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Abstract - The nonlinear inverted pendulum system is a 

classical control problem in control theory and robotics. It is 

used as a bench mark control problem to test various control 

techniques. In this paper a controller is proposed based on 

proportional-integral-derivative control and .discrete sliding 

mode (DSM) controller based on fast output sampling (FOS) 

to control the nonlinear inverted pendulum system. FOS is 

kind of Multirate output feedback (MROF),  which samples 

the control input and sensor output of the system at different 

rates. Here the controller aim is to move the cart to a desired 

position and balancing the pendulum in upright position. 

Here the modeling and simulation of the controller are 

carried out using MATLAB-SIMULINK and simulation 

results are compared with two PID and linear quadratic 

regulator control schemes. 

 

Key Words: Inverted pendulum, nonlinear system, PID 

control, sliding mode controller, Fast Output Sampling. 

 

1. INTRODUCTION 

The inverted pendulum is a highly nonlinear unstable 

system, which is termed as bench mark control problem by 

the international federation of automatic control theory 

committee. The simplest case of this system is cart-single 

inverted pendulum system. It has very good practical 

applications like missile launchers and segways,human 

walking etc.Here the system dynamics resembles the 

missile launcher or rocket launcher dynamics hence it is an 

area of interest for the control engineers. Since the system 

is unstable and nonlinear the controller design is 

challenging. 

             Here the aim of this paper is to design a controller 

such that the controller moves the cart to a desired position 

and pendulum stabilizes in upright equilibrium position [1-

4]. There are so many control techniques available in the 

literature to control the inverted pendulum based on Fuzzy 

logic, Artificial Neural Networks, PSO and Genetic 

algorithm and artificial intelligence [5-7]. This paper 

investigates a controller based on PID control and FOS 

based DSMC.PID control is the simplest yet very efficient 

controller used to control the cart position .FOS is a kind of 

multirate output feedback (MROF) technique in which 

control input and system outputs are samples at different 

rates. In this approach system output is sampled at a faster 

rate hence it is called as fast output sampling. In recent 

years DSMC based on FOS gained much attention DSMC 

is a counter part of continuous sliding mode control. In this 

approach control law is designed based on FOS used to 

stabilize the pendulum position. Here DSMC ensure a 

sliding behavior if there is a motion confined to a sliding 

manifold which is reached in finite time.  

            This paper is organized in 5 sections. Section 1 

about introduction of the paper. Section 2 deals with the 

mathematical model of the inverted cart-pendulum system. 

In section 3 the control method of PID and DSM based on 

FOS has been discussed briefly. Section 4 deals with 

modeling of system with MATLABSIMULINK, and 

simulation results. In section 5 conclusions . Brief list of 

references is given at last. 

2. MATHEMATICAL MODELING 

 

2.1 Inverted pendulum system equations 
The free body diagram of an inverted pendulum system is 

shown in Fig. 1.Here the pendulum is mounted on the dc 

motor driven cart [1-4]. The system dynamics of this 

nonlinear system can be derived as follows [1, 2]. Since the 

pendulum rod has negligible mass it is assumed mass less, 

and is assumed as the hinge is friction free. The cart mass 

denoted as M and the ball point mass at the upper end of 

the inverted pendulum is denoted as m. Here an external 

force u (t) acted in x-direction on the cart, and a gravity 

force acts on the point mass in downwards. A coordinate 
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system considered as shown in Fig.1, with x (t) as the cart 

position and θ(t) as the pendulum tilt angle referenced to 

the vertically upward direction. By Newton’s law a force 

balance equation in the x-direction can be written as 

𝑀
𝑑2

𝑑𝑡 2 𝑥+m 
𝑑2

𝑑𝑡 2 𝑥𝐺 = 𝑢                                              (1) 

Here the center of gravity (COG) of the point mass is time-

dependent and given by the coordinates, ( xG , yG ). For 

pendulum, the location of the center of gravity of the point 

mass is written as 

 𝑥𝐺 = 𝑥 + 𝑙 sin 𝜃  𝑎𝑛𝑑 𝑦𝐺 = 𝑙 cos 𝜃                           (2) 

Where l is the pendulum rod length 

 

              Inverted Pendulum - Cart System 

Substitution of eqn. (2) into (1) gives 

 𝑀 + 𝑚 𝑥 − 𝑚𝑙 sin 𝜃 𝜃2 + 𝑚𝑙 cos 𝜃 𝜃 = 𝑢           (3) 

Similarly, a torque balance on the system is performed. 

Fig. 2 shows the force components acting  

On the system 

 

Fig. 2 Vector diagram for force components in torque balance 

 

 

 The resultant torque balance can be written as 

 𝐹𝑥 cos 𝜃 𝑙 −  𝐹𝑦 sin 𝜃 𝑙 = (𝑚𝑔 sin 𝜃)𝑙                 (4) 

Where, 𝐹𝑥 = 𝑚
𝑑2

𝑑𝑡 2 𝑥𝐺 , 𝑎𝑛𝑑 𝐹𝑦 = 𝑚
𝑑2

𝑑𝑡 2 𝑦𝐺    are the force 

components in x and y directions respectively. 

After manipulation (4) is written as 

𝑚𝑥 cos 𝜃 + 𝑚𝑙𝜃 = 𝑚𝑔 sin 𝜃                                   (5) 

Equations (3) and (5) are the defining equations for this 

system. By manipulating these two equations to have only 

a single second derivative term in each equation. We get 

the cart position dynamics and the pendulum angle 

dynamics respectively as  

 𝑥 =
𝑢+𝑚𝑙 sin 𝜃𝜃2 −𝑚𝑔 cos 𝜃 sin 𝜃

𝑀+𝑚−𝑚𝑥𝑐𝑜𝑠 2𝜃
                                 (6) 

𝜃 =
𝑢 cos 𝜃− 𝑀+𝑚 𝑔 sin 𝜃+𝑚𝑙 (cos 𝜃 sin 𝜃)𝜃2 

𝑚𝑙 𝑐𝑜𝑠 2𝜃− 𝑀+𝑚 𝑙
                  (7) 

The above equations (6) and (7) represent a nonlinear 

inverted pendulum system in mathematical form. 

2.2 Nonlinear system state space equations of inverted 

pendulum 

To find the numerical solution of the nonlinear inverted 

pendulum model, we need to represent the nonlinear 

equations (6) and (7) into standard state space form as, 
𝑑

𝑑𝑡
𝑋 = 𝑓(𝑥, 𝑢, 𝑡)                                                      (8) 

 

The state variables are considered as  

 

𝑥1 = 𝑥 ,𝑥2 = 𝑥 = 𝑥 1,𝑥3 = 𝜃,𝑥4 = 𝜃 = 𝑥 3              (9) 

 

Then, the inverted pendulum system in state space form 

can be written as 

𝑑

𝑑𝑡
𝑋 =

𝑑

𝑑𝑡
 

𝑥1

𝑥2
𝑥3
𝑥4

 =
𝑑

𝑑𝑡
 

𝑥
𝑥 
𝜃
𝜃 

 =  

𝑓1

𝑓2

𝑓3

𝑓4

                               (10) 

Where 

𝑓1 = 𝑥2                                                                   (11) 

 

𝑓4 =
𝑢 cos 𝑥1− 𝑀+𝑚 𝑔 sin 𝑥1+𝑚𝑙 (cos 𝑥1 sin 𝑥1)𝑥2

2

𝑚𝑙 𝑐𝑜𝑠2𝑥1− 𝑀+𝑚 𝑙
           (12) 

 

𝑓3 = 𝑥4                                                                   (13) 

 

𝑓2 =
𝑢+𝑚𝑙 (sin 𝑥1)𝑥2

2−𝑚𝑔 cos 𝑥1 sin 𝑥1

𝑀+𝑚−𝑚𝑥𝑐𝑜𝑠 2𝑥1
                          (14) 

 

Here both the pendulum angle θ and the cart position x are 

the variables of interest, hence the output equation can be 

written as 

 

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS100948

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 10, October- 2014

1001



y =𝑐  
𝑥
𝜃
 = Cx = 

1 0 0
0 0 1

    
0
0
  

𝑥
𝑥 
𝜃
𝜃 

      (15) 

Equations (10) and (15) give a complete state space 

representation of the nonlinear inverted pendulum-cart 

dynamic system. 

2.3 Linear system state space equations of 

Inverted pendulum 

.  

Since our goal is to maintain the inverted pendulum at zero 

angle (θ = 0) or upright equilibrium position, hence the 

linearization is considered about this upright equilibrium 

point and the linear model for the system is derived by 

simply linearization of the nonlinear system given in (10). 

Since the system matrices (A, B) are zero for this case; and 

so every term is put into the nonlinear vector function, f (x, 

u, t), then the linearized form for the system becomes 

𝒅

𝒅𝒕
𝜹𝑿 = 𝑱𝒙 𝒙𝟎, 𝒖𝟎 𝜹𝒙 + 𝑱𝒖(𝒙𝟎, 𝒖𝟎)𝜹𝒖                (16) 

Where, the reference state is defined with the Pendulum 

stationary and upright with no input force. Then the initial 

conditions are, 𝑥0 = 0 𝑎𝑛𝑑 𝑢0 = 0. Since the nonlinear 

vector function is rather complicated, the components of 

the Jacobin Matrices are determined systemically, term by 

term. The elements of the first second, third, and fourth 

columns of  𝐽𝑥 𝑥0 , 𝑢0  are given by  

𝜕𝑓𝑖

𝜕𝑥1

|
|
𝑥0𝑢0

,
𝜕𝑓𝑖

𝜕𝑥2

|
|
𝑥0𝑢0

,
𝜕𝑓𝑖

𝜕𝑥3

|
|
𝑥0𝑢0

and 
𝜕𝑓𝑖

𝜕𝑥4

|
|
𝑥0𝑢0

respectively. 

Thus, combining all these separate terms gives 

𝐽𝑥 𝑥0 𝑢0 =

 
 
 
 
 0
0
0
0

1
0
0
0

0

−
𝑚𝑔

𝑀

0
 𝑀+𝑚 𝑔

𝑀𝑙

0
0
1
0 
 
 
 
 

                        (17) 

For the derivative of the nonlinear terms with respect to u, 

we have 

𝐽𝑢 𝑥0 , 𝑢0 =

 
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑢
𝜕𝑓2

𝜕𝑢
𝜕𝑓3

𝜕𝑢
𝜕𝑓4

𝜕𝑢  
 
 
 
 
 
 

𝑥0 ,𝑢0

  

 =

 
 
 
 
 

0
1

𝑀+𝑚−𝑚𝑐𝑜𝑠 2𝑥1

0
cos 𝑥1

𝑚𝑙 𝑐𝑜𝑠2𝑥1− 𝑀+𝑚 𝑙 
 
 
 
 

𝑥0 ,𝑢0

=

 
 
 
 
 

0
1

𝑀

0
−1

𝑀𝑙 
 
 
 
 

                        (18) 

 

Finally, after all these manipulations (16) may be 

Written explicitly as 

 

𝑑

𝑑𝑡
𝛿𝑋 =

 
 
 
 
 0
0
0
0

1
0
0
0

0

−
𝑚𝑔

𝑀

0
 𝑀+𝑚 𝑔

𝑀𝑙

0
0
1
0 
 
 
 
 

𝛿𝑋 +

 
 
 
 
 

0
1

𝑀

0
−1

𝑀𝑙 
 
 
 
 

𝛿𝑢          (19) 

This is the open loop linearized model for the Inverted 

pendulum with a cart force, δu (t). Thus, LTI system is in 

standard state space form. The equation (19) may be 

written in general as  

𝑑

𝑑𝑡
𝛿𝑋 = 𝐴𝛿𝑋 + 𝐵𝛿𝑢                                             (20) 

Equation (20) along with the output equation 

(15)represents the final linear model of the inverted 

Pendulum-cart system. This is the simplified model which 

is used to study the system behavior in general and to 

design DSMC. 

3.1 PID and Fast Output Sampling Feedback Based 

Discrete-Time Sliding Mode Control  

 

3.1.1 PID control 

 
To stabilize the inverted pendulum in upright Position and 

to control the cart at desired position using PID and FOS 

based Discrete-Time Sliding Mode Control, a single PID 

controller is used. 

The control loop of the system and the equation of PID 

control are given as  

   𝑢𝑐 = 𝐾𝑝𝑐 𝑒𝑥 𝑡 + 𝐾𝑖𝑐  𝑒𝑥(𝑡) 𝑑𝑡 + 𝐾𝑑𝑐
𝑑𝑒𝑥 (𝑡)

𝑑𝑡
     (21) 

Where 𝑒𝑥(𝑡) is cart position error. Since the pendulum 

angle dynamics and cart position dynamics are coupled to 

each other so the change in any controller parameters 

affects both the pendulum angle and cart position hence 

makes the tuning tedious. Here tuning of controller 

parameters is carried using trial & error method by 

observing the responses of SIMULINK model to be the 

optimal. 

3.1.2 Fast Output Sampling 

 
In FOS, the state information of the system is computed 

from the output of the system by multirate observation of 

the output signal. The control signal is held constant during 

each sampling interval {17-18]. As illustrated in Fig.3, 

Consider the system  

     𝑥 = 𝐴𝑋 + 𝐵                                                   (22)  
       𝑦 = 𝑐𝑥                                                           (23) 
Linear time invariant, controllable and observable 

continuous system. Where 𝑥 ∈  ℜ𝑛  is state  𝑦 ∈  ℜ𝑝  is 
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output and  𝑢 ∈  ℜ𝑚  is control.Matrices A, B, C are system 

matrices. 

 

Fig.3 visualization of fast output sampling feedback 

When the system (22)-(23) is sampled at the rate of  1/

𝜏,the equivalent discrete-time system is  

𝑥𝑘+1 =  Φ𝜏𝑥𝑘 + Γ𝜏uk                                            (24) 

𝑦𝑘 = 𝐶𝑥𝑘                                                               (25) 

Where   Φ𝜏 = 𝑒𝐴𝜏  and  Γ𝜏 =  𝑒𝐴𝑠𝐵𝑑𝑠
𝜏

0
, also let 

𝑥𝑘+1 =  ΦΔ𝑥𝑘 + ΓΔuk                                           (26) 

be the discrete time system corresponding to the system 

(22) sampled at the rate of 1/Δ, where  

Δ = 𝜏
𝑁  , Let 𝜐  denotes the observability index [27] of 

(Φ,𝐶) and 𝑁 > 𝜐 in FOS output measurements are taken at 

time instants t= 𝑙Δ, 𝑙 = 0,1, ……𝑁 − 1.The control signal 

which is applied during the interval 𝑘𝜏 < 𝑡 < (𝑘 + 1)𝜏  is 

then contrructed as a linear combination of the last output 

observations, then the fictitious lifted system can be 

constructed as  

𝑥𝑘+1 =  Φ𝜏𝑥𝑘 + Γ𝜏uk                                           (27) 

𝑦𝑘+1 = 𝐶0𝑥𝑘 + 𝐷0uk                                            (28) 

Where 𝐶0𝑎𝑛𝑑 𝐷0 are given by 

𝐶0 =

 
 
 
 
 

𝐶
𝐶ΦΔ

𝐶ΦΔ
2

..
CΦΔ

𝑁−1 
 
 
 
 

 ,𝐷0 =

 
 
 
 
 
 

0
𝐶ΓΔ

𝐶ΦΔΓΔ +
....

𝐶Σ𝑖=0
𝑁−2ΦΔ

𝑖 ΓΔ

𝐶ΓΔ

 
 
 
 
 
 

             (29) 

Let F be an initial state feedback gain such that the closed 

loop system (Φ
𝜏

+ Γ𝜏𝐹) has no eigen values at the 

origin.Then for this state feedback one can define a 

fictitious measurement matrix 

𝐶 =  𝐶0 + 𝐷0𝐹 (Φ
𝜏

+ Γ𝜏𝐹)−1                             (30) 

Which satisfies the fictitious measurement equation 

 𝑦𝑘 = 𝐶𝑥𝑘                                                               (31) 

The control law is of the form  

𝑢𝑘 = 𝐿𝑦𝑘  𝑘𝜏 < 𝑡 < (𝑘 + 1)𝜏                                (32) 

For L to realize the effect of F it must satisfy 

𝑥𝑘+1 = (Φ
𝜏

+ Γ𝜏𝐹)𝑥𝑘 = (Φ
𝜏

+ Γ𝜏𝐿𝐶)𝑥𝑘              (33) 

That is   𝐿𝐶 = 𝐹                                                  (34) 

For N≥  𝜈, the matrix C has full rank and that for N= 𝜈.L is 

uniquely determined from (34).However, if N> 𝜈,L thus 

obtained is not unique. Whatever is the case, L obtained 

from (34) realizes the state feedback gain Γ[19] at time 

t=0, the control signal uk=u0 for 0 ≤ 𝑡 < 𝜏.Cannot be 

computed from (32) as the output measurements are not 

available for t<0.Howerever u0 can be arbitrarily selected 

if the eigen values of (LD0 − FΓ𝜏) , are in unit circle in Z 

plane since under this condition, the initial error in input 

will slowly vanish. 

3.1.3 A Modified Approach for Fast Output Sampling 

Feedback 

Consider the lifted system in (27) and (28), since the 

system is assumed to be observable the lifted output matrix 

𝐶0 is of rank n.if the value of N is chosen as greater than 

the observability index [27] of the system then for a p 

output matrix necessarily 𝑁𝑝 ≥ 𝑛 and 𝐶0 would be of 

dimensions 𝑁𝑝 × 𝑢.Thus from (27) and (28) the state vector 

𝑥𝑘  can be obtained in terms of 𝑦𝑘  𝑎𝑛𝑑 𝑢𝑘−1 as 

 

 𝑥𝑘 =  L𝑦𝑦𝑘 + L𝑢uk−1                                           (35)  

 

Where     L𝑦 = Φ𝜏(𝐶0
𝑇𝐶0)−1𝐶0

𝑇                             (36) 

 

L𝑢 = Γ𝜏 − Φ𝜏(𝐶0
𝑇𝐶0)−1𝐶0

𝑇𝐷0                                (37) 

 

It is evident from (35) that the state of the system (22) can 

be determined exactly from the past measurements of the 

output and input. Now state feedback control, designed in 

3.2.1 can be converted into an output feedback based 

control by simply 

substituting for 𝑥𝑘 (35) as 

 

uk = FL𝑦𝑦𝑘 + FL𝑢uk−1                                         (38) 

 

3.1.4 Discrete sliding mode control 

 

A. Overview of Discrete-Time Sliding Mode Control 
Discrete-time sliding mode control (DSMC) is discrete-

time counter part of continuous-time sliding mode control 

(SMC).For DSMC the structures of the control are similar 

to that of continuous-time SMC. 
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1) Design of sliding surface: If M<n, there exist a 

transformation  𝑇 ∈ ℜ𝑛×𝑛  for system (24) such that  

𝑇Γ =  
0

Γ𝜏2

  

Under this transformation, the system (24) is transformed 

into regular form given as 

 
𝑋1𝑘+1

𝑋2𝑘+1

 =  
ϕ
𝜏11

ϕ
𝜏12

ϕ
τ31

ϕ
𝜏22

  
𝑋1𝑘

𝑋2𝑘

 +  
0

Γ𝜏2

 𝑢𝑘             (39) 

 

Where   [𝑥1𝑘

𝑇
,𝑥2𝑘

𝑇
]𝑇 = 𝑥𝑘 = 𝑇𝑋𝑘                           (40) 

 

Where  𝑋 1𝑘
∈ ℜ𝑛−𝑚  and 𝑋 2𝑘

∈ ℜ𝑚 .Let us define a sliding 

function [24] for the system (39) of the form 

𝑠𝑘 = 𝑐
−𝑇

𝑥𝑘  With the sliding function parameter be of the 

form  𝑐−𝑇 = [𝐾, 𝐸𝑚 ]                                       (41) 

Where k is mx (n-m) matrix and 𝐸𝑚  is identity matrix of 

order m.The system dynamics during sliding mode is 

characterized by the sliding surface. Then the sliding 

surface is given by 

 

𝑋 2𝑘
= −𝐾𝑋 1𝑘

                                                       (42) 

 

Where 𝑋 2𝑘
 constitutes the last m states of 𝑋 𝑘 .Then, the 

sliding mode dynamics of 𝑋 1𝑘
 can be represented as    

𝑋 1𝑘+1
= ϕ

𝜏11
𝑋 1𝑘

− ϕ
𝜏12

𝐾𝑋 1𝑘
  

                  = (ϕ
𝜏11

− ϕ
𝜏12

𝐾)𝑋 1𝑘
                          (43) 

From (43) one can observe that if K is so designed that the 

eigenvalues of(ϕ
𝜏11

− ϕ
𝜏12

𝐾) are assigned within the unit 

circle then 𝑋 1𝑘
 is stabilized during sliding phase. 

Consequently from (42) 𝑋 2𝑘
, is also stable confined to the 

sliding surface. Thus the stability requirement of the sliding 

surface is achieved. Now the sliding surface for original 

system (27) can be expressed as 

 𝑠𝑘 = 𝑐
−𝑇

𝑇𝑥𝑘 = 𝑐𝑇𝑥𝑘 = 0                                   (44) 

 

 2) Sliding mode control law design: The discrete-time 

sliding mode control law can be obtained by satisfying the 

reacting law [23] 

 𝑠𝑘+1 = 0                                                              (45) 

 

Now from (27), (44) and (45) one can get 

 

𝑠𝑘+1 = 𝑐𝑇𝜙𝜏𝑥𝑘 + 𝑐𝑇Γ𝜏𝑢𝑘 = 0                             (46) 

 

Resulting in equivalent DSMC law as 

𝑢𝑘 = 𝐹𝑠𝑥𝑘                                                              (47) 

 

Where  

𝐹𝑠 = −(𝑐𝑇Γ𝜏)−1𝑐𝑇𝜙𝑇                                           (48) 

 

B. Fast output Sampling Based Discrete-Time Sliding 

Mode Control 

The above discrete-time sliding mode control law (47) is 

combined with fast output sampling feedback control using 

as  

𝑢𝑘 = 𝐹𝑠𝐿𝑦𝑦𝑘 + 𝐹𝑠𝐿𝑢𝑢𝑘−1                                    (49)  

 

Where 𝐹𝑠 is determined using (48).similarly sliding surface 

(44) can be expressed in terms of multirate output 

observations and past input as 

 

𝑠𝑘 = 𝑐𝑇𝐿𝑦𝑦𝑘 + 𝑐𝑇L𝑢𝑢𝑘−1                                   (50) 

 

4 SIMULATION & RESULTS 

 
The MATLAB-SIMULINK models for the simulation of 

modeling, analysis, and control of nonlinear inverted 

pendulum-cart dynamical system has been developed. The 

parameters of the cart inverted pendulum system setup are 

selected as [1,2,3,]: the cart mass (M): 2.4 kg, and  mass of 

the pendulum (m): 0.23 kg, the pendulum length(l )as:0.36 

m, the cart track length (L): ± 0.5 m, the cart & pole 

rotation friction coefficient is assumed negligible. 

 

After linearization the system matrices are computed as 

below: 

 

𝐴 =  

0 1 0 0
0 0 −0.9401 0
0
0

0
0

0 1
29.8615 0

  (51) 𝐵 =  

0
0.4167

0
−1.1574

 (52) 

𝐶 =  
1 0 0 0
0 0 1 0

   𝐷 =  
0
0
  

 

And for FOS based Discrete sliding mode controller the 

eigenvalues of A are (0, 0, 5.4646,-5.4646).Two 

eigenvalues are at origin and one is in the right half of s-

plane. Hence, the system is fully controllable and 

observable, the observability index being 4. 

  Assume the sampling period 𝜏 = 0.068 𝑠. Thus,∆=
0.017 𝑠.The system(51)-(52) is dicretized with sampling 

period 𝜏 and state feedback gain matrix F is calculated 

using Q=0.1E and R=1  as  

 

F= [0.3162 1.4440 56.5926 10.4016]. 

 

Using this state feedback gain matrix, closed loop 

eigenvalus of the discrete 𝜏 system are observed to be 

(0.6810, 0.6980, 0.9828±i0.0159) i.e. within the unit circle 

in Z-plane. Now 𝐶0 and  𝐷0 are determined using (29) for 

computing C from (30) and hence L from (34).Which is 

found to be  

 

L = [-4.5953  -111.6394  -5.00771  -21.1767  -0.2141  

53.6600  9.9734  114.4196].                                 (53) 

 

Since the system has only one input, it is verified that the 

eigenvalue of (LD0 − FΓ𝜏) is in unit circle. Hence,𝑢0 is 

selected as zero for  𝜏 >0.068 s, this condition is violated 

and for 𝜏 < 0.068 𝑠,magnitude of fast output sampling gain 

increases. Hence, 𝜏 is taken as 0.068 s. 

 Further, for a modified approach of FOS, Lu  and Ly are 

found from (36) and (37) as 

 

𝐿𝑦  =  −17.5231 − 176.8662 − 5.8085 −

49.0201  5.9197 78.4026  17.6265  206.5024 .(54) 
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𝐿𝑢 = −0.4483.                                                      (55) 

 

 And control law given by (38), based on output 

observations and past input is applied to IP system. 

 For FOS feedback based DSMC, discrete-time system is 

transformed into regular form and sliding surface 

parameters are determined using same values of Q and  R 

as,  𝑐𝑇 =  1.2224  1.8016  6.8178  1.4815 .     (56) 

Finally, control law (49) and sliding surface (50) are 

formulated and the controller based on PID  and FOS based 

DSMC is implemented and the tuned PID controller 

parameters of the control scheme is given as in Table 1 

below 

Table 1 PID controller parameters of control scheme 

Control 

method 

Cart PID Control 

𝐾𝑝𝑐  𝐾𝑖𝑐  𝐾𝑑𝑐  

PID+SLIDING 

MODE  

9 -10 9 

 

The SIMULINK model for control of nonlinear inverted 

pendulum system for PID and FOS based DSM Controller 

shown  on Fig.4 and result in Fig.5 and comparison of 

results shown in Fig 6. 

 

 
Figure.4 PID AND FOS based DSM controller 

Figure.5 PID AND DSMC RESULT 

 
Figure 6 Comparision of Results 

 

     The SIMULATION model for control of nonlinear 

inverted pendulum system based on PID and FOS based 

DSMC is shown in Fig.4 and. In this approach output along 

with the input are considered for sampling for FOS 

feedback to DSMC. The simulation results are shown in 

Fig.5 and observed that pendulum and cart stabilizes very 

quickly and cart reaches the desired position quickly 

compared to both cases of two PID [26] and two PID and 

LQR Methods [26] shown in Fig 6.  
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5. CONCLUSION 
In this paper control technique based on PID and fast 

output sampling feedback based Discrete sliding mode 

controller is investigated using non-linear model of 

inverted pendulum system. The control laws are designed 

and simulated and results are obtained. The PID and 

modified FOS feedback based DSM controller simulation 

shows better result compared with two PID controller[26] 

and two PID and LQR[26] controller .  
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