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Abstract – In advanced electronic circuits the reliability has 

been a major concern. There are number of mitigation 

techniques proposed to make sure that the errors do not affect 

the circuit functionality. Among them, to protect the 

memories and registers in electronic circuits Error Correction 

Codes (ECC) are commonly used. Whenever any ECC 

technique is used, the encoder and decoder circuit may also 

suffer errors. In this brief, concurrent error detection and 

correction technique for OLS encoders and syndrome 

computation is proposed and evaluated. The proposed method 

efficiently implements a parity prediction scheme that detects 

all errors that affect a single circuit node using the properties 

of OLS codes. 
 

Key Words— Concurrent error detection and correction, error 

correction codes (ECC), Latin squares, One step majority logic 

decoding (OS-MLD). 

 

I. INTRODUCTION 
 

Since many years, for detecting and correcting errors 

ECCs were used [1], [3]. Researchers have proposed wide 

range of codes for memory applications. For correcting one 

bit per word, single error correction (SEC) codes are used 

in general. Advanced codes which can also correct double 

adjacent errors [2] are also been studied. But the problem 

with some complex codes that corrects more errors is 

generally limited by their impact on delay and power, 

which in turn will limit their applicability to memory 

designs [4]. To run-over those concerns, a technique is 

proposed by the use  

of codes that are one step majority logic decodable (OS-

MLD). OS-MLD codes are low-latency decodable codes. 

So, for protecting memories, they are used [7] [8]. In [10], 

use of different types of codes has also been discussed. The 

other type of code that is OS-MLD is orthogonal latin 

squares (OLS) code [9]. 

For interconnections [11], memories [13], and caches 

[12] use of OLS codes have gained a renewed interest, 

because of the modularity such that error correcting 

capabilities can be easily adapted to the error rate [11] or to 

the mode of operation [13]. Typically more parity bits are 

required for OLS codes than other codes for correcting the 

same number of errors. However, due to their modularity 

and the simple, low delay decoding implementations (as 

OLS codes are OS-MLD); neutralize this disadvantage in 

many applications. 

A major issue is that the encoder and decoder circuits 

needed to use (ECCs) may also suffer from error 

sometimes. Whenever, an encoder is affected by an error, 

to the memory an incorrect word may be written. In 

decoder, a correct word may be interpreted as erroneous or 

an incorrect word may be interpreted as a correct word. 

Protection of the encoders and decoders for Different 

ECCs has been studied in [14] and [17]. For example, EG 

codes were studied in [8]. The protection of Reed-Solomon 

and Hamming Codes were studied in [14] and [15]. Finally, 

the protection of encoders for SEC codes against soft errors 

was discussed in [18]. 

The ECC encoder first computes the parity bits, and in 

majority of the cases the decoder detects and corrects the 

errors by checking the parity bits. In general, this is known 

as syndrome computation. In some codes, based on the 

properties of the code, serial encoding and syndrome 

computation are performed. But, for low delay parallel 

implementations are preferred. It is the case for OLS codes 

which are commonly used in high-speed applications. After 

syndrome computation, the errors are detected and 

corrected. This means in encoder and decoder generating 

and checking the parity bits are the important parts. 

Therefore, its important issue is its protection. 

In this brief, for SRAM memories and caches, the 

protection of the encoders and syndrome computation for 

OLS codes are considered. Depending on some definite 

properties, it is presented that parity prediction is an 

productive technique to detect and correct errors in the 

encoder and syndrome computation. For most block codes 

it is not the case for which parity prediction will not 

provide effective protection. So, it is an advantage of OLS 

codes in addition to its modularity and low-decoding 

capability.  

The rest of this paper is organized as follows. OLS 

codes are introduced and the some of the properties are 

summarized in Section II. The proposed parity prediction 

scheme is discussed in Section III. Evaluation of its time 

delay is discussed in Section IV. Finally, a brief conclusion 

is presented in Section V. 
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II. ORTHOGONAL LATIN SQUARES CODES 
 

 

The concept behind OLS codes is the Latin Squares. A 

Latin square of size m is an m X m matrix that has 

permutations of 0, 1… m-1 digits in both its rows and 

columns [20]. Two Latin squares are orthogonal if when 

they are overlap every ordered pair of elements appears 

only once. OLS codes are derived from OLS [9]. These 

codes have m
2
 data bits (k), where “m” is an integer. The 

2tm check bits are required for correcting t-error 

correction, which means the H-matrix contains 2tm rows. 

The “t” and “m” are related as in (1). The modular property 

guarantees the error correction capability selection for a 

given word size. 

As mentioned before, OLS codes can be decoded using 

OS-MLD as each bit participates in exactly 2t check bits 

and each other bit participates in at most one of those check 

bits participates in exactly 2t check bits. This enables a 

simple correction when the number of bits in error is t or 

less. 

t(max) ≤ [(m+1)/2]  (1) 

The majority vote is taken by recomputing the 2t check 

bits. When a value of “1” is obtained, the bit is in error and 

the check bits of duplicated circuit are taken. Otherwise, it 

is error free. In any case, the decoding process is started by 

recomputing the parity check bits and checking against the 

stored parity check bits. 

OLS are used for the construction of the parity check 

matrix H for OLS codes. As a case, a matrix for a code 

with k=16 and 8 check bits that can correct single errors is 

shown in Fig. 1. 

 
Fig 1: OLS code Parity check matrix with k=16 & t=1 

 

As discussed earlier, due to the modular construction 

of OLS codes this matrix forms part of the H matrix for 

codes that can correct more errors. For example, to obtain a 

code that can correct two errors, eight additional rows are 

added to the H matrix. 

    The H-matrix for an arbitrary value of k=m
2
 for a SEC-

OLS code is constructed as follows: 

 
Where I2m is the identity matrix of size 2m and M1, M2 are 

all sub matrices of size m × m2. The matrix M1 has m ones 

in each row. The sub matrices in general have the 

following forms 

 
 

The construction of matrix M2 is as follows: 

.  

i.e., all are identity matrices of order m. 

For m=4, the matrices M1 and M2 can be clearly observed 

in Fig. 1. The encoding matrix G is similar to the H matrix 

on which the check bits are removed. 

 
In summary, using the matrix G, for computing the 2tm 

check bits (ci), k=m
2
 data bits are required for the encoder, 

which are adopted from the Latin squares and has the 

following properties.
 

1) One data bit participates exactly in 2t parity checks. 

2) A pair of data bits participates (both bits) in at most one 

of the parity checks. 

These properties are used in the following section to review 

the proposed technique. 

 

III. PROPOSED CONCURRENT ERROR 

DETECTION AND CORRECTION 

TECHNIQUE 
 

Before discussing the proposed error detection and 

correction techniques, the standard definition of self-

checking circuits that are used in this section is presented. 

During fault-free or normal operation, a circuit receives 

only a subset of the input space, called the input code 

space, and produces a subset of the output space, called the 

output code space. The outputs that are not members of the 

output code space form the output error space. In general, a 

circuit may be designed to be self-checking only for an 

assumed fault set. In this brief, we consider the fault set F 

corresponding to the single stuck-at fault model [19]. 

Self-checking property is verified for the circuit if and 

only if it satisfies the following properties: 1) self-testing 2) 

fault secure. 

A circuit is said to be running under self-testing if, in 

the fault set F for each fault f, there is at least one input 

which belongs to the input code space, for which circuit 

gives an output that belongs to the output error space. 

A circuit is to have fault-secure if, in the fault set F for 

each fault f and for each input belonging to the input code 

space, the circuit gives the correct output, or an output that 

belongs to the output error space. 

The fault-secure property assures that the circuit gives 

the correct response, or alerts the presence of a fault that 

provides an output in the error space. Faults are always 

detected, since an output is provided for the input which 

can identify the presence of the fault. 
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Fig 2: Proposed self-correcting encoder for OLS code with k=16 & 

t=1 

The proposed technique is based on the use of parity 

prediction, which is one of the techniques that are used to 

detect and correct error in typical logic circuits. In our case, 

the problem is much simpler, given the structure of the 

OLS codes. For an encoder, the proposed is that the parity 

of the calculated check bits (ci) is set against the parity of 

all the check equations. The equation obtained by 

calculating the parity of the columns in G is simply the 

parity of all check equations. Since for OLS codes, each 

column in G will have exactly 2t ones, so null equation is 

obtained (see, for example, Fig. 1). Therefore, the 

concurrent error detection (CED) is  normally to check 

c1 ⊕ c2 ⊕ c3 ⊕・ ・ ・⊕c2tm = 0 (6) 

         r1 ⊕ r2 = 0                        (7) 

and for Concurrent error detection and correction (CEDC) 

it is 

c_output=e
~
(ci)+e(cj)                  (8) 

where ci are the check bits of the original circuit and cj 

represents the check bits of the duplicated circuit. 

This gives an efficient implementation which is not 

possible in other ECC codes. For example, in the Hamming 

code a major part of the columns in G have an odd weight 

and for some different codes the number is even larger as 

they are designed to have odd weights and also in that 

codes we need to correct the codes manually, but in this 

case the codes are automatically corrected. 

The input code space of the OLS encoder corresponds 

to the input space, since the encoder can receive all the 

possible 2k input configurations. The output code space of 

the OLS encoder is composed by the outputs satisfying (6), 

(7) and (8), while the output error space is the complement 

of the output code space. 

In order to check whether the output of the OLS 

encoder belongs to the output code space or the output 

error space, a self-checking implementation of a parity 

checker is used [19]. The checker and correction unit 

controls the parity of its inputs and is realized with a 

repetition code. The two outputs (r1, r2) are each equal to 

the parity of one of two disjoint subsets of the checker 

inputs (ci), as proposed in [21]. When a set of inputs with 

the correct parity is provided, the output code {r1, r2} takes 

the values 00 or 11 and the two bits are compared against 

each other using a checker to get the output 0. When the 

checker receives an erroneous set of inputs, the checker 

provides the output codes 01 or 10 and so the output 

checker e will be equal to 1. Also, if a fault occurs in the 

checker, the outputs are 01 or 10 and the final checker 

output will be 1. This guarantees the self-checking property 

of the parity checker [21]. The proposed encoder is 

illustrated in Fig. 2 for the code with k = 16 and t = 1. 

For correction of the errors in the encoder, first the 

circuit is partially duplicated till the generation of check 

bits by giving the same input combinations. Then the check 

bits(cj) of the duplicated circuit are compared against the 

check bits(ci) of the original (CED) circuit by using the 

2X1 multiplexer, where the original circuit check bits (ci) 

are connected to the first input while the check bits (cj) 

obtained from duplicated circuit are connected to the 

second input of multiplexer and  the selection bit for that is 

given from the output(e) of the original circuit, whenever 

the selection bit is 0, then the original circuit is selected 

and if it is not equal to 0 then the duplicated circuit gets 

selected. 

The circuit that is proposed can detect and correct any 

error that affects an odd number of ci bits. For a general 

code, in most cases there is logic sharing among the 

calculations of the ci bits [18]. This means that an error 

may increase to more than one ci bit, and if the number of 

bits affected is even, then the error is also detected by the 

proposed scheme. 

This means that an error may increase to more than 

one ci bit, and if the number of bits affected is even, then 

the error is also detected by the proposed scheme. But this 

would increase the area of the circuit and also increase the 

cost compared to an unrestricted implementation. 

Additionally, even if the error propagates to an odd number 

of outputs, the delay of each path can be different. Which 

may cause detecting of only some of the output errors at 

the clock edge. For OLS codes, as discussed in the 

previous section a pair of data bits shares at most one parity 

check. This assures that there isn’t any logic sharing among 

the computation of the ci bits. Therefore, the proposed 

technique works well to detect and correct all errors that 

affect a single circuit node. 

 

 
 

Fig 3: Proposed self-checking and correcting syndrome computation for 
OLS code with  
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k = 16 and t = 1. 

 

The parity prediction for the syndrome computation 

can be implemented by checking that the following two 

equations take the same value. 

r1 = s1 ⊕ s2 ⊕ s3 ⊕・ ・ ・⊕s2tm     (9) 

  r2 = c1 ⊕ c2 ⊕ c3 ⊕ ・・ ・⊕c2tm    (10) 

Or else by simply checking the following equation 

  f= r1 ⊕ r2       (11) 

where si bits are the calculated syndrome bits. The 

proposed circuit is shown in Fig. 3 for the code with k = 16 

and t = 1. 

If there are any errors in the computed syndrome bits, then 

for correcting them, the following equation is used: 

 S_output = f
~ 

(si) +f(sj)               (12) 

Where si re the syndrome bits of the original circuit while 

sj are the duplicated circuit syndrome bits. 

The output code space of the OLS syndrome 

computation is composed by the outputs given by (9), (10), 

(11) and (12), while the output error space is the 

complement of the output code space. 

The fault-secure property for the syndrome 

computation is easily demonstrated for the faults in F by 

observing that the circuits that compute e do not share any 

gate and both circuits are only composed of XOR gates. 

Therefore, a single fault could propagate to only one of the 

outputs, producing an output on the output error space. 

Though the circuits are different for encoder and 

syndrome computation, the syndrome computation circuit 

operation is similar to that of the operation of encoder, 

except that in encoder we calculate check bits, here in 

syndrome computation, syndrome bits are generated. 

The duplicated circuit of syndrome computation circuit 

is that partial circuit of the original syndrome circuit i.e., 

upto the generation of the syndrome bits. The inputs of the 

duplicated circuit are taken from the original inputs bits. 

For OLS codes, the cost of the encoder and syndrome 

computation in terms of the number of two-input XOR 

gates can be easily calculated (as each l−input XOR gate is 

assumed to be equivalent to l − 1 two-input XOR gates). 

There are 2tm check bits for a code with k = m
2
 and that 

can correct t errors, and the computation of each of them 

requires m−1 two input XOR gates. Therefore, the encoder 

requires 2tm (m − 1) two-input XOR gates. For syndrome 

computation, an additional XOR gate is to be needed for 

each parity check bit, giving a total number to 2tm two-

input XOR gates.  

The proposed method requires 4tm−2 two-input XOR 

gates for the encoder and 8tm-4 two-input XOR gates for 

the syndrome computation. This means that the overhead 

required to implement 

Our method for the encoder is 

Oencoder =    (4tm-2)                     (13) 

                       (2tm (m-1)) 

 

and for the syndrome computation is 

 

      Osyndrome =         (8tm-4)                (14) 

                                (2tm
2
) 

 

For larger values of m, (13) can be approximated by 

2/m
 
and (14) can be approximated by 4/m. This shows that 

whenever the block size of a code k=m
2 

grows; the 

overhead will become smaller and independent of t. 

 

TABLE I 

OVERHEAD OF PROPOSED CEDC FOR SEC-OLS 

CODES 
k m Encoder Syndrome 

16 4 58.33% 87.50% 

64 8 26.78% 46.87% 

256 16 12.91% 24.21% 

 

The overhead in terms of delay is important as the 

proposed parity computation is done over the results of the 

encoder or syndrome computation. That means the delay of 

the new logic adds to the encoding or syndrome 

computation delay directly. However, the effect on 

memory access time is reduced by noting that for the 

encoder the error checking and correction can be done in 

parallel along with the writing of the data into the memory. 

For the syndrome computation, the error detection and 

correction can be performed in parallel with the majority 

logic voting and so the impact on access time is minimized. 

 

TABLE II 

DELAY ESTIMATES FOR ENCODER (in ns) 
k m unprotected With 

CEDC 

overhead 

16 4 6.236 9.028 44.7 

64 8 6.579 9.401 42.89 

256 16 6.771 9.783 44.48 

 

TABLE III 

DELAY ESTIMATES FOR SYNDROME 

COMPUTATION (in ns) 
k m unprotected With 

CEDC 

overhead 

16 4 6.446 9.346 44.98 

64 8 6.574 9.544 45.17 

256 16 6.785 9.801 44.45 

Finally, it is worth noting that the overhead of 

implementing the proposed technique for other codes is 

much larger. This is because the CEDC check becomes 

more complex and also because logic sharing must also be 

avoided in the parity check computation. 

 

IV. EVALUATION 
 

The proposed CEDC mechanisms have been 

implemented in Verilog for codes with t = 1 and the values 

of k used in Table I.  The designs have been implemented 

in Xilinx design compiler for synthesis and simulation. 

From the Table I, it can be observed that the as the 

number of bits are increased and so the overhead has also 

gradually reduced, and for calculating the impact on delay, 

synthesis is run on delay optimization. The results are 

shown in Tables II and III. From that it is observed that the 

proposed technique introduces a significant delay. This is 

expected from the discussion in the previous section. 

However, the impact on memory access time can be largely 

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090556

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

847



reduced by performing error checking and correction in 

parallel with the writing of the data for the encoder. For the 

syndrome computation, the checking and correcting can be 

done in parallel with the majority voting and error 

correction. 

It is mentioned in the previous sections that the circuits 

of encoder and decoder are duplicated for correction of the 

check bits or syndrome bits. This results in a significant 

area increase. As an example, from the previous work, an 

encoder for a parity extended Hamming code with k = 32 

implementation with and without logic sharing is 

considered. 

In that the area overhead of avoiding logic sharing was 

35%. The cost of the checker is also larger for Hamming. 

In this particular case, the total overhead for the proposed 

scheme would be over 80%. This confirms that the 

proposed technique is not effective in a general case and 

relies on the properties of OLS codes to achieve an 

efficient implementation. 

 

V. CONCLUSION 
 

In this brief, a CEDC technique for OLS codes 

encoders and syndrome computation is proposed. The 

proposed technique used the properties of OLS codes to 

design a parity prediction scheme that could be efficiently 

implemented and detect and correct all errors that affect a 

single circuit node. 

Different word sizes are being evaluated using this 

technique, which showed that for large words the overhead 

is small. This is interesting as large word sizes are used, for 

example, in caches for which OLS codes have been 

recently proposed [13]. The proposed error checking and 

correcting scheme required a significant delay; however, its 

impact on access memory time could be minimized. This 

was achieved by performing the checking and correcting in 

parallel with the writing of the data in the case of the 

encoder and in parallel with the majority voting and error 

correction in the case of the decoder. In a general case, as 

the proposed technique requires a larger overhead as 

majority of ECCs do not have the properties of OLS codes. 

This limited the applicability of the proposed CED scheme 

to OLS codes. The availability of low overhead error 

detection and correction techniques for the encoder and 

syndrome computation is an additional reason to consider 

the use of OLS codes in high-speed memories and caches. 
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