
Containers and Supply Chain Vulnerabilities

Container Vulnerabilities in Different Layers

Alok Kumar
Application Security

5Sec Cyberpwn Technologies Pvt. Ltd

Bangalore, India

Abstract:- There are many OS-Level virtualization products

but this research is focused on Docker and Linux host operating

system as these in combination are most widely used products

across the industry. This research focuses on the possible

vulnerabilities in whole supply chain and categorizing the

vulnerabilities on basis of layers so that it is easy to detect,

prioritize the remediation process and remediate identified

vulnerabilities. The research is done to identify the security

gaps in the supply chain environment and also possible ways to

remediate the vulnerabilities. Also, Linux Security Modules

(LSMs) is also introduced as an added security to enforce

policies on the host operating system so that risk and abuse on

host operating system can be reduced making the supply chain

secure.

Keywords: Docker, container, docker images, docker registry,

docker network, supply chain, orchestrator, LSMs

INTRODUCTION

Docker containers are being widely used to deploy

standalone application code or microservices in a CI/CD

deployment environment because it provides multiple

benefits over traditional virtual machines. The research is

done by reading already published research papers and other

available content on internet. It is observed that securing

only docker images and host operating system by following

different benchmark is not enough to secure the whole

Supply chain environment so, the supply chain is first

categorized in different layers as Host Operating System (1)

where the docker daemon runs, Container Runtime (2),

Docker Registry (3), Docker Images (4), Docker Network

(5) and finally the Orchestration framework (6) which is

responsible for scaling and managing different running

containers in an environment. After categorizing the layers,

the research is done on the possible vulnerabilities on each

layer and their possible remediations.

An introduction is done on containers [I], traditional virtual

machines [II]. A comparison is done between containers and

virtual machines [III]. Section A contains the possible attack

surfaces in a typical supply chain environment followed by

conclusion where LSM [Table 10] is also introduced as a

security feature which can be used to enforce extra policies

to make the environment more secure from possible threats.

I. CONTAINERS

Docker is a set of platform as a service products that use OS-

level virtualization to deliver software in packages called

containers. Docker, LXC, and RKT are examples of

container managers. This study is solely focused on Docker

and linux host Operating system as it is the most common

use case scenario.

Containers take comparatively much lesser time to start the

service as it is kept minimalistic by design. As Containers

share resources and kernel with host Operating system, it

doesn’t need any Operating system to be installed to run any

particular service.

II. VIRTUAL MACHINES

A virtual machine (VM) is a digital version of a physical

computer. Virtual machine software can run programs and

operating systems, store data, connect to networks, and do

other computing functions, and requires maintenance such

as updates and system monitoring.

Virtual machine needs an Operating system to be installed

and mimic the behavior of physical machine. Hence it needs

an Operating system and kernel to be installed which is time

consuming and takes much more effort than compared to

Containers.

III. CONTAINERS VS VIRTUAL MACHINES

Hardware, Host Operating system, Virtualization Layer are

the common layers across any virtual machine or any

containers. The major difference can be observed in image

(i) below as the virtual machines needs a separate Operating

system to be installed to function properly whereas we can

see in image (ii) that there is no Guest Operating system

involved.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

314

www.ijert.org
www.ijert.org
www.ijert.org

Factors Containers Virtual

Machines

Operating

system Kernel

Share kernel with
host Operating

system

Needs
separate

Operating

system and
kernel

Resources Can share with host Needs

separate

resources

Load Time Can be started
instantly

Needs its own
time to start

Applications Ideal for micro

services

Ideal for

servers
hosting

applications

Table 1: Difference between Containers and Virtual Machines

A. Possible Attack Surfaces

1. Host Operating System

Operating System sits in middle of hardware and

virtualization layer. Host Operating system is responsible for

running Docker engine. Any Linux Operating System can be

used to run Docker engine as recommended by Docker and

like any other OS, it should be made sure that the Host

Operating system is not vulnerable and unnecessary services

should not be exposed.

Attack vectors on Host Operating System is listed in Table 2

where we can see Improper access rights [Table 2 (i)]. All

users having access rights for docker means unintended

users can start/stop or interfere with docker daemon or in

case of any user getting compromised creates risk to the

docker daemon and the supply chain as well.

Host Operating System components [Table 2 (ii)] can be

vulnerable to attacks leading to compromised supply chain

for example CVE-2018-10900 can lead to privilege

escalation attacks.

Overly permissive SSH [Table 2 (iii)] can allow users to

connect remotely leaving docker engine accessible to users

from anywhere. SSH access should be allowed to limited

users and interaction to docker engine should be done by

docker APIs only.

Kernel Vulnerabilities [Table 2 (iv)] running under

Operating System can also be vulnerable to attacks like

CVE-2016-5195 which can lead to Privilege escalation or

Remote Code Execution vulnerabilities. If an attacker gets

root privilege on the host Operating system then the whole

supply chain can be considered as compromised.

Docker daemon always runs as root user because it needs to

create a unix socket. Running docker daemon as root

[Table 2 (v)] can also create security issues which can bring

risk to daemon and even container runtime. The user

privileges are propagated inside containers as well. Running

containers with root privilege can cause container escape

vulnerabilities.

Running stale services or exposing Unnecessary services

[Table 2 (vi)] on host Operating system increases the attack

surface area. Vulnerable or misconfigured services exposed

on host operating system can lead to Denial of Service (DoS)

or even Remote Code execution vulnerabilities. For example

CVE-2018-14009 can allow authenticated users to trigger

remote code execution which gives access to the server

running docker daemon.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

315

www.ijert.org
www.ijert.org
www.ijert.org

S. No. Attack Vector Scenario Recommendations

i Improper access rights An employee/user having rights to
access docker engine gets his account

compromised.

Separate user should be created and
added to docker group to manage

docker daemon.

ii Host Operating System components Running outdated or components
with known vulnerabilities.

Host Operating system and its
components should be kept up to

date.

System Hardening can be done by
following CIS benchmarks.

iii Overly permissive SSH An employee/user having rights to

access docker engine gets his account

compromised. An attacker logs in to
server via SSH

SSH access can be limited to selected

users (if required).

iv Kernel Vulnerabilities An attacker uses exploits to achieve

remote code execution or privilege
escalation on server.

Latest stable kernel should always be

used.

v Running docker daemon as root User inside container having root

access can escape containers and

interact with host operating system

Separate user should be created and

added to docker group to manage

docker daemon.

vi Unnecessary services An attacker if compromises any

running service, can get access to

docker engine

All running services should be

updated and configured properly.

Services should be stopped if not in
use.

Table 2: Attack vectors on Host Operating System

2. CONTAINER RUNTIME

Container runtime [image iii] is a software which is

responsible for running containers on host operating system.

Container runtime for example Docker, sits on top of host

Operating system and can run applications inside containers

as required.

Common attack vectors, scenarios and possible

recommendations are mentioned in Table 3 below. As in

[Table 3 (i)], Containers should not be run as root user

because in case an attacker exploits the application to

achieve remote code execution then the host operating

system can also get compromised. Or if any existing

container has malicious code running inside container can

have code execution on whole host operating system.

Write access for host root file system [Table 3 (ii)] can also

help attackers or malicious containers to achieve code

execution by modifying host root files. An attacker can edit

“/etc/passwd” file and add decoy user, expose ports and

access the containers remotely.

Linux Capabilities [Table 3 (iii)] are group of kernel calls,

these groups can be assigned to per-process. By using linux

capabilities a standard user can execute programs which can

make kernel calls as assigned. A compromised or malicious

container having capabilities such as CHOWN can change

ownership of the files and achieve write access to the disk.

Containers running in privileged mode [Table 3 (iv)]

means that the running container will have complete root

access on host machine. Which if compromised or is

malicious can allow attackers to achieve code execution on

host operating system.

Unbound network access from containers [Table 3 (v)]

means all containers can interact with each other, which is

by default. A container running malicious code can help

attackers to sniff the traffic or craft DoS attacks from inside

the network. An attacker can also use the same to send

malicious requests other running application containers.

Containers having sensitive mounts on host [Table 3 (vi)]

can also make security risks. Having sensitive mounts on

host can give attacker/malicious user on host to modify the

services or complete write access to container mounts. That

can be abused by an attacker to compromise containers

giving ability to interact with other containers in same

network.

Containers with known vulnerabilities [Table 3 (vii)], the

applications running inside container can have known

vulnerabilities or exploits available. Or even the image being

used for creating containers can have publicly known

vulnerabilities which can give an opportunity to attacker to

exploit known vulnerabilities and compromise the

containers. It is always advisable to use latest stable images

to create containers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

316

www.ijert.org
www.ijert.org
www.ijert.org

S No. Attack Vector Scenario Recommendations

i Containers running as root
user

Attacker compromises application inside
container and gets root access.

Containers should always be ran using
low privilege user or separate user can

be created with required privilege to

manage containers.

ii Write access for host root

file system

Compromised/Malicious containers can modify

the root file system

Root file system should not be

writable from inside containers.

iii Capabilities Compromised/Malicious containers running with

CHOWN capability can file ownership or group.

Excessive capabilities should be

dropped from containers.

iv Containers running in
Privileged mode

Compromised/Malicious containers running in
privileged mode has all root access on the host.

Privileged mode should never be used
on production.

v Unbound network access

from containers

Compromised/malicious container can send

malicious requests to other containers or services

in network.

Containers should be kept in separate

network if multiple containers need to

interact with each other. Continuous

monitoring of network should be

done.

vi Containers having sensitive

mounts on host

Host operating system gets compromised and

now attacker has full write access to container’s
sensitive mounts.

Directories with sensitive data should

never be mounted on host.

vii Containers with Known

Vulnerabilities

Container was created using old image which has

publicly known vulnerabilities. An attacker can
compromise whole container by exploiting the

vulnerabilities.

Image scan should be done for finding

existing vulnerabilities. Tools like
Trivy can be used to scan for known

vulnerabilities.

 Table 3: Attack vectors on Container Runtime

3. DOCKER REGISTRY

Docker registries [image iv] are a setup for distribution of

Docker images. Registries are public and private in nature.

Organization can host their own docker registries to

distribute docker images and also can keep version control

by methods like adding specific tags or versions to the

images.

There can be multiple scenarios and vulnerabilities on a

docker registry as well. For example, Docker registries left

unauthenticated and exposed to public [Table 4 (i)] can

cause severe damage to the organization. It can open door of

opportunities to attacker and help him getting internal

applications and in worse case scenario even he can modify

the images with malicious code in it. Corporate docker

registries should never be left exposed to public and proper

authentication mechanism should be made mandatory in

place to remediate such attacks.

Second attack vector can be the Misconfigured Docker

Registry applications [Table 4 (ii)]. Misconfigurations can

give birth to vulnerabilities in any case and docker registries

are no different. Taking a scenario for example as a docker

registry which doesn’t has any access management in place

and allows user to pull and push images to the registry. This

can even be worse if there is no authentication in place. An

attacker can pull any image, modify it with malicious codes

and push the image back to registry. This will lead users

pulling malicious images and running vulnerabilities in

supply chain. Access Control should be managed using IAM

if using GCP or AWS. Registry access management can be

used to maintain access control for the user.

Application owners or owners docker images often try to

resolve existing bugs/vulnerabilities and update the images

with version number in tags. Stale images [Table 4 (iii)] can

have older version of running base image or outdated

application running inside which can pose as an attack

vector. Outdated base images or application can have known

vulnerabilities and available public exploits as well. It is

always advised to update the base image to latest stable

version. Note that updating of base images to latest stable

version should always be done by taking approval from the

organization as updating images might break other

dependencies required by the application.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

317

www.ijert.org
www.ijert.org
www.ijert.org

S No. Attack Vector Scenario Recommendations

i Unauthenticated public

registry APIs

Attacker identifies public

registries using search

engines like Shodan and can

interact with the registry.

Docker registries should always

have authentication in place as

mandatory rule. Private docker

registries should never be left

exposed to internet.

ii Misconfigured Applications Attacker identified

misconfiguration in registry

where he can pull or push

docker images.

Access control with IAM can be

used in case of GCP or AWS.

Registry Access Management

can be used. Registry Access

Management is available to

Docker Business customers only.

iii Stale Images Attacker identifies stale

images having known

vulnerabilities due to no

update.

Base images and applications

should be updated to latest stable

versions.

Remove the images from the

registry which are no longer in

use.

Table 4: Attack vectors on Docker Registry

4. DOCKER IMAGES

Docker images [image v] are basically templates which are

used to start containers. Docker images contain a

Application code, Libraries, Dependencies and

configuration files. They provide capability for developers

and operational team to setup a light weight environment to

run the application. For example, if we need to host any web

application, we can select a base image of web server like

nginx, create required configuration files. Volume mounts,

environment variables can also be defined in docker images

as well so that container runs with all required configurations

for the application.

Possible attack vectors on docker images are listed in below

[Table 5]. Selecting incorrect or older Base images [Table 5

(i)] can bring outdated software packages to the environment

which might already have known vulnerabilities leading to

risks for any organization. Latest stable version of base

images should always be preferred to create any docker

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

318

www.ijert.org
www.ijert.org
www.ijert.org

image so that we can consider that there are no publicly

known vulnerabilities. If the base image has vulnerabilities,

then it can ruin all the efforts of writing secure code and

following best practices.

[Table 5 (ii)] describes the vulnerabilities or risks which

might come with the images such as embedded malwares.

Again, selecting docker images without verification might

bring embedded malwares with the images. Malicious actors

can create and host docker images containing embedded

malwares in it which if used can cause security issues like

Data exfiltration, crypto mining, sniffing of network traffic.

To prevent from this type of vulnerabilities, images should

be scanned for vulnerabilities and misconfigurations.

Docker image hash can be compared for known malicious

hashes of docker images.

Developers often hardcode secrets [Table 5 (iii)] in docker

images as its easy to deploy. Hardcoding of secrets is

considered as bad practice in any ways and docker images

are no different. For example, the application has payment

gateway integrated. In this case the developers might want

to hardcode the tokens in the image itself so the application

will run without errors. Any one having docker image can

see the configuration of it leading to credential leak. Secrets

or tokens should always be provided to containers when

needed.

Image trust [Table 5 (iv)] can also be considered a cause of

vulnerabilities. Using untrusted images in production

environment can bring known vulnerabilities or malware

into the network. Malicious actors can embed code to

perform activities like crypto mining, monitoring the

network or escaping containers to gain access on host

machine. Images from trusted source should only be used to

lower the risk of vulnerabilities and getting exploited.

Docker images are templates to start containers which also

contains configuration. Using images from trusted source,

checking for embedded malwares, removing hardcoded

secrets and checking for existing known vulnerabilities takes

effort which can all go to vain if not checking for poor

configurations [Table 5 (v)]. [Table 6] describes possible

misconfiguration which can be avoided to make the running

containers secure.

S No. Attack Vector Scenario Recommendations

i Base Images Team selects outdated base images or

images with existing known

vulnerabilities.

Base images should be

selected properly so that

they are of latest stable

version and having no

existing known

vulnerabilities.

ii Embedded Malwares Malicious actors inject malware

codes into the image for example

crypto mining.

Image should be scanned

for vulnerabilities and

should be downloaded

from trusted sources.

iii Hardcoded Secrets Team decides to hardcode API keys to

the image because it’s convenient and

easy.

Secrets should always be

provided to containers

when needed. Many

orchestrators provide

feature to manage secrets

which can be used.

iv Image Trust Team decides to use an image from an

unknown or untrusted source where

an attacker has already placed

malicious code into the image.

Images should always be

downloaded from trusted

sources.

v Poor Image Configurations Team decides to use a base image

which has root user login enabled.

Images should always be

scanned for

misconfigurations and

configuration audit can

be done following the

standards like CIS

Benchmark.

Table 5: Attack vectors on Docker Images

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

319

www.ijert.org
www.ijert.org
www.ijert.org

S. No. Misconfiguration Remediation

i Use of root user account for containers Root user account should always

be avoided for containers.

Many base images like Alpine

come with support of root user

which should be considered

properly and root user should

always be avoided for running

containers

ii Unwanted users as part of docker group Unwanted users should never be

used/added to docker group and

proper authorized person should be

only able to execute docker

commands.

iii Mounting docker.sock on containers Mounting docker.sock should be

always not to consider for

misconfiguration

iv Using “-privileged” flag to run containers Using “-priviledged” flag should

always be avoided as it gives root

access to containers on host

operating system.

v Exposed docker daemon over HTTP Docker daemon remote APIs

should never be exposed to the

network. Although it’s not exposed

by default.

Table 6: Poor Docker Image Configurations

5. DOCKER NETWORK

Docker containers are used to run applications or most often

micro-services which need to interact with other containers.

Docker provides different network drivers [Table 7] which

can be selected as per requirement to solve the issue. Docker

networks are used to connect containers to other containers

and the internet. Hence, Docker networks should also be

given priority in securing a container environment. [Table 8]

describes the possible vulnerabilities which can affect the

network where containers interact with each other or the

internet. And network monitoring should be done to identify

possible threats or anomalies in the network.

S. No. Network Driver Description

i Bridge The default network driver. If you don’t specify a driver, this is the type of network you

are creating. Bridge networks are usually used when your applications run in standalone

containers that need to communicate.

ii Host For standalone containers, remove network isolation between the container and the

Docker host, and use the host’s networking directly

iii Overlay Overlay networks connect multiple Docker daemons together and enable swarm services

to communicate with each other. You can also use overlay networks to facilitate

communication between a swarm service and a standalone container, or between two

standalone containers on different Docker daemons. This strategy removes the need to

do OS-level routing between these containers.

iv ipvlan IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN

driver builds on top of that in giving operators complete control of layer 2 VLAN tagging

and even IPvlan L3 routing for users interested in underlay network integration.

v macvlan Macvlan networks allow you to assign a MAC address to a container, making it appear

as a physical device on your network. The Docker daemon routes traffic to containers

by their MAC addresses. Using the macvlan driver is sometimes the best choice when

dealing with legacy applications that expect to be directly connected to the physical

network, rather than routed through the Docker host’s network stack.

vi none For this container, disable all networking. Usually used in conjunction with a custom

network driver. none is not available for swarm services.

v Network plugins For this container, disable all networking. Usually used in conjunction with a custom

network driver. none is not available for swarm services.

Table 7: Docker Network Drivers

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

320

www.ijert.org
www.ijert.org
www.ijert.org

Unencrypted traffic [Table 8 (i)] is considered as a security

issue in a network and docker networks are no different. No

plain text traffic should be used to transmit data across the

network as any compromised container or malicious actor

can intercept the data leading to data disclosure issues. This

can be avoided by using encrypted traffic and legacy

protocols like FTP should be avoided to lower the risk.

Insufficient Cryptography [Table 8 (ii)] is also a general

network issue which should be taken care in docker

networks. For example, using HTTPS in place of HTTP can

make the connection secure but using weak cipher suites to

encrypt the traffic for the web application can give an

opportunity to attackers to decrypt the traffic leading to data

disclosure. Weak Cipher suites should always be avoided

while encrypting the data.

Unorganized docker networks [Table 8 (iii)] can also lead

to security issues. Containers should be joined to networks

which are organized or categorized properly. Containers

having high sensitivity of the application or data should be

grouped in separate network and containers having low

sensitivity should be grouped separately. If containers are

not categorized properly and a container having low

sensitivity gets compromised the attacker will get access to

containers having high sensitivity data. Grouping of

containers also help in monitoring the network and

prioritising the remediation of any identified issues.

S No. Attack Vector Scenario Recommendations

i Unencrypted Traffic Container is running a

web application on port

80 using plain text

traffic. An attacker or a

container with malicious

intent running in same

network sniffs the data in

motion.

All the data in motion

from containers to other

containers or to the

internet should always

be encrypted.

ii Insufficient Cryptography Container is hosting a

web application running

with HTTPS but using

weak cipher suites. A n

attacker or a container

with malicious intent

running in same network

decrypts the data in

motion.

Use of weak cipher

suites should always be

avoided.

iii Unorganized Docker Networks Critical and non-critical

containers are running in

same network. A

compromised container

in same network can

interact across the

network

Containers should be

grouped as per the

criticality of the

application and data in

rest or motion.

Table 8: Attack Vectors on Docker Network

6. ORCHESTRATORS

Container orchestration tools gives features to manage

container life cycle. There are multiple orchestration tools

available but the most popular among all of them are

Kubernetes, Docker Swarm and Apache Mesos.

They all provide similar features like container deployment,

rollouts, exposing services to other containers or internet and

load balancing. The tools can also self-restart or replace any

container that doesn’t meet the defined requirements. [Table

9] describes the possible vulnerabilities on an orchestration

tool.

Unauthorized Access [Table 9 (i)] to the orchestration

framework should be avoided and login should be protected

via MFA which gives added security to strong passwords. In

case, an attacker gets the credentials of any authorized

personnel can replay the credentials and get access to the

orchestration environment. AWS role and policies can be

created to maintain unauthorized access and maintain MFA.

Poorly separated inter-container traffic [Table 9 (ii)] can

bring risks to the environment like DoS or data disclosure. A

malicious or compromised container can interact with other

containers in network, monitor the traffic or craft DoS

attacks to other containers running sensitive applications. To

mitigate the risk all containers should be grouped according

to application sensitivity level and the data present in the

containers.

Giving Administrative access [Table 9 (iii)] to everyone or

the person who is not intended to perform admin activities is

always considered as a bad practice. This is not a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

321

www.ijert.org
www.ijert.org
www.ijert.org

vulnerability in itself but can be the root cause of security

risks to the environment. Least privilege model should be

followed and administrative access should always be given

to people who are responsible to perform administrative

activities.

Orchestrator node trust [Table 9 (iv)] should be

maintained throughout the lifecycle of any node. If not taken

in to account, then unintended hosts can join the cluster and

run malicious containers. The orchestration frameworks

provide feature to maintain the trust across the clusters so

that no unauthorized host can join the cluster and making the

environment secure from such risks.

S No. Attack Vector Scenario Recommendations

i Unauthorized access No MFA(Multi-Factor

Authentication) is present

for orchestrator login.

Leaked credentials of any

user can give orchestrator

access to attackers.

MFA should be introduced

and made mandatory to

login to the orchestrator.

AWS role and policies can

be created to maintain

authorized access.

ii Poorly separated inter-container traffic There is no isolation of

network and containers can

interact to other containers

which they are not supposed

to. A compromised container

in network can craft request

to other container or monitor

the traffic.

Containers should be

separated into groups as per

the sensitivity level of the

applications running inside

any containers.

iii Administrative access to everyone The Test team has admin

access to production nodes.

A malicious actor or the test

team gets admin access to

production nodes.

Least privilege model

should be followed and the

permission should always be

given as per requirement of

the team.

iv Orchestrator node trust No trust management is

maintained in orchestration

tool. Unauthorized host can

join the cluster and run

malicious containers.

Orchestration tool should

provide feature to maintain

trust. All nodes should be

securely introduced into the

infrastructure and identity

should be persistent

throughout the lifecycle of

each node.

Table 9: Attack Vectors on Orchestration Framework

CONCLUSION

Docker provide a very better way to manage multiple

applications or micro-services where containers can be

started, paused, scaled and managed to maintain the supply

chain that is the main reason of containers getting popular

across the teams. Docker gives many benefits over

traditional virtual machines such as running containers with

very les start-stop time, light weight in structure. But as other

technologies, vulnerabilities can also be present in docker or

containers which should be taken care of.

As per my research basically containers have six layers in

architecture where vulnerabilities can appear as mentioned

below.

1. Host Operating System

2. Container runtime

3. Docker registry

4. Docker image

5. Docker network

6. Orchestration framework

Considering above layers, if proper security posture and

configurations are maintained then the supply chain can be

considered as fairly secure to host any application in

production environment. And of course, security testing of

the application code should always be done according to the

application lifecycle because securing whole supply chain

environment and hosting a vulnerable application inside can

ruin whole effort of securing docker environment.

In addition to above mentioned layers of docker

environment and making them secure, Linux Security

Modules (LSMs) like SELinux or AppArmor can be

introduce on the system running docker daemon to make the

environment more secure and robust. [Table 10] describes

few Linux Security Modules which can be introduced to the

environment as per the requirements. Linux Security

Modules gives features of hooking into check points for each

operations and policies can be enforced which will be

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

322

www.ijert.org
www.ijert.org
www.ijert.org

checked and can deny tasks, process to run which are not

supposed to run as per the policies.

ACKNOWLEDGEMENT

First of all I would like to thank Olivier FLAUZAC for his

great work in "A review of native container security for

running applications" which inspired me as well to dive deep

and look for possible threats on each layer. I would also like

to thank SARI SULTAN for his work "Containers’ Security:

Issues, Challenges, and Road Ahead" which also helped me

while doing the research.

At last, I would like to thank whole community for

contributing and sharing their experience.

Name Description

AppArmor AppArmor is a Mandatory Access Control framework. When enabled, AppArmor confines

programs according to a set of rules that specify what files a given program can access.

LoadPin LoadPin is a Linux Security Module that ensures all kernel-loaded files (modules, firmware,

etc) all originate from the same filesystem.

SELinux Security-Enhanced Linux (SELinux) is a security architecture for Linux systems that allows

administrators to have more control over who can access the system.

Smack Smack is a kernel based implementation of mandatory access control that includes simplicity

in its primary design goals.

TOMOYO TOMOYO is a name-based MAC extension (LSM module) for the Linux kernel. It allows

processes to declare resources and behaviours required to perform activities.

YAMA Yama is a Linux Security Module that collects system-wide DAC security protections that

are not handled by the core kernel itself. This is selectable at build-time with

CONFIG_SECURITY_YAMA, and can be controlled at run-time through sysctls in

/proc/sys/kernel/yama

Table 10: Linux Security Modules (LSMs)

REFERENCES

[1] Olivier FLAUZAC, Fabien MAUHOURAT, Florent NOLOTA "A review of native container security for running applications"

(2020)

[2] SARI SULTAN, "Containers’ Security: Issues, Challenges, and Road Ahead" (2019)

[3] Kelly Brady, Seung Moon, Tuan Nguyen, Joel Coffman, "Docker Container Security in Cloud Computing" (2020)

[4] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, Quan Zhou, "A Measurement Study on Linux Container Security: A

acks and Countermeasures" (2018)

[5] https://github.com/OWASP/Docker-Security

[6] https://www.alertlogic.com/blog/top-docker-security-vulnerabilities-best-practices-insights/

[7] https://madhuakula.com/content/attacking-and-auditing-docker-containers-and-kubernetes-clusters/attacking-private-

registry/scenario.html

[8] https://docs.docker.com/config/containers/container-networking/

[9] https://en.wikipedia.org/wiki/Linux_Security_Modules

[10] https://www.sdxcentral.com/cloud/containers/definitions/how-does-container-networking-work/

[11] https://blog.container-solutions.com/linux-capabilities-why-they-exist-and-how-they-work

[12] https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts

[13] https://resources.infosecinstitute.com/topic/common-container-misconfigurations-and-how-to-prevent-them/

[14] https://docs.docker.com/network/

[15] https://www.optiv.com/insights/discover/blog/orchestrator-risks

[16] https://www.kernel.org/doc/html/v4.14/admin-guide/LSM/LoadPin.html

[17] https://apparmor.net/

[18] https://www.redhat.com/en/topics/linux/what-is-selinux

[19] https://www.kernel.org/doc/html/v4.18/admin-guide/LSM/Smack.html

[20] https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/tomoyo.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050181
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

323

www.ijert.org
www.ijert.org
www.ijert.org

