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Abstract— Lot sizing is of a prime importance in 

determining the performance of a supply chain especially in 

constraint environment due to internal and external factors. In 

the present work, a mathematical model is proposed to 

determine the optimum constrained lot sizing for a supply chain 

that includes a supplier, manufacturer, and retailer. Integer 

Nonlinear Programming (INLP) was used to solve centralized 

control supply chain for optimum profit. The results show that, 

for coordinated supply chain, the constraints have major role in 

determining the lot or batch size at each echelon. For different 

supply chain parameters, the manufacturer’s echelon dominates 

the lot sizing decisions while other downstream supply chain 

members have least effect on the decisions. The research extends 

to the study of the effect of different parameters on lot sizing 

decisions. Parameters studied are holding costs, order/set-up 

costs, demand, production rate, and material percent defective. 

For centralized case of a supply chain, it was proved that the 

cost elements along with the throughput production quality, 

considerably affect the lot size at each echelon. 

 

Keywords— Lot sizing; supply chain; integer non-linear 

programming; finite production; integer replenishment policy. 

I.  INTRODUCTION  

Coordinating decisions across the supply chain network 

represents an important issue in supply chain operation. It was 

proved that lot sizing decisions among coordinated supply 

chain members to be a win-win situation for all concerned 

parties. The lack of orders coordination across the supply 

chain results in high costs [1-4]. It is recommended to avoid 

the inefficient decentralized supply chain, where decisions are 

made individually, towards more efficient centralized supply 

chains, such that decisions are made centrally by the key 

player of the network [5-7]. System wide optimization is 

applicable in case the supply chain is vertically integrated and 

partially or jointly owned [1]. 

Considerable number of research work emphasizes on 

integrating a finite production or replenishment rate in their 

models. Wang et al. [7] investigated the penalty for treating 

the manufacturer as a buyer. They showed that the finite 

production rate should be included; especially, when the set-

up cost largely exceeds the order cost. The production rate 

was considered in the supply chain inventory models as an 

input parameter [2, 7-10]. Eiamkanchanalai and Banerjee [11], 

and Sana [5,12] considered the production rate as a decision 

variable and the production cost as a function of the 

production rate. Khouja and Mehrez [13] considered the case 

of variable production rate and they assumed that both 

production cost and process quality are dependent on the 

production rate. 

The assumption of perfect quality for lot sizing models has 

been modified by many researchers ever since Rosenblatt and 

Lee [14], who proposed a model for economic production 

cycles with imperfect production processes. Eroglu and 

Ozdemir [15] proposed an economic order quantity model 

with imperfect quality items. Their model extended Salameh 

and Jaber’s model [16] by allowing shortages and maximum 

backorder level. Also, the effect of different percent defective 

on the optimal solution was examined. Chang and Ho [17], 

similar to Eroglu and Ozdemir [15], used the renewal reward 

theorem to derive the expected profit in order to obtain 

optimal lot size and backordering quantity. 

Shortage may or may not be allowed for cases of finite 

production rate and imperfect quality. In case that shortage is 

not permitted, the basic assumption was that the number of 

acceptable quality items exceeds the demand [8,9]. In case of 

shortage, several models considered backorder [10,15,17,18].  

The demand was considered and modeled in different 

ways. Pal et al. [19] and Taleizadeh et al. [20] considered 

price sensitive demand. Pal et al. [19] studied a joint price and 

lot-size determination problem over two cycle periods, and the 

retailer offers a discount to sell end of the season products. 

Taleizadeh et al. [20] expanded the problem to optimize the 

vendor’s production rate when the supply chain comprises of 

multiple-retailers and deals with deteriorating items. Chung 

[21] considered stock-and-warranty dependent demand, where 

the selling rate depends on both the stock level at the buyer 

and the offered warranty period. 

Kreng and Tan [9] developed a model for determining 

optimal replenishment decisions. They extended the models of 

Chung and Huang [22] and Huang [23] to allow for two-level 

trade credit, offered by suppliers to wholesalers and 

wholesalers to customers, while including finite replenishment 

rate. Su [10] relaxed the assumption of not permitting 

shortages and considered any shortages to be fully 

backlogged.  

Sana [5, 12] compared between the Stakelberg approach 

(backward induction method) and the collaborating system 

approach for lot size determination. Optimal solutions 

obtained by collaborating system approach proved to provide 

better results than that obtained by Stakelberg. The same 

conclusion was confirmed by Sana et al. [24] and it was 

further implemented on a more complex network structure. 

Wang et al. [7] also compared decentralized lot-sizing 

decisions with centralized (coordinated/integrated) decisions. 

They studied a supply chain with price-sensitive demand and 

investigated the effect of supplier’s finite production rate on 
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the pricing and lot-sizing decisions. Results showed that in a 

centralized problem optimal quantities are sensitive to the 

production rate, while its effect on the optimal retail price is 

very small. 

Lot splitting along the supply chain (e.g., integer number 

of batches or partial production lots are transported between 

supply chain members) reduces average inventory in the 

system [25]. It helps in implementing the time-based strategy 

when integrated with lot streaming techniques [26]. Different 

optimization techniques were used when lots are taken as 

integer multiplier of the number of batches (i.e., integer 

replenishment policy). Differential calculus is the most sought 

after solution technique for obtaining analytical solutions. It is 

used for the determination of the optimum lot/batch size for 

the downstream member. This value is constrained by the 

system other variables and parameters, so other algorithms are 

needed to obtain the optimum values for the correlated 

variables [5,7, 10]. When it comes to stipulating integer 

number of batches, rounding up or down the differentiation 

results is a matter for the optimization to decide. Integrating 

integer constraints turns the objective function to a 

discontinuous function; but when the objective cost function is 

proved to be convex with respect to the integer decision 

variables (i.e., continuous real domain is assumed), the two 

rounding values can be checked for optimization [4].   

Despite the popularity of the lot sizing problems, when 

infinite planning horizon is assumed the majority of the 

research articles addressed the problem as an inventory system 

management. The operational limitations and constrains 

controlling the production facility in supply chain was given 

little attention in the research work. Researchers who 

combined finite production rate with integer replenishment 

policy in their models have given almost no attention to the 

constraints that simultaneously affect both the number and 

size of batches. One of the frequently discussed reasons for 

stock shortage is the withdrawal of imperfect items from 

inventory; since the occurrence of imperfection is assumed 

random. The present work proposes a mathematical model for 

a lot sizing problem that is implemented on a three-echelon 

supply chain that consists of a supplier, manufacturer, and 

retailer. Coordinated delivery -production- replenishment 

decisions are made, so as the total profit of the chain is 

maximized and demands are met. Both unconstrained and 

constrained strategies are addressed. Shortage due to 

production limitations is allowed. A constrained Integer Non-

Linear Program (INLP) was used to optimize the problem and 

to obtain optimal solutions. The behavior of the optimal 

solution was explored against system parameter changes. 

II. NOTATION AND ASSUMPTIONS 

A. Notation 

Parameters 

D : customer demand per period 

SP : unit selling price 

Um : production capacity, in hours, per period  

d : demand rate, 
m

Dd
U

  

tm : production time  

P : production rate, 1
m

P
t

  

CR : unit raw material cost 

Cm : hourly production cost 

CL : unit shortage cost in case that (1- γm)P<d 

Ch : unit holding cost of perfect quality raw material 

per period 

CH : unit holding cost of perfect quality end product  at 

the manufacturer per period  

CHr : unit holding cost of end product per period at the 

retailer’s warehouse 

Cd : unit transportation cost between the supplier and 

the manufacturer 

CD : Unit transportation cost between the manufacturer 

and the retailer 

CO : order cost per batch 

CS : set-up cost per run 

Csh : shipment cost per replenished batch  

γs : order defective percentage (0< γs<1) 

γm : end product defective percentage (0< γm<1) 

Bs : maximum supplier’s batch size (units/shipment) 

Bm : maximum manufacturer’s lot size 

(units/production run) 

Br : maximum retailer’s batch size (units/shipment) 

Ui : raw material inventory capacity 

UI : retailer’s inventory capacity 

Decision Variables 

Qmr : number of products per replenishment shipment 

transported between the manufacturer and the 

retailer 

x : number of order batches per production run 

(positive integer) 

z : number of replenishment shipments received by 

the retailer per production run (positive integer) 

Dependent Variables 

Qs : number of units per order shipment (i.e., 

economic order quantity) 

    1 γ 1 γ 1 γ

mr m
s

s m s

zQ Q
Q

x x
 

  
 

Qm : number of units per production run (i.e., economic 

production quantity) 

 
 1 γ

1 γ

mr
m s s

m

zQ
Q x Q  


 

T : production cycle time; it includes the time for 

pure consumption 

 

 

 

  

 

1 γ
=

1 γ , 1 γ ,

1 γ 1 γ

1 γ ,

m mmr

m m

s m s

m

QzQ
T

P d P d

x Q

P d

 






       

 


  

 

y : number of production runs per period 

 1 γ ,m mm

mr

U P dU
y

T zQ


  

   

X : total number of order shipments per period 

X = xy 

Z : total number of replenishment shipments per 

period 

Z= zy  
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B. Model Assumptions 

 The supply chain consists of a single-supplier, single- 

manufacturer, and single-retailer for single-item 

production. 

 The planning horizon is infinite. 

 The supplier has unlimited capacity, infinite 

production rate, and order replenishments are 

instantaneous.  

 The screening of the raw material is done in the 

marshaling area with no additional cost, only the good 

quality material is stored at the manufacturer’s raw 

material inventory. The defective parts are scraped 

without additional cost (γs Qs). 

 Production rate of the manufacturer equal to the 

consumption rate of the raw material. 

 The manufacturer has a finite production rate with a 

percent defective (γm). 

 Defective finished products are detected 

instantaneously during production and discarded. 

 Coordination mechanism of an equal cycle time is 

assumed between the supply chain members. 

 At each production run, the manufacturer produces a 

lot (Qm) that is ordered and delivered on integer 

number of equal-sized shipments. Number of 

order/replenished shipments per production run are 

decision variables. 

 The first batch is shipped immediately after being 

produced. That is, the first shipment to the retailer is 

allowed to be made before the whole production lot is 

produced. The succeeding batches are continuously 

produced and every batch is shipped right after the 

retailer depletes his inventory (the consumption of the 

preceding batch), see Fig. 1. 

 The production run starts after the manufacturer has 

depleted its excess inventory from the preceding cycle. 

 The inventory cost for the defective raw material and 

finished products are negligible. 

 The product consumption rate at the retailer equal to 

the retailer’s demand rate. 

 Cost of idle times at the manufacturer is not 

considered. 

 Lead time is negligible at different echelons. 

III. PROBLEM FORMULATION 

The following mathematical model provides the 

order/replenishment batch sizes, the production lot size, and 

their period frequencies that maximize the total profit of the 

supply chain. 

. ( , , )mrMax f Q x z   1 γ ,m m PU P d S


   

 

  

1 γ ,

1 γ 1 γ

m m

R
m s

U P d
C


  


 

 

 

1 γ ,

1 γ

m m m

m
m

U P d t
C


  




 

   

 
2

0.5 1 γ ,

1 γ

mr m m

h

m

z Q t P d
C

x


  




 
 

 
 

2
1 1 γ ,

2 1 γ

mmr
m H

m

z tQ
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 
        

 1 γ ,mr
m Hr

Q
0.5 P d C

d


   

   1 γ ,m m

O
mr

x U P d
C

zQ


  


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Q
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
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
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   1 γ ,m m LD U P d C


     

subject to 

 1 γ

mr
m

m

zQ
B


  

  1 γ 1 γ
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s

m s

zQ
B

x


 
  

(1 γ )

mr
i

m

zQ
U

x



  

 ,mr r IQ B U


   

, , 1mrQ x z  and integer  

Objective function (1) includes the total income from 

which the total cost is deducted. The income is the product of 

the selling price per unit and the total amount delivered to the 

customer, which is the minimum amount of both the required 

and available. The total cost includes the following cost 

elements, respectively.  

Raw material cost: this is the cost of ordered raw material 

per period. It is the product of the number of order batches per 

period, order batch size, and the unit price ( s RxyQ C ).  

Production cost: this is the cost of production of the 

delivered and scraped amount per period. It is the product of 

the number production runs per period, the production lot size, 

the product’s standard production time, and the hourly 

production cost ( m m myQ t C ). 
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Fig. 1. Representation of inventory levels for the proposed model 

 

Raw material inventory holding cost: this is the cost of 

holding the ordered material that confirms to specifications in 

inventories at the manufacturer. It is the product of holding 

cost per unit per period and the average quantity per period. 

From Fig. 1, the average quantity stored per period can be 

detailed as follows:  

Average quantity  
 2 2
1 γ ,

1 γs s m
mr

m P d
x0.5 Q t

zQ


  

   

End product inventory holding cost at the manufacturer: 

this is the cost of holding the manufactured products that 

confirm to specifications in inventories at the manufacturer. It 

is the product of holding cost per unit per period and the 

average quantity per period. For detailed proof, please see 

Appendix A.  

End product inventory holding cost at the retailer: this is 

the cost of holding the products in inventories at the retailer. It 

is the product of holding cost per unit per period and the 

average quantity per period (
 

20.5 mr
Hr

zQ
C

d T
). 

Ordering cost : this is the cost incurred by ordering 

batches from the supplier. It is the product of the total number 

of orders per period and the order cost ( OxyC ). 

Set-up cost: this is the cost incurred by setting-up batches 

during production. It is the product of total number of 

production runs per period and the set-up cost per run ( SyC ). 

Replenishment cost: this is the cost incurred by delivering 

batches to the retailer. It is the product of the total number of 

replenishment shipments per period and the replenishment 

shipment cost ( shzyC ). 

Transportation cost: It is the cost of transportation of 

material from the supplier to manufacturer and the 

transportation of products from the manufacture to the retailer 

( s d mr DxyQ C zyQ C ). Transportation cost is charged on the 

incoming material and the outgoing products regardless of 

their quality.  

Shortage cost: In case the demand exceeds the production, 

unmet demand incurs a shortage cost. The unmet demand is 

assumed to be lost. This cost is the product of the difference 

between the customer demand per period and the total amount 

delivered to the retailer and the shortage cost per unit (lost 

sales cost  mr LD zyQ C ).  

Constraint (2) restricts the amount of manufactured 

products per production run (Qm). Constraint (3) limits the 

order shipment size (Qs). Constraint (4) limits the raw 

material inventory level (  1 γs sQ  ) to storage capacity. 

Constraint (5) limits the replenishment shipment size. 

Constraint (6) prevents division by zero and ensures integer 

number of shipments and integer shipment size. 

IV. RESULTS AND ANALYSIS 

Decision variables in a centralized supply chain include 

economic order/production quantities and number of 

shipments delivered to the downstream members. These 

decision variables are correlated differently with each other 

depending on problem configuration and the parameters 

considered. The present work is concerned with investigating 

the effect of supply chain parameters and constraints on the lot 

sizing at optimal solutions.  

The results are obtained using FICO-Xpress software v7.8. 

Different software modules were used to verify the obtained 

results and to ensure the solution convergence. Brute-force 

search, as a problem-solving technique, was used after 

narrowing down the set of candidate solutions using an INLP 

optimization module. Values of considered parameters are 

given in Table (1). 

An initial analysis of the present mathematical model may 

lead to the following observations: 

 Fewer orders per period are placed with increased 

order quantity at higher ordering cost. 

 Lot size decreases with the increase in the holding cost.  

 Lot size may increase with production time. 

 Larger production lot sizes yield optimal solutions with 

increased demand. 

A. Sensitivity analysis 

A series of experiments are conducted to study the effect 

of changing the model parameters on the joint total profit 

(JTP) and the optimal decision variables. The analysis is made 

by changing one of the parameters (D, tm, Ch, CH, CHr, CO, CS, 

Csh, γm, γs, SP, Cm, CR, CD, Cd) by ±%50, ±30%, and 

±10%from its assumed nominal value, while the rest of the 

parameters remain unchanged. The results are given in Tables 

(2,3) and profit percentage change is represented by radar 

charts in Figs. (2,3). The profit percentage change (PPC) is 

the percentage increase or decrease of the total profit (JTP) 

compared to the optimal profit at the nominal values of 

(JTP*), where 
-

x 100
JTP JTP

PPC
JTP





 
   
 

. 
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TABLE I.  ASSUMED VALUES OF PROBLEM PARAMETERS 

Parameter Value Dimension 

Customer Demand (D) 1920 units/period 
Manufacturer’s production capacity (Um) 1920 hrs/period 

Production Time (tm) 0.8 hrs/unit 

Holding cost of raw material (Ch) 3 $/unit per 
period 

Holding cost of finished product at the 

manufacturer (CH) 

5 $/unit per 

period 
Holding cost of finished product at the retailer 

(CHr) 

4 $/unit per 

period 

Ordering cost (CO) 80 $/shipment 
Set-up cost (CS) 140 $/run 

Replenishment cost (Csh) 90 $/shipment 

Defective percentage at the manufacturer (γm) 0-2 % 
Defective percentage from the supplier (γs) 0-2 % 

Selling price (SP) 100 $/unit 

Material cost (CR) 20 $/unit 
Production cost (Cm) 35 $/hr 

Shortage Cost (CL) 10 $/unit 

Transportation cost (Cd, CD) 1 $/unit 
Max. allowed production run size (Bm) 1500 units/run 

Max. supplier’s shipment size (Bs) 500 units/shipment 

Max. retailer’s shipment size (Br) 400 units/shipment 
Raw material inventory capacity (Ui) 1000 units 

Retailer’s inventory capacity (UI) 1000 units 

 

It is worth knowing that the selling price, material cost, 

production cost, and transportation cost affect the optimum 

profit but do not affect the optimal solution as shown in Table 

(3). The Shortage Cost does not affect both the profit and the 

decision variables, since the nominal values represent the case 

where the production volume exceeds the demand. 

Table (2) shows that the cost elements and the throughput 

production quality considerably affect the lot size at each 

echelon. 

 

 
a) b) 

Fig. 2. Profit% change against different parameters. a) reduced parameter 

values, b) increased values 

 
a) b) 

Fig. 3. Profit% change with different parameters after hiding the dominating 

parameters. a) reduced values, b) increased values 

It is evident from the model and experimental results that 

the profit has an inverse relation with CR, Cm, CD, Cd, Ch, CH, 

CHr, CO, CS, Csh, γm, γs, tm. It has direct relation with the SP, 

and D except in the case when the demand exceeds the 

available production capacity and consequently the shortage 

cost increases. Therefore, it is evident that the profit does not 

change with changing the CL provided that the demand does 

not exceed the available production capacity. The relation 

governing the available production with problem parameters is 

as follows: 
 1 γ

Max. production per period
m

m
m

U
t


 . 

The degree of profit sensitivity is affected by the values of 

different parameters under consideration. It depends on the 

model assumptions, the way costs are incurred, and the 

parameter relative values. For instance, the profit has an 

absolute importance relation with SP, D, tm, and CR as shown 

in Figs. 2(a,b). Figs. 3(a,b) show that the profit is affected 

largely by γm, and moderately by Csh, γs, CH. and weakly by 

CO, Ch, CHr, and CS. 

Effect of percent defective at the manufacturer: 

Manufacturing percent defective highly affects the lot size at 

the manufacturer (Fig. 4). It has lower effect on the supplier’s 

batch size and minor effects on the retailer’s batch size (Fig. 

5). Optimizing supplier’ batch size follow certain pattern; it 

generally increases up to a certain value then decreases and 

resumes its increase as the percent defective increases. This is 

because, as shown in Fig. 6, the integer number of shipments 

per production run increases as the percent defective 

increases. 

 
Fig. 4. The effect of percent defective on the economic production quantity 

 
Fig. 5. The effect of percent defective on economic shipment sizes 
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Fig. 6. The effect of percent defective on number of shipments 

B. Effect of Integrating Different Constraints with the 

proposed Lot Sizing Problem 

Studying the effect of integrating functional constraints 

with the lot sizing problem is important for obtaining practical 

optimal solutions. The proposed mathematical model is 

optimized for profit while considering different constraints. 

Effect of Batch/Lot Size Constraints: Fulfilling different 

constraints causes extra costs, see Fig. 7. Comparing Figs. 8-

10 shows that the lot size constraint at the manufacturer 

dominates the change in both the supplier and retailer’s batch 

sizes.  The supplier’s batch size is highly affected by 

manufacturing lot size constraint when compared with that of 

the retailer, since the optimal supplier batch size is controlled 

by the optimal values of both integer number of shipments x 

and z. 

 
Fig. 7. The effect of echelon constraints on the profit 

 
Fig. 8. The effect of manufacturer’s related constraint on the batch optimal 

decisions 

 
Fig. 9. The effect of supplier’s related constraint on the manufacture’s 

economic production quantity and on the retailer’s optimal shipment size 

 
Fig. 10. The effect of retailer’s related constraint on the manufacture’s 

economic order and  production quantities 

 

Effect of Production Capacity and Different Production 

Rates: Constrained capacity of the manufacturer drastically 

changes the production lot size.  It has a consequent effect on 

supplier’s batch size more than that on the retailer’s batch 

size. In other words, the retailer may be the least affected 

echelon with regard to lot sizing within the supply chain for 

constrained conditions (Fig. 11). Also, increasing the 

production rate (or decreasing the production time) 

considerably affects the lot size at the manufacturer. The 

higher the production rate, the lower the lot size (Fig. 12). The 

batch size at the supplier and the retailer slightly changes; 

however, the change at the supplier is higher than that at the 

retailer. The reason for this is that the higher the production 

rate, the higher the products’ inventory holding cost at the 

manufacturer and the lower the raw material inventory 

holding cost. 

 

Fig. 11. The effect of production capacity on the optimal lot/batch size 
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Fig. 12. The effect of production time on the optimal lot/batch size 

V. CONCLUSION 

The goal of the lot sizing problem is to establish a policy 

that would maximize profit or minimize relevant costs when 

implemented. The optimal policy depends on the assumptions 

made about the way costs are incurred, how demand is 

satisfied, and any limitations and constraints that face the 

supply chain’s operations. Calculus differentiation is suitable 

to obtain exact solutions for shipment sizes in non-constrained 

system. In real industrial problems, lot sizing decisions are 

made under certain constrains and limitations. There might be 

constrains on the size and number of shipments, size and 

number of production lots, space and monetary limitations, 

etc. The present proposed model considers constrained 

situations seeking more feasible and practical decisions. It 

considers a multi-echelon supply chain where ordering and 

inventory management decisions have to be made in multiple 

locations. The demand occurs continuously at a constant and 

known rate. Integer non-linear programming was used to 

optimize the problem 

The results show that, for constrained model, constraints at 

any echelon affect the lot sizing decisions at the other 

echelons. Increased demand rate; generally, increases the total 

number of shipments per period and consequently, the order 

and replenishment shipment quantities are determined. 

However, it does not always guaranty an increase in the 

number of production runs per period. Meanwhile, any 

increase in the number of shipments per production run results 

in a decrease of number of production runs per period. It was 

also found that the manufacturer is the key decision maker 

when maximizing the total profit of the system. 

The present work can be extended for soft constraints, 

stochastic parameters, and more complex networks. 

 

TABLE II.  RESULTS OF SENSITIVITY ANALYSIS ON DIFFERENT PARAMETERS 

 
ᵃ Case of (1-γm)/tm<d 

TABLE III.  RESULTS OF SENSITIVITY ANALYSIS ON DIFFERENT PARAMETERS 

 
ᵇ Income < Total Cost, minimum selling price is 53% of the nominal value. 

PPC T Q s Q m Q mr xy zy PPC T Q s Q m Q mr xy zy PPC T Q s Q m Q mr xy zy

D -50.56% 570 297 291 285 3.4 3.4 -30.42% 594.3 433 424 208 3.2 6.5 -10.17% 726.7 340 667 218 5.3 7.9

t m 30.68% 404 421 412 404 4.8 4.8 18.33% 494 514 504 247 3.9 7.8 6.09% 690 359 704 230 5.6 8.3

γ m 1.09% 696 359 703 232 5.5 8.3 0.66% 696 360 706 232 5.5 8.3 0.22% 696 362 709 232 5.5 8.3

C sh 0.51% 750 390 765 150 5.1 12.8 0.29% 732 381 747 183 5.2 10.5 0.09% 776 404 792 194 4.9 9.9

γ s 0.47% 696 359 710 232 5.5 8.3 0.28% 696 360 710 232 5.5 8.3 0.09% 696 362 710 232 5.5 8.3

C H 0.44% 1028 357 1049 257 5.6 7.5 0.25% 968 336 988 242 6.0 7.9 0.08% 708 369 722 236 5.4 8.1

C O 0.28% 699 243 713 233 8.2 8.2 0.16% 848 294 865 212 6.8 9.1 0.05% 681 355 695 227 5.6 8.5

C h 0.28% 872 454 890 218 4.4 8.8 0.16% 844 439 861 211 4.5 9.1 0.05% 702 365 716 234 5.5 8.2

C Hr 0.27% 753 392 768 251 5.1 7.6 0.16% 723 376 738 241 5.3 8.0 0.05% 702 365 716 234 5.5 8.2

C S 0.22% 651 339 664 217 5.9 8.8 0.13% 666 347 680 222 5.8 8.6 0.04% 687 358 701 229 5.6 8.4

PPC T Q s Q m Q mr xy zy PPC T Q s Q m Q mr xy zy PPC T Q s Q m Q mr xy zy

D 10.24% 977.3 373 1097 215 5.9 9.8 21.61%ᵃ 1200 383 1500 210 6.4 11.2 17.41%ᵃ 1200 383 1500 210 6.4 11.2

t m -6.03% 1025 356 1046 205 5.6 9.4 -24.03%ᵃ 1553.6 305 1494 183 6.2 9.9 -47.08%ᵃ 1792.7 305 1494 183 5.4 8.6

γ m -0.22% 693 362 709 231 5.5 8.3 -0.66% 690 361 708 230 5.6 8.3 -1.11% 690 363 711 230 5.6 8.3

C sh -0.08% 711 370 726 237 5.4 8.1 -0.24% 741 386 756 247 5.2 7.8 -0.39% 768 400 784 256 5.0 7.5

γ s -0.10% 696 363 710 232 5.5 8.3 -0.29% 696 365 710 232 5.5 8.3 -0.48% 696 366 710 232 5.5 8.3

C H -0.08% 678 353 692 226 5.7 8.5 -0.22% 651 339 664 217 5.9 8.8 -0.36% 627 326 640 209 6.1 9.2

C O -0.05% 702 365 716 234 5.5 8.2 -0.14% 828 431 845 207 4.6 9.3 -0.22% 844 439 861 211 4.5 9.1

C h -0.05% 681 355 695 227 5.6 8.5 -0.14% 864 300 882 216 6.7 8.9 -0.22% 844 293 861 211 6.8 9.1

C Hr -0.05% 681 355 695 227 5.6 8.5 -0.14% 772 402 788 193 5.0 9.9 -0.23% 752 392 767 188 5.1 10.2

C S -0.04% 702 365 716 234 5.5 8.2 -0.12% 920 319 939 230 6.3 8.3 -0.18% 1040 361 1061 208 5.5 9.2

Parameter
-50% -30% -10%

Parameter
+10% +30% +50%

-50% -30% -10% +10% +30% +50%

S P -106.57%ᵇ -63.94% -21.31% 21.31% 63.94% 106.57% T 696

C m 30.45% 18.27% 6.09% -6.09% -18.27% -30.45% Q s 362

C R 22.19% 13.32% 4.44% -4.44% -13.32% -22.19% Q m 710

C d 1.11% 0.67% 0.22% -0.22% -0.67% -1.11% Q mr 232

C D 1.07% 0.64% 0.21% -0.21% -0.64% -1.07% xy 5.5

C L 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% zy 8.3

Profit Percentage Change Decision 

variables 
Parameter
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Appendix A. Average end product inventory per period at 

the manufacturer is given by the following equation 

 
 
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       

 

The following is the general form for the total end product 

inventory at the manufacturer per dominant cycle (i.e., the 

cycle that is determined by the minimum rate), see Fig. 1A. 
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Since the summation of an arithmetic series is as follows: 
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Manufacturer’s average inventory per period 
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In case the production exceeds the demand (Fig. 1A,a); the 

manufacturer’s average inventory holding cost per period is 

as follows:  
 

 
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In case the demand exceeds the production (Fig. 1A,b); the 

manufacturer’s average inventory holding cost per period is 

as follows: 
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b) 

Fig.  1A. Accumulated inventory at the manufacturer, a) Case (1- γm)P>d b) Case (1- γm)P<d 
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