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Abstract— Lot sizing is of a prime importance in
determining the performance of a supply chain especially in
constraint environment due to internal and external factors. In
the present work, a mathematical model is proposed to
determine the optimum constrained lot sizing for a supply chain
that includes a supplier, manufacturer, and retailer. Integer
Nonlinear Programming (INLP) was used to solve centralized
control supply chain for optimum profit. The results show that,
for coordinated supply chain, the constraints have major role in
determining the lot or batch size at each echelon. For different
supply chain parameters, the manufacturer’s echelon dominates
the lot sizing decisions while other downstream supply chain
members have least effect on the decisions. The research extends
to the study of the effect of different parameters on lot sizing
decisions. Parameters studied are holding costs, order/set-up
costs, demand, production rate, and material percent defective.
For centralized case of a supply chain, it was proved that the
cost elements along with the throughput production quality,
considerably affect the lot size at each echelon.

Keywords— Lot sizing; supply chain; integer non-linear
programming; finite production; integer replenishment policy.

I.  INTRODUCTION

Coordinating decisions across the supply chain network
represents an important issue in supply chain operation. It was
proved that lot sizing decisions among coordinated supply
chain members to be a win-win situation for all concerned
parties. The lack of orders coordination across the supply
chain results in high costs [1-4]. It is recommended to avoid
the inefficient decentralized supply chain, where decisions are
made individually, towards more efficient centralized supply
chains, such that decisions are made centrally by the key
player of the network [5-7]. System wide optimization is
applicable in case the supply chain is vertically integrated and
partially or jointly owned [1].

Considerable number of research work emphasizes on
integrating a finite production or replenishment rate in their
models. Wang et al. [7] investigated the penalty for treating
the manufacturer as a buyer. They showed that the finite
production rate should be included; especially, when the set-
up cost largely exceeds the order cost. The production rate
was considered in the supply chain inventory models as an
input parameter [2, 7-10]. Eiamkanchanalai and Banerjee [11],
and Sana [5,12] considered the production rate as a decision
variable and the production cost as a function of the
production rate. Khouja and Mehrez [13] considered the case
of variable production rate and they assumed that both
production cost and process quality are dependent on the
production rate.
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The assumption of perfect quality for lot sizing models has
been modified by many researchers ever since Rosenblatt and
Lee [14], who proposed a model for economic production
cycles with imperfect production processes. Eroglu and
Ozdemir [15] proposed an economic order quantity model
with imperfect quality items. Their model extended Salameh
and Jaber’s model [16] by allowing shortages and maximum
backorder level. Also, the effect of different percent defective
on the optimal solution was examined. Chang and Ho [17],
similar to Eroglu and Ozdemir [15], used the renewal reward
theorem to derive the expected profit in order to obtain
optimal lot size and backordering quantity.

Shortage may or may not be allowed for cases of finite
production rate and imperfect quality. In case that shortage is
not permitted, the basic assumption was that the number of
acceptable quality items exceeds the demand [8,9]. In case of
shortage, several models considered backorder [10,15,17,18].

The demand was considered and modeled in different
ways. Pal et al. [19] and Taleizadeh et al. [20] considered
price sensitive demand. Pal et al. [19] studied a joint price and
lot-size determination problem over two cycle periods, and the
retailer offers a discount to sell end of the season products.
Taleizadeh et al. [20] expanded the problem to optimize the
vendor’s production rate when the supply chain comprises of
multiple-retailers and deals with deteriorating items. Chung
[21] considered stock-and-warranty dependent demand, where
the selling rate depends on both the stock level at the buyer
and the offered warranty period.

Kreng and Tan [9] developed a model for determining
optimal replenishment decisions. They extended the models of
Chung and Huang [22] and Huang [23] to allow for two-level
trade credit, offered by suppliers to wholesalers and
wholesalers to customers, while including finite replenishment
rate. Su [10] relaxed the assumption of not permitting
shortages and considered any shortages to be fully
backlogged.

Sana [5, 12] compared between the Stakelberg approach
(backward induction method) and the collaborating system
approach for lot size determination. Optimal solutions
obtained by collaborating system approach proved to provide
better results than that obtained by Stakelberg. The same
conclusion was confirmed by Sana et al. [24] and it was
further implemented on a more complex network structure.
Wang et al. [7] also compared decentralized lot-sizing
decisions with centralized (coordinated/integrated) decisions.
They studied a supply chain with price-sensitive demand and
investigated the effect of supplier’s finite production rate on
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the pricing and lot-sizing decisions. Results showed that in a
centralized problem optimal quantities are sensitive to the
production rate, while its effect on the optimal retail price is
very small.

Lot splitting along the supply chain (e.g., integer number
of batches or partial production lots are transported between
supply chain members) reduces average inventory in the
system [25]. It helps in implementing the time-based strategy
when integrated with lot streaming techniques [26]. Different
optimization techniques were used when lots are taken as
integer multiplier of the number of batches (i.e., integer
replenishment policy). Differential calculus is the most sought
after solution technique for obtaining analytical solutions. It is
used for the determination of the optimum lot/batch size for
the downstream member. This value is constrained by the
system other variables and parameters, so other algorithms are
needed to obtain the optimum values for the correlated
variables [5,7, 10]. When it comes to stipulating integer
number of batches, rounding up or down the differentiation
results is a matter for the optimization to decide. Integrating
integer constraints turns the objective function to a
discontinuous function; but when the objective cost function is
proved to be convex with respect to the integer decision
variables (i.e., continuous real domain is assumed), the two
rounding values can be checked for optimization [4].

Despite the popularity of the lot sizing problems, when
infinite planning horizon is assumed the majority of the
research articles addressed the problem as an inventory system
management. The operational limitations and constrains
controlling the production facility in supply chain was given
little attention in the research work. Researchers who
combined finite production rate with integer replenishment
policy in their models have given almost no attention to the
constraints that simultaneously affect both the number and
size of batches. One of the frequently discussed reasons for
stock shortage is the withdrawal of imperfect items from
inventory; since the occurrence of imperfection is assumed
random. The present work proposes a mathematical model for
a lot sizing problem that is implemented on a three-echelon
supply chain that consists of a supplier, manufacturer, and
retailer. Coordinated delivery -production- replenishment
decisions are made, so as the total profit of the chain is
maximized and demands are met. Both unconstrained and
constrained strategies are addressed. Shortage due to
production limitations is allowed. A constrained Integer Non-
Linear Program (INLP) was used to optimize the problem and
to obtain optimal solutions. The behavior of the optimal
solution was explored against system parameter changes.

II. NOTATION AND ASSUMPTIONS
A. Notation
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Cr : unit raw material cost

Cm : hourly production cost

CL : unitshortage cost in case that (1- ym)P<d

Ch : unit holding cost of perfect quality raw material
per period

Cw @ unit holding cost of perfect quality end product at
the manufacturer per period

Cur : unit holding cost of end product per period at the
retailer’s warehouse

Cs : unit transportation cost between the supplier and
the manufacturer

Co : Unit transportation cost between the manufacturer
and the retailer

Co : order cost per batch

Cs . set-up cost per run

Csh @ shipment cost per replenished batch

Vs . order defective percentage (0< ys<1)

ym : end product defective percentage (0< ym<1)

B;s ©  maximum supplier’s batch size (units/shipment)

Bn : maximum manufacturer’s lot size
(units/production run)

Br ©  maximum retailer’s batch size (units/shipment)

Ui . raw material inventory capacity

U . retailer’s inventory capacity

Decision Variables

Qur : number of products per replenishment shipment
transported between the manufacturer and the
retailer

X : number of order batches per production run
(positive integer)

z : number of replenishment shipments received by

the retailer per production run (positive integer)
Dependent Variables

Qs : number of wunits per order shipment (i.e.,
economic order quantity)
Q — Zer — Qm
S
X (1_'Ys )(I_Ym) X (I_Ys)
Qm : number of units per production run (i.e., economic
production quantity)
Zer
=—=M_—x(1-
Qm (l—'Ym) ( YS )QS
T : production cycle time; it includes the time for
pure consumption
T= Zer (1_Ym )Qm

[@-r)PAT [(1-1m)P.d]
_ X (l_Ys)(l_Ym )Qs
[(1-vn)P.d ]

y : number of production runs per period
Parameters -
D : customer demand per period U, Un [(1-vn)P.d]
Sp : unitselling price T Q.
Un production capacity, in hours, per period X . total number of order shipments per period
d : demandrate, d = % X = xy
i Lo m z . total number of replenishment shipments per
tm :  production time period
P~ production rate, P = % Z=1y
m
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B. Model Assumptions
e The supply chain consists of a single-supplier, single-

manufacturer, and single-retailer for single-item
production.

e The planning horizon is infinite.

e The supplier has unlimited capacity, infinite
production rate, and order replenishments are
instantaneous.

e The screening of the raw material is done in the
marshaling area with no additional cost, only the good
quality material is stored at the manufacturer’s raw
material inventory. The defective parts are scraped
without additional cost (ys Qs).

e Production rate of the manufacturer equal to the
consumption rate of the raw material.

e The manufacturer has a finite production rate with a
percent defective (ym).

o Defective  finished  products are  detected
instantaneously during production and discarded.

e Coordination mechanism of an equal cycle time is
assumed between the supply chain members.

e At each production run, the manufacturer produces a
lot (Qm) that is ordered and delivered on integer
number of equal-sized shipments. Number of
order/replenished shipments per production run are
decision variables.

e The first batch is shipped immediately after being
produced. That is, the first shipment to the retailer is
allowed to be made before the whole production lot is
produced. The succeeding batches are continuously
produced and every batch is shipped right after the
retailer depletes his inventory (the consumption of the
preceding batch), see Fig. 1.

e The production run starts after the manufacturer has
depleted its excess inventory from the preceding cycle.

e The inventory cost for the defective raw material and
finished products are negligible.

e The product consumption rate at the retailer equal to
the retailer’s demand rate.

e Cost of idle times at the manufacturer
considered.

o Lead time is negligible at different echelons.

is not

I1l. PROBLEM FORMULATION
The following mathematical model provides the
order/replenishment batch sizes, the production lot size, and
their period frequencies that maximize the total profit of the
supply chain.

Max. f Qpy.x,2)=Up [(1-vy)P.d ] Sp -

Up[(Q-vn)Pd]  Un[(@-ve)Pd ]ty
(1_Ym)(1_75) " (1_'Ym) o
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0.52 Que Jtm [(1=1m )P4 ]

h

X(l_Ym)z
Qur 7 — _(Z _Z)tm _ - _
o (2-9- e g, o0

05 %[(bvm)P,d]‘cHr -

x(um)[(l—ym)P,d]‘C

S

- u, [(1_Ym)P,d]_C

Zer Zer
Um[(l_vm)P’d:r _Um[(l_ym)P’d:rP —
er i (1_Ym )(1_Vm) ‘

Un[(L-vm)P.d] Cp -
(D —(Um [(1—ym)P,d]‘))CL (1)
subject to
ZQ¢<B 2
(l_'Ym ) - @

Zer <B 3
KT ) v
—Zer <U. 4
XU-yp) @
er S[Br,U| ]7’ (5)
Qmr:X,Z =1, and integer. (6)

Objective function (1) includes the total income from
which the total cost is deducted. The income is the product of
the selling price per unit and the total amount delivered to the
customer, which is the minimum amount of both the required
and available. The total cost includes the following cost
elements, respectively.

Raw material cost: this is the cost of ordered raw material
per period. It is the product of the number of order batches per
period, order batch size, and the unit price (xyQ,Cg ).

Production cost: this is the cost of production of the
delivered and scraped amount per period. It is the product of
the number production runs per period, the production lot size,
the product’s standard production time, and the hourly
production cost (yQ,tCpy )
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Fig. 1. Representation of inventory levels for the proposed model

Raw material inventory holding cost: this is the cost of
holding the ordered material that confirms to specifications in
inventories at the manufacturer. It is the product of holding
cost per unit per period and the average quantity per period.
From Fig. 1, the average quantity stored per period can be
detailed as follows:

[(1-ym)P.d ]|
Zer

End product inventory holding cost at the manufacturer:
this is the cost of holding the manufactured products that
confirm to specifications in inventories at the manufacturer. It
is the product of holding cost per unit per period and the
average quantity per period. For detailed proof, please see
Appendix A.

End product inventory holding cost at the retailer: this is
the cost of holding the products in inventories at the retailer. It
is the product of holding cost per unit per period and the

2
average quantity per period (%C ar )-

Ordering cost : this is the cost incurred by ordering
batches from the supplier. It is the product of the total number
of orders per period and the order cost (xyCg ).

Set-up cost: this is the cost incurred by setting-up batches
during production. It is the product of total number of
production runs per period and the set-up cost per run (yCg ).

Replenishment cost: this is the cost incurred by delivering
batches to the retailer. It is the product of the total number of
replenishment shipments per period and the replenishment
shipment cost (zyCyg, ).

Average quantity =x0.5 (1-v, )* Q4 %,
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Transportation cost: It is the cost of transportation of
material from the supplier to manufacturer and the
transportation of products from the manufacture to the retailer
(xyQ,Cq4 +2yQ,,,Cp ). Transportation cost is charged on the

incoming material and the outgoing products regardless of
their quality.

Shortage cost: In case the demand exceeds the production,
unmet demand incurs a shortage cost. The unmet demand is
assumed to be lost. This cost is the product of the difference
between the customer demand per period and the total amount
delivered to the retailer and the shortage cost per unit (lost

sales cost(D —zyQ, )C_ ).

Constraint (2) restricts the amount of manufactured
products per production run (Qm). Constraint (3) limits the
order shipment size (Qs). Constraint (4) limits the raw

material inventory level ((1-v,)Qs ) to storage capacity.

Constraint (5) limits the replenishment shipment size.
Constraint (6) prevents division by zero and ensures integer
number of shipments and integer shipment size.

IVV.  RESULTS AND ANALYSIS

Decision variables in a centralized supply chain include
economic order/production quantities and number of
shipments delivered to the downstream members. These
decision variables are correlated differently with each other
depending on problem configuration and the parameters
considered. The present work is concerned with investigating
the effect of supply chain parameters and constraints on the lot
sizing at optimal solutions.

The results are obtained using FICO-Xpress software v7.8.
Different software modules were used to verify the obtained
results and to ensure the solution convergence. Brute-force
search, as a problem-solving technique, was used after
narrowing down the set of candidate solutions using an INLP
optimization module. Values of considered parameters are
given in Table (1).

An initial analysis of the present mathematical model may
lead to the following observations:

e [Fewer orders per period are placed with increased

order quantity at higher ordering cost.

e Lot size decreases with the increase in the holding cost.

e Lot size may increase with production time.

o Larger production lot sizes yield optimal solutions with

increased demand.

A. Sensitivity analysis

A series of experiments are conducted to study the effect
of changing the model parameters on the joint total profit
(JTP) and the optimal decision variables. The analysis is made
by changing one of the parameters (D, tm, Ch, Ch, Chr, Co, Cs,
Cshs Ym» Vs, Sp, Cm, Cr, Cp, Cdq) by %%50, +30%, and
+10%from its assumed nominal value, while the rest of the
parameters remain unchanged. The results are given in Tables
(2,3) and profit percentage change is represented by radar
charts in Figs. (2,3). The profit percentage change (PPC) is
the percentage increase or decrease of the total profit (JTP)
compared to the optimal profit at the nominal values of

(JTP*), where PPC :(ijmo.
JTp*
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TABLE I. ASSUMED VALUES OF PROBLEM PARAMETERS
Parameter Value Dimension
Customer Demand (D) 1920 units/period
Manufacturer’s production capacity (Um) 1920 hrs/period
Production Time (tm) 0.8 hrsfunit
Holding cost of raw material (Cy) 3 $/unit per
period
Holding cost of finished product at the 5 $/unit per
manufacturer (Cy) period
Holding cost of finished product at the retailer 4 $/unit per
(Cur) period
Ordering cost (Co) 80 $/shipment
Set-up cost (Cs) 140 $/run
Replenishment cost (Csn) 90 $/shipment
Defective percentage at the manufacturer (ym) 0-2 %
Defective percentage from the supplier (ys) 0-2 %
Selling price (Sp) 100 $lunit
Material cost (Cr) 20 $lunit
Production cost (Cp) 35 $/hr
Shortage Cost (Cy) 10 $lunit
Transportation cost (Cq, Cp) 1 $/unit
Max. allowed production run size (By) 1500 units/run
Max. supplier’s shipment size (Bs) 500 units/shipment
Max. retailer’s shipment size (By) 400 units/shipment
Raw material inventory capacity (U;) 1000 units
Retailer’s inventory capacity (U,) 1000 units

It is worth knowing that the selling price, material cost,

production cost, and transportation cost affect the optimum
profit but do not affect the optimal solution as shown in Table
(3). The Shortage Cost does not affect both the profit and the
decision variables, since the nominal values represent the case
where the production volume exceeds the demand.

Table (2) shows that the cost elements and the throughput
production quality considerably affect the lot size at each
echelon.

—+—PPCat-50% ——at-30% at-10% ———PPCat +10% it +30%  —dmat +50%
sp sp
cL 40.00% D cL 120.00% p
)\
80.00% F4 tm

A\

40. 40, w»./ \
CHr cm CHr

80.00% 0.00

D

cs oP.00%. tm cs

-

-12000% * CR ch

co / cd co
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It is evident from the model and experimental results that
the profit has an inverse relation with Cg, Cn, Cp, Cqg, Ch, Ch,
Cur, Co, Cs, Csh, Ym, s, tm. It has direct relation with the Sp,
and D except in the case when the demand exceeds the
available production capacity and consequently the shortage
cost increases. Therefore, it is evident that the profit does not
change with changing the C_ provided that the demand does
not exceed the available production capacity. The relation
governing the available production with problem parameters is
(1_'Ym )U

tm

The degree of profit sensitivity is affected by the values of
different parameters under consideration. It depends on the
model assumptions, the way costs are incurred, and the
parameter relative values. For instance, the profit has an
absolute importance relation with Sp, D, tn, and Cgr as shown
in Figs. 2(a,b). Figs. 3(a,b) show that the profit is affected
largely by ym, and moderately by Csn, s, Cn. and weakly by
Co, Ch, CHr, and Cs.

Effect of percent defective at the manufacturer:
Manufacturing percent defective highly affects the lot size at
the manufacturer (Fig. 4). It has lower effect on the supplier’s
batch size and minor effects on the retailer’s batch size (Fig.
5). Optimizing supplier’ batch size follow certain pattern; it
generally increases up to a certain value then decreases and
resumes its increase as the percent defective increases. This is
because, as shown in Fig. 6, the integer number of shipments
per production run increases as the percent defective

increases.
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Percent defective at the manufacturer
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Fig. 2. Profit% change against different parameters. a) reduced parameter
values, b) increased values
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Fig. 3. Profit% change with different parameters after hiding the dominating
parameters. a) reduced values, b) increased values
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Fig. 4. The effect of percent defective on the economic production quantity
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Fig. 6. The effect of percent defective on number of shipments

B. Effect of Integrating Different Constraints with the

proposed Lot Sizing Problem

Studying the effect of integrating functional constraints
with the lot sizing problem is important for obtaining practical
optimal solutions. The proposed mathematical model is
optimized for profit while considering different constraints.

Effect of Batch/Lot Size Constraints: Fulfilling different
constraints causes extra costs, see Fig. 7. Comparing Figs. 8-
10 shows that the lot size constraint at the manufacturer
dominates the change in both the supplier and retailer’s batch
sizes. The supplier’s batch size is highly affected by
manufacturing lot size constraint when compared with that of
the retailer, since the optimal supplier batch size is controlled
by the optimal values of both integer number of shipments x
and z.

- il = supplier's constraint eegpe—manufacturer == a= retailer
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g f ’
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=
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Allowed batch size percent with respect to unconstrained
optimum value

Fig. 7. The effect of echelon constraints on the profit
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Fig. 8. The effect of manufacturer’s related constraint on the batch optimal
decisions
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Effect of Production Capacity and Different Production
Rates: Constrained capacity of the manufacturer drastically
changes the production lot size. It has a consequent effect on
supplier’s batch size more than that on the retailer’s batch
size. In other words, the retailer may be the least affected
echelon with regard to lot sizing within the supply chain for
constrained conditions (Fig. 11). Also, increasing the
production rate (or decreasing the production time)
considerably affects the lot size at the manufacturer. The
higher the production rate, the lower the lot size (Fig. 12). The
batch size at the supplier and the retailer slightly changes;
however, the change at the supplier is higher than that at the
retailer. The reason for this is that the higher the production
rate, the higher the products’ inventory holding cost at the
manufacturer and the lower the raw material inventory
holding cost.
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Fig. 11. The effect of production capacity on the optimal lot/batch size
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Fig. 12. The effect of production time on the optimal lot/batch size

V. CONCLUSION

The goal of the lot sizing problem is to establish a policy
that would maximize profit or minimize relevant costs when
implemented. The optimal policy depends on the assumptions
made about the way costs are incurred, how demand is
satisfied, and any limitations and constraints that face the
supply chain’s operations. Calculus differentiation is suitable
to obtain exact solutions for shipment sizes in hon-constrained
system. In real industrial problems, lot sizing decisions are
made under certain constrains and limitations. There might be
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constrains on the size and number of shipments, size and
number of production lots, space and monetary limitations,
etc. The present proposed model considers constrained
situations seeking more feasible and practical decisions. It
considers a multi-echelon supply chain where ordering and
inventory management decisions have to be made in multiple
locations. The demand occurs continuously at a constant and
known rate. Integer non-linear programming was used to
optimize the problem

The results show that, for constrained model, constraints at
any echelon affect the lot sizing decisions at the other
echelons. Increased demand rate; generally, increases the total
number of shipments per period and consequently, the order
and replenishment shipment quantities are determined.
However, it does not always guaranty an increase in the
number of production runs per period. Meanwhile, any
increase in the number of shipments per production run results
in a decrease of number of production runs per period. It was
also found that the manufacturer is the key decision maker
when maximizing the total profit of the system.

The present work can be extended for soft constraints,
stochastic parameters, and more complex networks.

TABLE II. RESULTS OF SENSITIVITY ANALYSIS ON DIFFERENT PARAMETERS
b -50% -30% -10%
et e T T Q. Qn Qm xy 2z | PPC T Q. Qm Qm xy 2z | PPC T Q. Qm Quw Xy 2y
D -50.56%} 570 297 291 285 3.4 3.4|-30.42% | 594.3 433 424 208 3.2 6.5|-10.17% | 726.7 340 667 218 5.3 7.9
tm 30.68% | 404 421 412 404 4.8 48| 18.33% | 494 514 504 247 3.9 7.8 6.09% 690 359 704 230 56 8.3
Vm 1.09% { 696 359 703 232 55 83| 0.66% 696 360 706 232 55 83| 0.22% 696 362 709 232 55 8.3
Csn 0.51% | 750 390 765 150 5.1 12.8] 0.29% 732 381 747 183 5.2 10.5| 0.09% 776 404 792 194 4.9 9.9
Vs 0.47% | 696 359 710 232 5.5 8.3| 0.28% 696 360 710 232 55 8.3| 0.09% 696 362 710 232 55 8.3
Cy 0.449% | 1028 357 1049 257 5.6 7.5| 0.25% 968 336 988 242 6.0 7.9| 0.08% 708 369 722 236 5.4 8.1
Co 0.28% | 699 243 713 233 8.2 8.2 | 0.16% 848 294 865 212 6.8 9.1 | 0.05% 681 355 695 227 5.6 8.5
Ch 0.28% | 872 454 890 218 4.4 8.8 | 0.16% 844 439 861 211 45 9.1 | 0.05% 702 365 716 234 55 8.2
Cur 0.27% | 753 392 768 251 5.1 7.6| 0.16% 723 376 738 241 53 80| 0.05% 702 365 716 234 55 8.2
Cs 0.22% | 651 339 664 217 5.9 8.8] 0.13% 666 347 680 222 58 8.6 ] 0.04% 687 358 701 229 5.6 8.4
+10% +30% +50%
Parameter
PPC T Qs QOm Qum Xy zy PPC T Qs QOm Qum xy zy PPC T Qs Qm Qm Xy zy
D 10.249% {977.3 373 1097 215 5.9 9.8 | 21.619%* | 1200 383 1500 210 6.4 11.2| 17.419%* | 1200 383 1500 210 6.4 11.2
tm -6.03% | 1025 356 1046 205 5.6 9.4 |-24.03%°{1553.6 305 1494 183 6.2 9.9 |-47.08%"{1792.7 305 1494 183 54 8.6
Vm -0.22% i 693 362 709 231 55 83| -066% | 690 361 708 230 5.6 83| -1.11% { 690 363 711 230 5.6 8.3
Can -0.08% i 711 370 726 237 5.4 8.1 -0.24% | 741 386 756 247 52 7.8| -0.39% | 768 400 784 256 5.0 7.5
Vs -0.10% | 696 363 710 232 55 83| -0.29% { 696 365 710 232 55 83| -0.48% | 696 366 710 232 55 8.3
Cy -0.08% | 678 353 692 226 5.7 85| -0.22% { 651 339 664 217 59 88| -0.36% | 627 326 640 209 6.1 9.2
Co -0.05% i 702 365 716 234 55 8.2 -0.14% | 828 431 845 207 4.6 9.3 | -0.22% { 844 439 861 211 45 9.1
Ch -0.05% i 681 355 695 227 5.6 85| -0.14% | 864 300 882 216 6.7 89| -0.22% { 844 293 861 211 6.8 9.1
Cur -0.05% | 681 355 695 227 5.6 85| -0.14% { 772 402 788 193 5.0 9.9 -0.23% | 752 392 767 188 5.1 10.2
Cs -0.04% | 702 365 716 234 55 8.2 -0.12% { 920 319 939 230 6.3 8.3 -0.18% | 1040 361 1061 208 5.5 9.2
@ Case of (1-ym)/tm<d
TABLE IIl. RESULTS OF SENSITIVITY ANALYSIS ON DIFFERENT PARAMETERS
Profit Percentage Change Decision
Parameter ;
50%  -30%  -10% | +10% +30%  +500 |variables
Sp -106.57%" -63.94% -21.31% 21.31% 63.94% 106.57%| T |696
Cn 30.45% 18.27% 6.09% -6.09% -18.27% -30.45%| Q. |362
Cr 22.19% 13.32% 4.44% -4.44% -13.32% -22.19%| Q. |710
Cy 1.11% 0.67% 0.22% -0.22% -0.67% -1.11% | Q. |232
Co 1.07% 0.64% 0.21% -0.21% -0.64% -1.07% | Xy | 5.5
C. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% | zy | 8.3
b Income < Total Cost, minimum selling price is 53% of the nominal value.
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Appendix A. Average end product inventory per period at
the manufacturer is given by the following equation

:Qrznr ((Z _1)_%[(1_7% )P’d ]J

The following is the general form for the total end product
inventory at the manufacturer per dominant cycle (i.e., the
cycle that is determined by the minimum rate), see Fig. 1A.

ORI N S e NN N 525
" @=m)P [y, )P.d] ) 2(1-7m)P
erz

[(@-vn)P.d ]

Since the summation of an arithmetic series is as follows:

n-1 n
> a+kd :—(2a+(n ~1)d )
k=0 2

[1+2+..+(z -1)]

-1

Z

>k =1+2+..+(z —1):Z—(z -1)

k=0 2

Then,

=zQ 2 1 + (Z _1) _ ZZer2
mr

(1_Ym)P |:(1—’\{m)P,d:|7 2(1_Ym)P_

z (Z _1) er2
2 ([@-vn)Pd]
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2 2(z -1)
20,2 )P [(1-vn)P.d]
2 ~ z (Z —1)
(=vm)P [(1-v,)P.d]
_ Zer2 (Z _1) _ (Z _2)
2 \[(@-vp)Pd] (-1m)P

Manufacturer’s average inventory per period

_2Qu” (z-1) (-2, [1)
? [(Hm%d] (A=m) \T

_ Zer2 (Z _1) (Z _Z)tm
2 [@yn)Pd]  (@tm)

(e E e o e o

In case the production exceeds the demand (Fig. 1A,a); the
manufacturer’s average inventory holding cost per period is

z-2)t
as follows: 2 (z —1)—Qd Cy
2 (1_'Ym )
In case the demand exceeds the production (Fig. 1A,b); the
manufacturer’s average inventory holding cost per period is

[(1=vn)P.d ]
Zer

2
z 1
as follows: Atm [—JCH _Qnr Cy -
2(1-y,) "\T 2
T
- | T= 2@ (¥ P
ZQue (T Y P | I
~N— - — — — b
I
I
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& 2l !
= = |
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|
I
. | -
rd I Coar I,
d A P
e (1Y )P Cycle time= 7= zQ..d i o Ty ) >
/é g
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/é <
’ 1
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a) b)
Fig. 1A. Accumulated inventory at the manufacturer, a) Case (1- ym)P>d b) Case (1- ym)P<d
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