operation purpose is around the MPP, the step size becomes terribly little that the oscillation is well reduced contributory to the next potency. progressive MPPT algorithmic rule effectively improves the MPPT speed and accuracy at the same time. the most advantage of this algorithmic rule over the opamp methodology is its quick power pursuit method [12]. However, it's the disadvantage of doable output instability thanks to the employment of by-product algorithmic rule. additionally the differentiation method beneath low levels of insolation becomes tough and results are inadequate. The chop-chop ever-changing conditions are tracked by associate degree optimized hill rising MPPT methodology. The algorithmic rule separates impacts the consequences the results of the irradiation amendment from the effect of the tracker's perturbation by playing a further mensuration within the middle of the MPPT sampling amount. The amendment in power between 2 measurements solely reflects the amendment in power thanks to the environmental changes, as no action shall created by the MPPT. The distinction between 2 measurements contains the amendment in power caused by the perturbation of the MPPT and the irradiation amendment, if the speed of amendment within the irradiation is constant over one sampling amount of the MPPT.

V. SIMULATION RESULTS

The Pspice simulated output generated by a string of 2 cells light at a intensity of fifty of irradiance isn't same because the power generated by one star cell light by full irradiance s shown in Fig. 3. This development ends up in a retardant of multiple maxima and therefore the MPPT rule might get fast to native minima deteriorating the performance of the PV system.

This development are often avoided by providing a voltage sweep to confirm the MPP is that the true world MPP and also the second approach is to use a standard system wherever in every PV module has its own MPPT huntsman to confirm that individual PV modules are operative at their most power points. this may but increase price the value the price of overall cost of PV system. With the planned system, there's no interconnection between PV modules, however there is interconnection between the associated dc-dc converters. Therefore, every PV module will operate at its own optimum power and current making certain all the obtainable energy within the PV array to be delivered.

Losses from shading of one PV module are restricted thereto module while not having any impact on the performance of the system. The irradiance and therefore the temperature knowledge collected for in the future at town of Alandi (D), Pune, India employing a setup is shown in Fig. 4.

To evaluate the projected formula the input file was born-again to full insolation level and 0.5 insolation level and therefore the insolation levels area unit as shown in Fig. 5. The irradiance and therefore the temperature information collected for in the future were given because the input to the MATLAB program and therefore the MPPT trailing was aforesighted and valid mistreatment MATLAB simulation and therefore the results of trailing the MPPT area unit as shown in Fig. 6. The projected hybrid formula with success tracks the MPP beneath variable environmental conditions.

The MPP at two hundred W/m², 400 W/m², 600 W/m², 800 W/m², and one thousand W/m² insolation levels are marked conspicuously to verify the accuracy of chase. 2 multicrystalline Si PV module with VOC of 21.0 V and ISC of 2.8 A with a peak output power of 37 Wp at commonplace check conditions has been used for the check [13]. The observations are summarized in Table 1. It's ascertained from the table that the planned algorithmic program shows a improvement of twenty one.06 % and 7.13 the development for case A and case B .

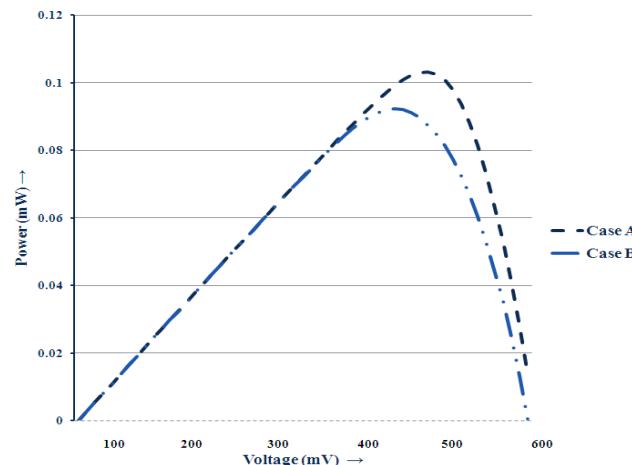


Fig. 3 Pspice simulation of output power of PV cells connected in series under partial shading conditions with same sum total insolation. (Case A – Two cells uniformly illuminated at 500 W/m² and Case B – Two cells unevenly illuminated at 1000 and 0 W/m² respectively)

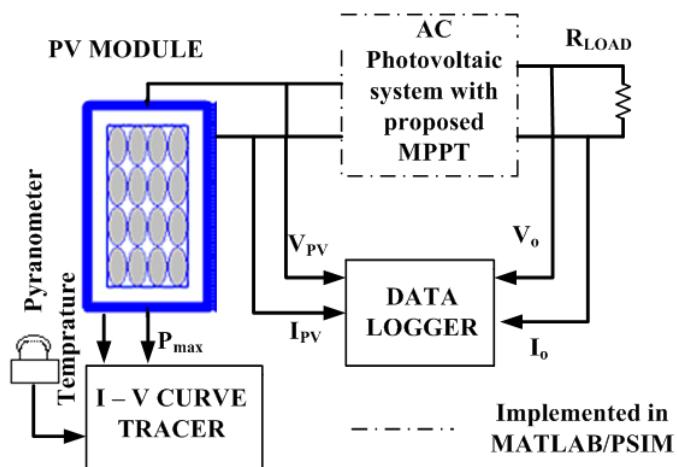


Fig. 4. Experimental setup for I-V curve tracer.

VI. PROPOSED WIRELESS PV BASED IRRIGATION SYSTEM

The diagram of the planned wireless irrigation system application is shown in Fig. 7. Wireless Systems shall give a extremely riotous approach to water and energy management. the value of running wires in any landscaping application is gigantic, and a big maintenance headache. the employment of wet sensors shall end in purposeful water savings. within the planned wireless network 802.15.4 defines the physical and mac layers, and ZigBee defines the network and application layers as zigbee supply long battery life, low cost, secure, reliable, flexible , extendable, low power consumption, little footprint, unaccredited radio bands and mesh networking to support communication between massive numbers of devices in an practical and multi-application setting. so as to reinforce the battery life it's planned to permit finish devices to report in just once they have one thing new report videchange-driven or event-driven news.

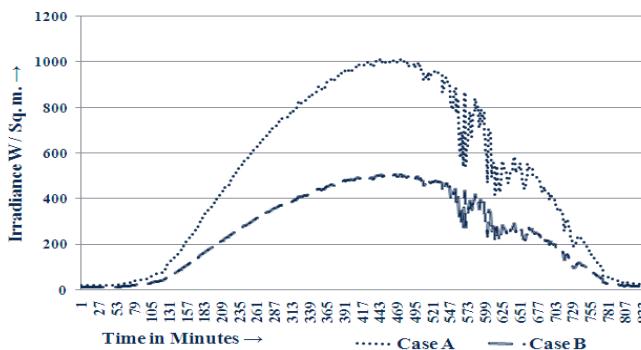


Fig. 5. A typical sunny day insolation values measured at city of Alandi (D), Pune, India. (Case A – Input insolation profile given to two PV modules unevenly illuminated at full and 0 W/m² and Case B – Input insolation profile given to two PV modules uniformly illuminated at half the insolation W/m² respectively)

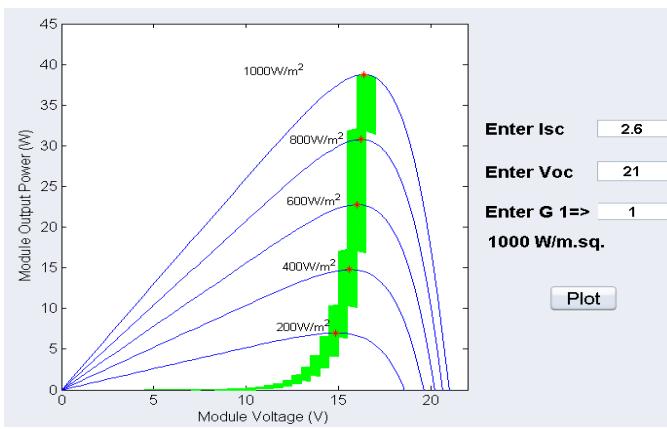


Fig. 6. MPPT tracking simulated using MATLAB.

The planned wireless irrigation system is visualised as 3 completely different sections specifically, PV side, Controller facet and therefore the load facet. The PV facet encompasses a battery keep a copy to compensate throughout the amount of less or non convenience insolation. The management algorithmic rule can decide whether or not

to attach the out place of PV to charge the battery, water pump, to try to to each or disconnect each reckoning on quantity of power obtainable at output of PV.

Table 1. Comparison of performance parameters of proposed MPPT algorithms.

Sl. No	Parameter	Conventional P & O Algorithm	Proposed Hybrid MPPT Algorithm
Cumulative MPPT output Energy for one day			
$\sum_{day} P_{max}[n] = \sum_{day} [I_m[n]*V_m[n]]$			
1	Case A	159.06 Wh_Day	201.5 Wh_Day
2	Case B	187.13 Wh_Day	201.5 Wh_Day
Case A: Two PV modules connected in series and unevenly illuminated at full and 0 W/m ² respectively.			
Case B: Two PV modules connected in series and uniformly illuminated at half the insolation W/m ² .			

The management facet consists of little wireless sensing element nodes to sense the wetness, temperature and communicate with a Base Station (BS) set over a brief distance from the sensing element nodes. The bachelor's degree then sends the perceived knowledge to the microcontroller, for necessary action of generating management signals. The nodes area unit subject to failures as a result of depleted batteries or as a result of environmental influences. the tiny devices area unit terribly restricted in storing the number of energy harvest from the surroundings that restricts resources of mainframe performance, memory, wireless communication information measure and vary. Node quality, node failures and environmental obstructions cause a high degree of dynamics in WSN. If a node fails, new routes ought to be shaped to handle the topology changes. This may need a lot of power and thence style of power aware algorithms becomes a vital facet. A node can be left unattended for months or years. Hence, the minimum node time period must be thought-about before preparation of a sensing element node. The failure of a sensing element node shouldn't have an effect on the general behaviour of the sensing element network. A sensing element network ought to self-organize itself once the sensing element nodes area unit at random distributed in an exceedingly region. the various network topologies obtainable area unit star, ring, bus, tree, totally connected and mesh networks. the facility consumed in an exceedingly sensing element network will increase because the sq. of distance between supply and destination, it's counseled to use networks with multiple nodes sort of a mesh configuration. The planned microcontroller is Texas Instruments MSP430 that is easy embedded microcontroller with inherent ADC, temperature sensing element and signal learning electronic equipment [14]. it's decisive characteristics, aside from the low power consumption. This microcontroller may be utilized in completely different low power modes to avoid wasting the facility consumption among the node. The load facet consists of pump that is driven by microcontroller through driver and relay circuits to provide the water reckoning on the conditions of water level

of tank or the wetness and temperature conditions of the soil. The wireless property is planned to beat the constraints of wired property and simple operation and a practicableness of automation to irrigate most space throughout the amount of most insolation.

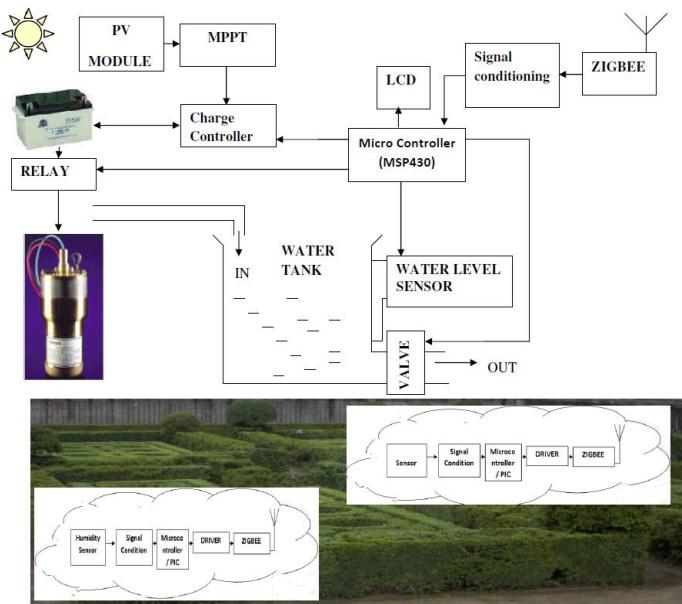


Fig. 7. Block diagram of the proposed wireless irrigation system.

VII CONCLUSION

The projected formula adapts to partial shading conditions and quick ever-changing environments conditions is a lot of economical and value effective for wireless irrigation system because the lower magnitude native most power points area unit avoided leading to higher power conversion. Wireless Systems shall give a optimized approach to water and energy management under varying environmental conditions.

REFERENCES

- [1] Tomas Markvart, "Solar Electricity", John Wiley, 2001.
- [2] Tom Markvart and Luis Castaner, "Practical Handbook of Photovoltaic fundamentals and applications", Elsevier, 2007.
- [3] Suhas P. Sukhatme, "Solar energy – Principles of Thermal Collection and Storage", TMH, 2nd ed., 2007.
- [4] C. S. Solanki, "Solar Photovoltaics – Fundamentals, Technologies and Applications", PHI, 2009.
- [5] Luis Castaner and Santigo Silvestre, "Modeling Photovoltaic Systems using PSpice", John Wiley, 2002.
- [6] K. Kurokawa, H. Sugiyama, and D. Uchida, "Sophisticated verification of simple monitored data for Japanese field program", 2nd World Conference and Exhibition Photovoltaic. Solar Energy Conversion, Vienna, Austria, Jul. 1998, pp. 1941–1946.
- [7] Trishan Esram, Patrick L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques", IEEE Transactions On Energy Conversion, Vol. 22, NO. 2, June 2007, pp 439-449.
- [8] D. P. Hohm and M. E. Ropp, "Comparative Study of Maximum Power Point Tracking Algorithms", Progress In Photovoltaics: Research and Applications, 2003; John Wiley & Sons, Ltd :pp. 47–62.
- [9] Dezso Sera, Remus Teodorescu, Jochen Hantschel, and Michael Knoll, Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions, IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2629-2631, July 2008.
- [10] Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang, "A Variable Step Size INC MPPT Method for PV Systems", IEEE Transactions on Industrial Electronics, vol. 55, no. 7, July 2008, PP 2622-2628.
- [11] M D Goudar, B. P. Patil, V. Kumar, "A Review of Improved Maximum Peak Power Tracking Algorithms for Photovoltaic Systems", International Journal of Electrical Engineering and Technology (IJEET), Vol. 01, No. 01, Sept. – Oct. 2010, pp. 72-94.
- [12] Eduardo Román, Ricardo Alonso, Pedro Ibanez, Sabino Elorduzapaterietxe and Damian Goitia, "Intelligent PV Module for Grid- Connected PV Systems", IEEE Transactions On Industrial Electronics, Vol. 53, No. 4, August 2006.
- [13] Ryo Ito, Yasuyuki Matsuzaki, Tatsuo Tani and Toshiaki Yachi, "Evaluation of Performance of MPPT Equipment in Photovoltaic System", IEICE/IEEE INTELEC'03, 2003, [14]Richard Wallace, "Application Note AN058", downloaded from <http://www.ti.com/lpw>