

Constraint Satisfaction Problems In Constraint Programming
Amey Kelkar

Mulund College of Commerce

Abstract

Constraint satisfaction is arguably the most relevant

and practical facet of programming in operational

research. As a branch of constraint programming, it

has received unprecedented application in airline,

shipping and freight industries particularly in

scheduling and rostering. The formulation and

research into algorithms for constraint satisfaction

problems solution has received a lot of interest among

researchers owing to the robustness of solutions that

can be harnessed. Beginning with an introduction on

constraint programming, the paper defines and isolates

a typical constraint satisfaction problem. It then delves

into the topic of constraint satisfaction as a branch of

constraint programming, the modes of algorithm

formulation to solve constraint satisfaction problems

and its applicability in real life scenarios.

1. Introduction
Constraint programming is a programming

paradigm in which constraints are used to state or

define the relationships between variables. Constraint

programming uses various types of variables such as

variables emergent from the solution of simplex

algorithms, variables that satisfy a constraint among

others (ETAPS, 2003). By definition, a constraint refers

to a relation in logic, of several variables (which are

unknown) for which, each assumes a value in a specific

domain. It restricts the values that can be assigned to a

specific variable, thereby providing partial details on

the given variable. The programming process in

constraint programming entails building or coming up

with requirements, also referred to as constraints, and

then by use of constraint solvers, coming up with a

solution to the previously specified requirements.

Constraint programming is divided into two major

branches, Constraint Satisfaction and Constraint

Solving [1].

Figure 1: Relationships between constraints and

variables [8]

2. Constraint Satisfaction Problems
This paradigm of programming has received

widespread applicability especially in the areas of

scheduling and planning. In a constraint programming

perspective, this can be viewed as constraint

satisfaction problems, which is squarely within the

constraint satisfaction branch of constraint

programming. A typical definition of a constraint

satisfaction problem can be expressed as follows; a

situation that provides a definite set of variables and

values that can be assigned to the variables. In addition,

there is a set of constraints, the solution is to find

values from the given set to be assigned to the variables

and satisfy the constraints [2].

A constraint satisfaction problem consists of

 a set of variables X = {x1,…,xn}

 a domain for each variable D = {D1,…Dn}

 a set of constraints C = {C1,…,Cn}

Thus, a constraint satisfaction problem can be

defined as triple P where P = (X, D, C)

A finite Constraint Satisfaction Problem consists of

finite set of variables and a finite domain for each

variable.

63

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80060

3. Examples

Cryptarithmeticpuzzles can be expressed as a

Constraint Satisfaction Problem. Consider the

following.

CRASH

+ R E B O O T

HACKER

In the above example the set of variables are the letters

X = {C, R, A, S, H, E, B, O, T, K}. Their domains are

the set of digits and can be represented by D = {0, 1, ...,

9}, and constraint is that each of the ten variables

should be assigned to a different value in the domain.

Map colouring can also be expressed as a Constraint

Satisfaction Problem. Consider the following

Figure 2: Map of six countries

In the above example the set of variables are the six

countries X = {C1, C2, C3, C4, C5, C6} and domain is

the set of colours D = {Red, Green, Blue}. The

constraint is that no adjacent countries should have the

same colour in the map. Therefore, constrains will be

Colour of C1 ≠ Colour of C2, Colour of C1 ≠ Colour of

C3, Colour of C1 ≠ Colour of C5 and so on.

4. Techniques
Problems in constraint satisfaction are combinatorial in

nature, and thus existence of an effective algorithm is

unlikely. To find a solution to such problems, the

algorithms are enumerative, and their time requirement

is exponential. The manner by which these algorithms

come up with a solution is either, Consistency driven,

Backtracking or Generate and Test [4]. Based on the

information available in the constraints, algorithms that

are consistency based minimize the solution-search

space at the very initial levels. An example is the Arc

consistency algorithm which when described in the

simplest form means, if all constraints in a problem

affect only 2 variables (binary), a constraint graph can

be used to represent the constraints and variables. On

the graph, the variables are represented by nodes, and

on the condition that there is a constraint between two

variables, there is an edge joining the two nodes that

represent the variables [2].

5. The Backtracking Algorithm
In a backtracking algorithm, the variables in the

problem are ordered starting with the ones that have a

smaller range or are highly constrained. This ordering

fashion greatly increases the efficiency of the

algorithm. By checking that constraints are satisfied at

the earliest possible stage, it assigns values to variables

for constraints that involve bound variables at these

early stages. This mode employs chronological

backtracking (involves unbinding variables inversely to

the order they were bound) and dependency directed

backtracking (similar to chronological backtracking but

identifies and corrects failures resulting from

chronological backtracking).

The algorithm is as following

BT (Level)

If all variables are assigned

 PRINT value of each variable

 RETURN (for multiple solutions) or

EXIT (for single solution)

V = PickUnassignedVariable()

Variable [Level] = V

Assigned [V] = TRUE

FOR d EACH member of Domain (V)

 Value[V] = d

 OK = TRUE

FOR EACH constraint C such that V is a variable of

Cand all other variables of C are assigned.

IF C is not satisfied by the current set of assignments

OK = FALSE

IF(OK)

BT (Level+1)

RETURN

Although the Backtracking algorithm is better than

Generate and Test algorithm, its efficiency in some

nontrivial problems is very low [5]. The three

limitations of backtracking are

1. Thrashing – occurs due to repeated failure for

the same reason. The popular technique to avoid

thrashing is using Backjumping technique.

2. Redundancy – Even if conflict is avoided by

Backjumping, they aren’t stored for detection of

conflict of the same kind which may occur in

future.

64

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80060

3. Deferred detection of conflicts – Backtracking

algorithm cannot detect conflicts before they

really occur.

6. Generate and Test Algorithm
Generate and test algorithms are the simplest but are

intolerably slow. They entail generating of all possible

combinations of variable assignments and testing them

to see if they fulfil the constraints. These algorithms

generally make use of nested loops where testing of the

constraints condition is done in the innermost loop [4].

The main limitation of the Generate and Test

Algorithm is that it is capable of generating several

wrong values which are assigned to variables. The

values excluded in the testing phase [6].

7. Conclusion
Constraint Satisfaction problem can definitely be

solved using the traditional algorithms, but at a certain

cost. Instead, scheduling, timetabling, and rostering are

practical examples of constraint satisfaction problem

solving.

In scheduling jobs are to be done by machines given

that a machine can only handle a job at a time, and

different jobs have different priorities. Employee shift

scheduling can be a perfect example of scheduling,

where each employee has to complete a certain amount

of work in a certain time period, based on its priority.

Scheduling helps increasing productivity as well as

throughput and reducing the turnaround time.

In timetabling, an example involves creating an

exam timetable where different exams have to be done

in different periods, by different students, in different

rooms of different room sizes and many other

constraints around the problem.

Crew rostering is an example application in rail and air

transport industries [2].

7. References
[1]Bartak, R., “Constraint Programming. On-Line Guide to

Constraint Programming”, 1998

[2] Sally C. Brailsford and Chris N. Potts and Barbara M.

Smith, “Constraint Satisfaction Problems: Algorithms and

Applications”, University of Southampton, Leeds, UK, 1998

[3] ETAPS, “Foundations of Constraint Programming”,

Warshaw, Poland, 2003

[4] Constraint Satisfaction Problems. n.d. Retrieved from

http://www.cis.temple.edu/~giorgio/cis587/readings/constrain

ts.html

[5] Vipin Kumar, “Algorithms for Constraint-

Satisfaction Problems: A Survey”, AI Magazine Volume 13

Number 1, 1992

[6] Roman Barták, “ConstraintPropagation And

Backtracking-Based Search”, Faculty of Mathematics and

Physics, Charles University

[7] Krzysztof Apt, “Principles of Constraint Programming”,

2009

[8]

http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture1

5.html

65

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80060

