
Concurrent Error Detection and Correction for

Orthogonal Latin Squares Encoders and

Syndrome Computation

 Sudhakar Kongala D. Kishore Kumar
 Department of ECE Department of ECE

 Vidya Jyothi Institute of Technology Vidya Jyothi Institute of Technology

 Hyderabad, India Hyderabad, India

Abstract – In advanced electronic circuits the reliability has

been a major concern. There are number of mitigation

techniques proposed to make sure that the errors do not affect

the circuit functionality. Among them, to protect the

memories and registers in electronic circuits Error Correction

Codes (ECC) are commonly used. Whenever any ECC

technique is used, the encoder and decoder circuit may also

suffer errors. In this brief, concurrent error detection and

correction technique for OLS encoders and syndrome

computation is proposed and evaluated. The proposed method

efficiently implements a parity prediction scheme that detects

all errors that affect a single circuit node using the properties

of OLS codes.

Key Words— Concurrent error detection and correction, error

correction codes (ECC), Latin squares, One step majority logic

decoding (OS-MLD).

I. INTRODUCTION

Since many years, for detecting and correcting errors

ECCs were used [1], [3]. Researchers have proposed wide

range of codes for memory applications. For correcting one

bit per word, single error correction (SEC) codes are used

in general. Advanced codes which can also correct double

adjacent errors [2] are also been studied. But the problem

with some complex codes that corrects more errors is

generally limited by their impact on delay and power,

which in turn will limit their applicability to memory

designs [4]. To run-over those concerns, a technique is

proposed by the use

of codes that are one step majority logic decodable (OS-

MLD). OS-MLD codes are low-latency decodable codes.

So, for protecting memories, they are used [7] [8]. In [10],

use of different types of codes has also been discussed. The

other type of code that is OS-MLD is orthogonal latin

squares (OLS) code [9].

For interconnections [11], memories [13], and caches

[12] use of OLS codes have gained a renewed interest,

because of the modularity such that error correcting

capabilities can be easily adapted to the error rate [11] or to

the mode of operation [13]. Typically more parity bits are

required for OLS codes than other codes for correcting the

same number of errors. However, due to their modularity

and the simple, low delay decoding implementations (as

OLS codes are OS-MLD); neutralize this disadvantage in

many applications.

A major issue is that the encoder and decoder circuits

needed to use (ECCs) may also suffer from error

sometimes. Whenever, an encoder is affected by an error,

to the memory an incorrect word may be written. In

decoder, a correct word may be interpreted as erroneous or

an incorrect word may be interpreted as a correct word.

Protection of the encoders and decoders for Different

ECCs has been studied in [14] and [17]. For example, EG

codes were studied in [8]. The protection of Reed-Solomon

and Hamming Codes were studied in [14] and [15]. Finally,

the protection of encoders for SEC codes against soft errors

was discussed in [18].

The ECC encoder first computes the parity bits, and in

majority of the cases the decoder detects and corrects the

errors by checking the parity bits. In general, this is known

as syndrome computation. In some codes, based on the

properties of the code, serial encoding and syndrome

computation are performed. But, for low delay parallel

implementations are preferred. It is the case for OLS codes

which are commonly used in high-speed applications. After

syndrome computation, the errors are detected and

corrected. This means in encoder and decoder generating

and checking the parity bits are the important parts.

Therefore, its important issue is its protection.

In this brief, for SRAM memories and caches, the

protection of the encoders and syndrome computation for

OLS codes are considered. Depending on some definite

properties, it is presented that parity prediction is an

productive technique to detect and correct errors in the

encoder and syndrome computation. For most block codes

it is not the case for which parity prediction will not

provide effective protection. So, it is an advantage of OLS

codes in addition to its modularity and low-decoding

capability.

The rest of this paper is organized as follows. OLS

codes are introduced and the some of the properties are

summarized in Section II. The proposed parity prediction

scheme is discussed in Section III. Evaluation of its time

delay is discussed in Section IV. Finally, a brief conclusion

is presented in Section V.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

844

II. ORTHOGONAL LATIN SQUARES CODES

The concept behind OLS codes is the Latin Squares. A

Latin square of size m is an m X m matrix that has

permutations of 0, 1… m-1 digits in both its rows and

columns [20]. Two Latin squares are orthogonal if when

they are overlap every ordered pair of elements appears

only once. OLS codes are derived from OLS [9]. These

codes have m
2
 data bits (k), where “m” is an integer. The

2tm check bits are required for correcting t-error

correction, which means the H-matrix contains 2tm rows.

The “t” and “m” are related as in (1). The modular property

guarantees the error correction capability selection for a

given word size.

As mentioned before, OLS codes can be decoded using

OS-MLD as each bit participates in exactly 2t check bits

and each other bit participates in at most one of those check

bits participates in exactly 2t check bits. This enables a

simple correction when the number of bits in error is t or

less.

t(max) ≤ [(m+1)/2] (1)

The majority vote is taken by recomputing the 2t check

bits. When a value of “1” is obtained, the bit is in error and

the check bits of duplicated circuit are taken. Otherwise, it

is error free. In any case, the decoding process is started by

recomputing the parity check bits and checking against the

stored parity check bits.

OLS are used for the construction of the parity check

matrix H for OLS codes. As a case, a matrix for a code

with k=16 and 8 check bits that can correct single errors is

shown in Fig. 1.

Fig 1: OLS code Parity check matrix with k=16 & t=1

As discussed earlier, due to the modular construction

of OLS codes this matrix forms part of the H matrix for

codes that can correct more errors. For example, to obtain a

code that can correct two errors, eight additional rows are

added to the H matrix.

 The H-matrix for an arbitrary value of k=m
2
 for a SEC-

OLS code is constructed as follows:

Where I2m is the identity matrix of size 2m and M1, M2 are

all sub matrices of size m × m2. The matrix M1 has m ones

in each row. The sub matrices in general have the

following forms

The construction of matrix M2 is as follows:

.

i.e., all are identity matrices of order m.

For m=4, the matrices M1 and M2 can be clearly observed

in Fig. 1. The encoding matrix G is similar to the H matrix

on which the check bits are removed.

In summary, using the matrix G, for computing the 2tm

check bits (ci), k=m
2
 data bits are required for the encoder,

which are adopted from the Latin squares and has the

following properties.

1) One data bit participates exactly in 2t parity checks.

2) A pair of data bits participates (both bits) in at most one

of the parity checks.

These properties are used in the following section to review

the proposed technique.

III. PROPOSED CONCURRENT ERROR

DETECTION AND CORRECTION

TECHNIQUE

Before discussing the proposed error detection and

correction techniques, the standard definition of self-

checking circuits that are used in this section is presented.

During fault-free or normal operation, a circuit receives

only a subset of the input space, called the input code

space, and produces a subset of the output space, called the

output code space. The outputs that are not members of the

output code space form the output error space. In general, a

circuit may be designed to be self-checking only for an

assumed fault set. In this brief, we consider the fault set F

corresponding to the single stuck-at fault model [19].

Self-checking property is verified for the circuit if and

only if it satisfies the following properties: 1) self-testing 2)

fault secure.

A circuit is said to be running under self-testing if, in

the fault set F for each fault f, there is at least one input

which belongs to the input code space, for which circuit

gives an output that belongs to the output error space.

A circuit is to have fault-secure if, in the fault set F for

each fault f and for each input belonging to the input code

space, the circuit gives the correct output, or an output that

belongs to the output error space.

The fault-secure property assures that the circuit gives

the correct response, or alerts the presence of a fault that

provides an output in the error space. Faults are always

detected, since an output is provided for the input which

can identify the presence of the fault.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

845

Fig 2: Proposed self-correcting encoder for OLS code with k=16 &

t=1

The proposed technique is based on the use of parity

prediction, which is one of the techniques that are used to

detect and correct error in typical logic circuits. In our case,

the problem is much simpler, given the structure of the

OLS codes. For an encoder, the proposed is that the parity

of the calculated check bits (ci) is set against the parity of

all the check equations. The equation obtained by

calculating the parity of the columns in G is simply the

parity of all check equations. Since for OLS codes, each

column in G will have exactly 2t ones, so null equation is

obtained (see, for example, Fig. 1). Therefore, the

concurrent error detection (CED) is normally to check

c1 ⊕ c2 ⊕ c3 ⊕・ ・ ・⊕c2tm = 0 (6)

 r1 ⊕ r2 = 0 (7)

and for Concurrent error detection and correction (CEDC)

it is

c_output=e
~
(ci)+e(cj) (8)

where ci are the check bits of the original circuit and cj

represents the check bits of the duplicated circuit.

This gives an efficient implementation which is not

possible in other ECC codes. For example, in the Hamming

code a major part of the columns in G have an odd weight

and for some different codes the number is even larger as

they are designed to have odd weights and also in that

codes we need to correct the codes manually, but in this

case the codes are automatically corrected.

The input code space of the OLS encoder corresponds

to the input space, since the encoder can receive all the

possible 2k input configurations. The output code space of

the OLS encoder is composed by the outputs satisfying (6),

(7) and (8), while the output error space is the complement

of the output code space.

In order to check whether the output of the OLS

encoder belongs to the output code space or the output

error space, a self-checking implementation of a parity

checker is used [19]. The checker and correction unit

controls the parity of its inputs and is realized with a

repetition code. The two outputs (r1, r2) are each equal to

the parity of one of two disjoint subsets of the checker

inputs (ci), as proposed in [21]. When a set of inputs with

the correct parity is provided, the output code {r1, r2} takes

the values 00 or 11 and the two bits are compared against

each other using a checker to get the output 0. When the

checker receives an erroneous set of inputs, the checker

provides the output codes 01 or 10 and so the output

checker e will be equal to 1. Also, if a fault occurs in the

checker, the outputs are 01 or 10 and the final checker

output will be 1. This guarantees the self-checking property

of the parity checker [21]. The proposed encoder is

illustrated in Fig. 2 for the code with k = 16 and t = 1.

For correction of the errors in the encoder, first the

circuit is partially duplicated till the generation of check

bits by giving the same input combinations. Then the check

bits(cj) of the duplicated circuit are compared against the

check bits(ci) of the original (CED) circuit by using the

2X1 multiplexer, where the original circuit check bits (ci)

are connected to the first input while the check bits (cj)

obtained from duplicated circuit are connected to the

second input of multiplexer and the selection bit for that is

given from the output(e) of the original circuit, whenever

the selection bit is 0, then the original circuit is selected

and if it is not equal to 0 then the duplicated circuit gets

selected.

The circuit that is proposed can detect and correct any

error that affects an odd number of ci bits. For a general

code, in most cases there is logic sharing among the

calculations of the ci bits [18]. This means that an error

may increase to more than one ci bit, and if the number of

bits affected is even, then the error is also detected by the

proposed scheme.

This means that an error may increase to more than

one ci bit, and if the number of bits affected is even, then

the error is also detected by the proposed scheme. But this

would increase the area of the circuit and also increase the

cost compared to an unrestricted implementation.

Additionally, even if the error propagates to an odd number

of outputs, the delay of each path can be different. Which

may cause detecting of only some of the output errors at

the clock edge. For OLS codes, as discussed in the

previous section a pair of data bits shares at most one parity

check. This assures that there isn’t any logic sharing among

the computation of the ci bits. Therefore, the proposed

technique works well to detect and correct all errors that

affect a single circuit node.

Fig 3: Proposed self-checking and correcting syndrome computation for
OLS code with

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

846

k = 16 and t = 1.

The parity prediction for the syndrome computation

can be implemented by checking that the following two

equations take the same value.

r1 = s1 ⊕ s2 ⊕ s3 ⊕・ ・ ・⊕s2tm (9)

 r2 = c1 ⊕ c2 ⊕ c3 ⊕ ・・ ・⊕c2tm (10)

Or else by simply checking the following equation

 f= r1 ⊕ r2 (11)

where si bits are the calculated syndrome bits. The

proposed circuit is shown in Fig. 3 for the code with k = 16

and t = 1.

If there are any errors in the computed syndrome bits, then

for correcting them, the following equation is used:

 S_output = f
~

(si) +f(sj) (12)

Where si re the syndrome bits of the original circuit while

sj are the duplicated circuit syndrome bits.

The output code space of the OLS syndrome

computation is composed by the outputs given by (9), (10),

(11) and (12), while the output error space is the

complement of the output code space.

The fault-secure property for the syndrome

computation is easily demonstrated for the faults in F by

observing that the circuits that compute e do not share any

gate and both circuits are only composed of XOR gates.

Therefore, a single fault could propagate to only one of the

outputs, producing an output on the output error space.

Though the circuits are different for encoder and

syndrome computation, the syndrome computation circuit

operation is similar to that of the operation of encoder,

except that in encoder we calculate check bits, here in

syndrome computation, syndrome bits are generated.

The duplicated circuit of syndrome computation circuit

is that partial circuit of the original syndrome circuit i.e.,

upto the generation of the syndrome bits. The inputs of the

duplicated circuit are taken from the original inputs bits.

For OLS codes, the cost of the encoder and syndrome

computation in terms of the number of two-input XOR

gates can be easily calculated (as each l−input XOR gate is

assumed to be equivalent to l − 1 two-input XOR gates).

There are 2tm check bits for a code with k = m
2
 and that

can correct t errors, and the computation of each of them

requires m−1 two input XOR gates. Therefore, the encoder

requires 2tm (m − 1) two-input XOR gates. For syndrome

computation, an additional XOR gate is to be needed for

each parity check bit, giving a total number to 2tm two-

input XOR gates.

The proposed method requires 4tm−2 two-input XOR

gates for the encoder and 8tm-4 two-input XOR gates for

the syndrome computation. This means that the overhead

required to implement

Our method for the encoder is

Oencoder = (4tm-2) (13)

 (2tm (m-1))

and for the syndrome computation is

 Osyndrome = (8tm-4) (14)

 (2tm
2
)

For larger values of m, (13) can be approximated by

2/m

and (14) can be approximated by 4/m. This shows that

whenever the block size of a code k=m
2

grows; the

overhead will become smaller and independent of t.

TABLE I

OVERHEAD OF PROPOSED CEDC FOR SEC-OLS

CODES
k m Encoder Syndrome

16 4 58.33% 87.50%

64 8 26.78% 46.87%

256 16 12.91% 24.21%

The overhead in terms of delay is important as the

proposed parity computation is done over the results of the

encoder or syndrome computation. That means the delay of

the new logic adds to the encoding or syndrome

computation delay directly. However, the effect on

memory access time is reduced by noting that for the

encoder the error checking and correction can be done in

parallel along with the writing of the data into the memory.

For the syndrome computation, the error detection and

correction can be performed in parallel with the majority

logic voting and so the impact on access time is minimized.

TABLE II

DELAY ESTIMATES FOR ENCODER (in ns)
k m unprotected With

CEDC

overhead

16 4 6.236 9.028 44.7

64 8 6.579 9.401 42.89

256 16 6.771 9.783 44.48

TABLE III

DELAY ESTIMATES FOR SYNDROME

COMPUTATION (in ns)
k m unprotected With

CEDC

overhead

16 4 6.446 9.346 44.98

64 8 6.574 9.544 45.17

256 16 6.785 9.801 44.45

Finally, it is worth noting that the overhead of

implementing the proposed technique for other codes is

much larger. This is because the CEDC check becomes

more complex and also because logic sharing must also be

avoided in the parity check computation.

IV. EVALUATION

The proposed CEDC mechanisms have been

implemented in Verilog for codes with t = 1 and the values

of k used in Table I. The designs have been implemented

in Xilinx design compiler for synthesis and simulation.

From the Table I, it can be observed that the as the

number of bits are increased and so the overhead has also

gradually reduced, and for calculating the impact on delay,

synthesis is run on delay optimization. The results are

shown in Tables II and III. From that it is observed that the

proposed technique introduces a significant delay. This is

expected from the discussion in the previous section.

However, the impact on memory access time can be largely

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

847

reduced by performing error checking and correction in

parallel with the writing of the data for the encoder. For the

syndrome computation, the checking and correcting can be

done in parallel with the majority voting and error

correction.

It is mentioned in the previous sections that the circuits

of encoder and decoder are duplicated for correction of the

check bits or syndrome bits. This results in a significant

area increase. As an example, from the previous work, an

encoder for a parity extended Hamming code with k = 32

implementation with and without logic sharing is

considered.

In that the area overhead of avoiding logic sharing was

35%. The cost of the checker is also larger for Hamming.

In this particular case, the total overhead for the proposed

scheme would be over 80%. This confirms that the

proposed technique is not effective in a general case and

relies on the properties of OLS codes to achieve an

efficient implementation.

V. CONCLUSION

In this brief, a CEDC technique for OLS codes

encoders and syndrome computation is proposed. The

proposed technique used the properties of OLS codes to

design a parity prediction scheme that could be efficiently

implemented and detect and correct all errors that affect a

single circuit node.

Different word sizes are being evaluated using this

technique, which showed that for large words the overhead

is small. This is interesting as large word sizes are used, for

example, in caches for which OLS codes have been

recently proposed [13]. The proposed error checking and

correcting scheme required a significant delay; however, its

impact on access memory time could be minimized. This

was achieved by performing the checking and correcting in

parallel with the writing of the data in the case of the

encoder and in parallel with the majority voting and error

correction in the case of the decoder. In a general case, as

the proposed technique requires a larger overhead as

majority of ECCs do not have the properties of OLS codes.

This limited the applicability of the proposed CED scheme

to OLS codes. The availability of low overhead error

detection and correction techniques for the encoder and

syndrome computation is an additional reason to consider

the use of OLS codes in high-speed memories and caches.

REFERENCES

[1] C. L. Chen, “Error-correcting codes for semiconductor memory,”

IBM in IEEE. pp. 245–247, Mar. 1984.

[2] Jushwanth Xavier. X, Benujah. B.R, “Multiple bit upset
deduction/correction for memory applications,” in IJAIS., February

2013, pp. 15-18.

[3] Eiji Fujiwara, Code Design for Dependable Systems: Theory and
Practical Application. New York: Wiley, 2006.

[4] Salvatore Pontarelli, G. C. Cardarilli, M. Ottavi, M. Re, and A.

Salsano, “Fault tolerant solid state mass memory for space
applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 4,

pp. 1353–1372, Oct. 2005.

[5] E. J. McCluskey, “Design techniques for testable embedded error
checkers,” IEEE Computer, vol. 23, no. 7, pp. 84–88, Jul. 1990.

[6] Lin Shu, Shu Lin and Daniel. J. Costello, Error Control Coding, 2nd

ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.
[7] S. Ghosh and P. D. Lincoln, “Dynamic low-density parity check

codes for fault-tolerant nano-scale memory,” in Proc. Found.

Nanosci., 2007, pp. 1–5.
[8] H Naeimi and A. DeHon, “Corrections to Fault Secure Encoder and

Decoder for NanoMemory Applications,” .

[9] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal latin

square codes,” IBM J. Res. Develop., vol. 14, no. 4, pp. 390–394,

Jul. 1970.

[10] Shu Liu, Pedro Reviriego, and J. A. Maestro, “Efficient majority
logic fault detection with difference-set codes for memory

applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 20, no. 1, pp. 148–156, Jan. 2012.
[11] S. E. Lee, Y. S. Yang, G. S. Choi, W. Wu, and R. Iyer, “Low-

power, resilient interconnection with Orthogonal Latin Squares,”

IEEE Design Test Comput., vol. 28, no. 2, pp. 30–39, Mar.–Apr.
2011.

[12] A.R.Alameldeen, Z. Chishti, W. Wu, C. Wilkerson, and S.-L. Lu,

“Adaptive cache design to enable reliable low-voltage operation,”
IEEE Trans. Comput., vol. 60, no. 1, pp. 50–63, Jan. 2011.

[13] R. Datta and N. A. Touba, “Generating burst-error correcting codes

from orthogonal latin square codes–a graph theoretic approach,” in
Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol.

Syst., Oct. 2011, pp. 367–373.

[14] H. Jaber, F. Monteiro, S. J. Piestrak, and A. Dandache, “Design of
parallel fault-secure encoders for systematic cyclic block

transmission codes,” Microelectron. J., vol. 40, no. 12, pp. 1686–

1697, Dec. 2009.
[15] Andre Neubauer, Volker Kuhn, Jurgen Freudenberger, “Coding

Theory: Algorithms, Architectures and Applications”

[16] G. C. Cardarilli, S. Pontarelli, M. Re, and A. Salsano, “Concurrent
error detection in Reed-Solomon encoders and decoders,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 7, pp.

842–846, Jul. 2007.
[17] Houssein Jaber, J. Piestrak, Stanislaw, Fabrice Monteiro and Abbas

Dandache, A. Dandache, and F. Monteiro, “Design of parallel fault-
secure encoders for systematic cyclic block transmission code,”

Microelectronics Journal, Vol 40, Issue 12, Dec, 2009.

[18] Antonio Maestro, C. Argyrides, Pedro Reviriego and D. K. Pradhan,
“Fault tolerant single error correction encoders,” J. Electron. Test.,

Theory Appl., vol. 27, no. 2, pp. 215–219, Apr. 2011.

[19] Parag. K. Lala, Self Checking and Fault Tolerant Digital Design:
Morgan Kaufmann, 2001.

[20] J. Dénes and A. D. Keedwell, Latin Squares and Their Applications.

San Francisco, CA: Academic, 1974.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

848

