
Constructing Complete Requirement

Specification from Natural Language

Requirements Document

Navin Kumar Sehgal

Department of Computer Science,
Kalindi College, Delhi University

New Delhi, India

Krishan Kumar Rohilla
Department of Computer Science
Kalindi College, Delhi University

New Delhi, India

Abstract— SRS is an important document for SDLC

(Software Development Life Cycle). It helps project manager in

obtaining requirements for further phases. Extracting

requirements from requirements document written NL can

cause errors. In this paper we use derivation, verification and

completion techniques to obtain a well defined and accurate

requirements table.

Keywords - Requirement specification , correctness, completeness

I. INTRODUCTION

Requirements document can be defined as a document

specifying various types of requirements including product

description, design and implementation constraints, user

documentation, user interface, system features and other non

functional requirements.

The requirements engineering team is responsible for

elicitation, validation and negotiation of requirements. The

requirements are presented in an SRS. There is high

probability of requirements being error prone or incomplete. It

can lead to defects being carried to further phases of SDLC

(Software Development Life Cycle). The result is a defective

software product.

SRS therefore cannot be considered as the final document. It

contains a number of defects which cannot be corrected in the

normal requirements engineering process. An additional

technique is required to weed out the errors. Errors can be

attributed to different types of specifications. An Incorrect

specification refers to a specification which is not in

accordance with either user or product specification. An

ambiguous specification can lead to a number of different

implementations. A superfluous specification is abstract in

nature. An incomplete specification can leave out important

details. A non implementable specification can not be covered

using existing project resources. The SRS is a large document

and therefore it becomes difficult to correct it in its existing

format.

In this paper we introduce a CRS (Complete Requirement

Specification). It is created by removing the errors of SRS.A

CRS can be derived from SRS using techniques mentioned in

this paper.

A CRS is in the form of a table. Therefore it shows the

relevant requirements in an unambiguous manner. CRS is

constructed using well defines techniques like filtering, error

checking and completion checks. CRS thus obtained is

complete and fully correct. A CRS contains requirements that

are implementation friendly.

CRS relies on CROSSWORD method for requirements

definition. In the game CROSSWORD the words have to be

filled in the spaces to complete it. Similarly the SRS serves as

the clue and keywords are obtained from it under different

categories. The keywords are filed in the CRS table.

II. CRS TECHNIQUES

A. Filtering and Prioritization

 A number of techniques are followed for producing a CRS.

They include derivation of requirements, filtering the

requirements, prioritizing them, checking them against

parameters, completing the requirements.

 In the first step requirements are derives from the

requirements document written in NL. This involves

extracting keywords. The keywords contain all the important

aspects of the software project. The keywords are important

therefore they should encapsulate the key project elements.

These are put in a formative CRS table. The exercise is similar

to a CROSSWORD puzzle. The keywords are put in different

categories – functional requirements, no functional

requirements, external functional requirements, use cases,

database requirements and constraints.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090122

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

92

The next step is prioritizing the requirements. Each

requirement keyword is assigned a priority in the scale 1 – 4.

The priority is decided if it stakeholder friendly and does not

violate constraints.

B. Checking for correctness

 The next technique involves error checking. The

superfluous, ambiguous, inconsistent, incorrect and non

implementable requirements are removed from the CRS table.

A separate column is appended to CRS table and requirements

are classified as correct (C), superfluous(S), ambiguous (A),

not-agreed (D) inconsistent (T) incorrect (N) and non-

implementable (I). A requirement is considered superfluous(S)

if it is abstract in nature. It is ambiguous (A) if it relates to two

or more implementations. It is not agreed if stakeholders have

differing opinion on them. It is inconsistent (T) if it overrides

another requirement. A requirement is Incorrect (I) if it is

either not related with a project or wrongly defines a project

element. A non-implementable (I) is one which is beyond the

technical and financial considerations. Other than correct

requirements all other undergo modification.

C. Checking for completeness

Next comes the completion techniques. Again a column is

added to the table and each requirement is marked as complete

(C) or omission (O). An omission requirement is one which

needs further elaboration in order to be made implementable.

Each such requirement needs adding additional requirement

keywords. This technique is iterated till all the requirements

are complete.

D. Iterative procedure

III CASE STUDY

A case study based on Hospital Management System is

conducted for the purpose of examining the techniques

mentioned in the paper.

The SRS of a hospital management system consists of

description of the project, requirements of physician office

system, requirements of the hospital system and requirements

for patient monitoring system.

These are classified into functional requirements, non-

functional requirements, database system, external interface

requirements, use cases and constraints.

 A formative CRS table is created as shown in table 1.

A. CRS Formulation

The procedure is of CRS generation is iterative. After the

formative CRS table has been created, next step is to assign

priorities and check for errors.

The procedure is iterative in nature. Each iteration consists

of two phases. In the corrective phase each requirement is

checked manually for errors. Each error is marked with a

symbol S (superfluous), A (ambiguous), D (not agreeable), T

(inconsistent), N (incorrect), I (non implementable). The

errors are correct by modifying or adding new requirement

keywords. Each new requirement keyword is assigned a new

priority value and modified requirements cause change in the

priority value.

The next phase is completeness phase. The requirement is

marked either C (correct) or O (omission). All omitted

requirements are appended to existing requirements and

assigned priority numbers.

Requirements Keywords Check Priority

Functional input-patient-data C 4

 web-based-service A 3

 user-validation S 4

 historical-patient-information I 3

 unique-patient-identification C 3

 physician-wise-record A 4

 date-time-display C 3

 medication-info-search D 3

 diagnostic-imagery-record T 4

 diagnostic-imagery-report A 4

 patient-diagnosis-validation A 3

Table 1. Formative CRS table for functional requirements of hospital information system

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090122

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

93

B. Equations

If set of requirements at correctness phase and completion

phase are denoted by Tr and Cr respectively. The priority

values for Tr and Cr are Pt and Pc respectively. If Pch is the

change in priority .

|Tri+1| > | Tri| , | Cri+1| > | Cri| (1)

Pti+1 > Pti , Pci+1 > Pci (2)

.

Pchi = a * Pti + b * Pci (3)

 Equation (1) relates to the changes in the requirements
over various iterations. The change in the priority of the
requirement is shown in equation (2). The third equation
specifies the relationship between priority change and number
of priorities at correction and completion step. Values of
constants a and b lies between 0 and 1.

C. Useful Obervations

 As shown in table 2 it can be deduced that the no of
requirements shows an increase in the first few
iterations or is maximum for first few iterations.

 The number of requirements reaches a saturation level
after there is decline in the change in requirements

 The number of functional requirements increases at a
faster rate than number of non functional requirements.

 The correctness phase changes the priority of the
requirements as compared to completeness phase that
changes the number of requirement.

 Overall priority changes more during completeness
phase than correctness phase.

 The number of changes in all other requirements is less
than changes in functional requirements

 As the number of iterations increases the number of
changes reduces gradually till it becomes zero.

Iteration Phase Priority Functional
Non

Functional Database
Use

Cases Constraints

Initial 79 9 3 7 2 3

1 Correctness 94 11 4 7 2 3

Completeness 114 13 4 7 3 3

Total Change 35 4 1 0 1 0

% change 44.30380 44.44444 33.33333 0.00000 50.00000 0.00000

2 Correctness 137 17 5 8 3 5

Completeness 151 20 6 8 3 5

Total Change 37 7 2 1 0 2

% change 32.45614 53.84615 50.00000 14.28571 0.00000 66.66667

3 Correctness 156 20 6 9 4 5

Completeness 160 21 6 9 4 5

Total Change 9 1 0 1 1 0

% change 5.96026 5.00000 0.00000 12.50000 33.33333 0.00000

4 Correctness 170 23 7 9 4 5

Completeness 174 23 7 9 5 5

Total Change 14 2 1 0 1 0

% change 8.75000 9.52381 16.66667 0.00000 25.00000 0.00000

Table 2. Changes in priority and number of requirements for iterations 1 to 4

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090122

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

94

IV USES OF THE STUDY

The study is relevant for SDLC as it reduces the product

defects in the first phase itself. The CRS study can guide the
remaining phases of the SDLC. Table formulation and change
procedures can be followed in further stages also to reduce
errors.

FUTURE WORK

The number of correctness and completeness checks can

be increased based on the project domain in addition to
current basic checks in order to improve the quality of the
software product.

The current method involves manual checking that
involves one or more members of the requirements team and
stakeholders. The future tables can be generated by programs
and the process can be made automatic.

REFERENCES

[1] Amira A. Alshazly, Ahmed M Elfatatry and Mohammed S Abougabal,

“Detecting defetcts in software requirement specifications”, Alexendria

Engineering Journal, vol. 2014,in press.

[2] Tejalal Choudhary and Anurag Goswami, “Investigating the effect of

fault category on overall capture probability during requirements

inspection”, International journa; of computer science and information
technology, vol(5) 4,2014.

[3] Ninaus, Gerald, et al. "INTELLIREQ: Intelligent Techniques for
Software Requirements Engineering." 21st European Conference on

Artificial Intelligence/Prestigious Applications of Intelligent Systems

(PAIS 2014), p. to appear, Prague, Czech Republic. 2014.

[4] Amit Kumar Jakhar and Kumar Rajnish, “A new cognitive approach to

measure the complexity of software”, International journal of software

engineering and applicatios, vol 8, No. 7(2014)

[5] Dorfman, Merlin. "System and software requirements

engineering." IEEE Computer Society Press Tutorial. 1990..

[6] Hallerstede, Stefan, Michael Jastram, and Lukas Ladenberger. "A

method and tool for tracing requirements into specifications." Science

of Computer Programming 82 (2014): 2-21

[7] Ghanavati, Sepideh, Daniel Amyot, and André Rifaut. "Legal goal-

oriented requirement language (legal GRL) for modeling
regulations." Proceedings of the 6th International Workshop on

Modeling in Software Engineering. ACM, 2014.

[8] Achimugu, Philip, et al. "A systematic literature review of software
requirements prioritization research." Information and Software

Technology 56.6 (2014): 568-585.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090122

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

95

