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Abstract - Concrete compressive strength (CCS) is a critical 

parameter for structural performance, durability, and safety. 

Traditional strength assessment methods rely on destructive 

testing, which is time-consuming and cost-intensive. Over the 

past three decades, machine learning (ML) has emerged as a 

powerful alternative for predicting CCS using mix design 

parameters, curing conditions, and environmental factors. This 

review synthesizes findings from 25 key studies published 

between 1998 and 2025, tracing the evolution of ML-based CCS 

prediction from early artificial neural networks (ANNs) to 

advanced deep learning and hybrid meta-heuristic models. The 

paper examines dataset characteristics, key predictors, and the 

performance of classical algorithms (SVR, decision trees), 

ensemble methods (Random Forest, Gradient Boosting, 

XGBoost), deep neural networks, and optimization-enhanced 

frameworks. Interpretability approaches such as SHAP and 

feature importance analysis are highlighted as essential for 

engineering adoption. Comparative evaluations reveal that 

boosting algorithms and meta-heuristic-enhanced ANNs 

consistently outperform other models, while deep learning excels 

on large datasets. Despite significant progress, challenges 

remain in dataset  

 

standardization, model transparency, and integration with 

building codes. Future research directions include physics-

informed ML, IoT-enabled real-time prediction, and explainable 

frameworks aligned with structural standards. This review 

underscores ML’s transformative potential in concrete 

engineering, paving the way for sustainable, efficient, and data-

driven construction practices. 

 

1. INTRODUCTION 

Concrete compressive strength (CCS) is a fundamental 

indicator of the quality, performance, and long-term 

durability of concrete structures. Traditionally, strength 

determination relies on destructive laboratory testing, which 

is time-consuming, cost-intensive, and unsuitable for rapid 

decision-making. The rising demand for optimized mix 

design, rapid quality control, predictive maintenance, and 

sustainability has accelerated interest in machine learning 

(ML) methods for predicting CCS from mix parameters, 

curing age, and environmental factors. 

Since the seminal work of Yeh (1998) [1] introduced artificial 

neural networks (ANNs) for predicting high-performance 

concrete strength, ML-based CCS prediction has evolved 

dramatically. Recent studies have explored a broad range of 

techniques including ensemble learning, support vector 

regression (SVR), deep learning, hybrid optimization 

algorithms, interpretable ML, and meta-heuristic-enhanced  

prediction models. This review synthesizes research from 25 

key papers published between 1998 and 2025, offering a 

comprehensive understanding of methodologies, predictors, 

performance outcomes, interpretability strategies, dataset 

characteristics, and future research directions. 

 

2. DATASETS AND KEY PREDICTORS FOR CCS 

MODELING 

Datasets play a central role in determining the performance 

and generalizability of ML models. Yeh (1998) [1] used one 

of the earliest publicly available datasets, containing mix 

proportions of high-performance concrete and corresponding 

strength values. Subsequent studies have expanded the range 

of predictors by including advanced materials, supplementary 

cementitious materials (SCMs), recycled aggregates, and 

environmental parameters. 

 

Xu et al. (2021) [6] used a large, real-world ready-mix 

concrete dataset with multiple features, including cement 

type, mineral admixtures, curing conditions, and mix 

sequence effects. Studies by Czarnecki et al. (2021) [7] 

incorporated non-destructive testing (NDT) parameters, 

especially ultrasonic pulse velocity (UPV), as predictive 

features for CCS—demonstrating the potential of ML to 

integrate multi-modal signals. 

 

Recycled materials gained attention as an environmentally 

sustainable alternative. Tran et al. (2022) [19] and Abdul 

Jaleel et al. (2024) [8] focused on recycled-aggregate 

concrete (RAC), emphasizing variables like water absorption 

and old mortar content, which significantly influence 

strength. Material-specific models, such as those for ultra-

high-performance concrete (UHPC) by Li et al. (2024) [17], 

have expanded the ML domain by requiring input features 

unique to advanced concretes like steel fiber content and 

micro-silica proportions. 

 

Feature selection and significance analysis have also evolved. 

Studies employing SHAP, permutation importance, or 

gradient-based sensitivity—such as Sun & Lee (2024) [20] 

and Latency (2024) [11]—identified key predictors: 

• Cement content 

• Curing age 

• Water-to-cement ratio (w/c) 

• SCM proportions (fly ash, GGBFS, silica fume) 

• Aggregate characteristics 
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• Superplasticizer dosage 

 

The development of richer datasets has progressively 

improved ML model accuracy while enabling more 

generalized and transferable prediction frameworks. 

 

3. CLASSICAL MACHINE LEARNING MODELS 

FOR CCS PREDICTION 

 

 
 

Figure 1: Evolution of Machine                                                                

Learning Approaches for CCS Prediction 

 

Figure 1 illustrates the evolution of machine learning 

approaches for concrete compressive strength prediction 

across three major stages: Classical ML (1990s), Ensemble 

Methods (2000s), and Hybrid Meta-Heuristic Models 

(2010s–Present). 

 

3.1 Early Neural Networks 

The pioneering work of Yeh (1998) [1] demonstrated that 

ANN models significantly outperform regression models, 

capturing nonlinear relationships among mix constituents. 

This work laid the foundation for the rapid adoption of ML in 

concrete strength estimation. 

 

3.2 Support Vector Regression and Decision Trees 

In the 2020s, classical ML models expanded to include 

support vector regression (SVR), decision trees (DT), k-

nearest neighbors (KNN), and multivariate adaptive 

regression splines (MARS). Feng et al. (2020) [3] and 

Gulafshan et al. (2020) [2] implemented SVR and DT-based 

models and found that although linear models performed 

poorly, kernel-based SVR and tree models achieved strong 

performance for nonlinear datasets. 

Sun & Lee (2024) [20] demonstrated that decision-tree-based 

models provide a useful balance between interpretability and 

predictive performance, making them suitable for 

engineering applications where model transparency is 

essential. 

 

3.3 Hybrid ANFIS and Evolutionary Models 

Golafshani et al. (2020) [2] integrated Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS) with Grey Wolf Optimizer 

(GWO), improving performance over traditional ANN by 

optimizing membership functions. This marked the transition 

to hybrid ML models capable of learning complex, nonlinear 

interactions based on smaller datasets. 

 

4. ENSEMBLE LEARNING AND BOOSTING 

APPROACHES 

Ensemble learning approaches—including Random Forest 

(RF), Gradient Boosting (GB), XGBoost, AdaBoost, and 

Bagging—have become dominant in CCS prediction due to 

their robustness, resistance to overfitting, and high accuracy. 

 

Feng et al. (2020) [3] used an AdaBoost model that 

outperformed ANN and SVR, especially for complex, 

nonlinear data. This indicated that boosting algorithms 

efficiently reduce bias and variance for CCS prediction. 

 

Fei et al. (2023) [12] applied RF and XGBoost to predict the 

compressive strength of recycled-powder mortar, showing 

that ensemble models consistently outperform single 

algorithms. Wu et al. (2023) [21] also confirmed that 

ensemble models provide superior generalization on both 

training and testing datasets. 

 

Yang et al. (2024) [10] compared multiple ensemble models 

for predicting green concrete strength and found that extreme 

gradient boosting (XGBoost) demonstrated the highest 

accuracy among all algorithms tested. 

 

Kumolo (2024) [15] performed a systematic comparison of 

ensemble models versus deep neural networks and logistic 

regression, concluding that gradient boosting and RF remain 

the two most reliable standalone predictors for CCS. 

 

The recurring theme across the literature is that ensemble 

learning — particularly gradient boosting variants — 

provides excellent balance between accuracy, robustness, and 

interpretability. 

 

5. DEEP LEARNING AND HYBRID META-

HEURISTIC OPTIMIZATION MODELS 

 

5.1 Deep Neural Networks (DNNs) 

With the rise of high-performing computational tools, deep 

learning has become more prominent in CCS modeling. 

Vamsi & Sri (2024) [9] compared DNNs with classical ML 

models, noting that deep models outperform traditional 

ANNs when large datasets are available. 

Altunçı (2024) [11] applied deep neural networks to a large 

concrete dataset and revealed superior predictive accuracy 

compared to classical ML methods due to their ability to learn 

complex feature interactions. 

 

5.2 Meta-heuristic Optimization Algorithms 

Meta-heuristic algorithms—such as Particle Swarm 

Optimization (PSO), Improved Artificial Bee Colony 

(IABC), Grey Wolf Optimizer (GWO), and Genetic 

Algorithms (GA)—have been extensively used to enhance 

ML model parameters. 
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Shipshewana et al. (2020) [5] used a novel “High-Correlated 

Variables Creator Machine” to optimize model inputs, 

improving prediction stability. 

 

Li et al. (2024) [13] developed an IABC-MLP model and 

demonstrated that hybrid optimization significantly improves 

ANN accuracy and convergence speed. 

 

Shaaban et al. (2025) [14] developed a meta-heuristic-

optimized ML framework for high-strength concrete (HSC), 

showing that optimized models outperform standalone ML 

algorithms in all metrics (R², RMSE, MAE). 

 

Li et al. (2024) [17] combined ML with meta-heuristic 

algorithms for UHPC datasets, confirming that optimization-

based ML is especially advantageous for advanced concretes 

where mix design interactions are complex. 

 

6. INTERPRETABLE AND EXPLAINABLE 

MACHINE LEARNING FOR CONCRETE 

STRENGTH PREDICTION 

With increasing reliance on complex ML and deep learning 

models, interpretability has become crucial for engineering 

acceptance. Engineers must understand not just predictions 

but why models behave as they do. 

 

 
 

Figure 2: Feature Importance for Concrete Compressive 

Strength prediction 

 

6.1 SHAP and Feature Importance Methods 

Sun & Lee (2024) [20] implemented SHAP (SHapley 

Additive exPlanations) to provide a transparent analysis of 

feature impacts. Their results confirmed cement content, 

curing age, water–cement ratio, and SCM proportions as the 

most influential variables. 

 

Latency (2024) [11] applied SHAP, permutation feature 

importance, and partial dependence plots (PDPs) to analyze 

how mix parameters interact to determine strength. Such 

work increases trust and usability of ML models in real-world 

engineering. 

 

6.2InterpretableModellingFrameworks 

Yang et al. (2024) [10] emphasized interpretability for 

environmentally friendly concretes, showing that 

interpretable boosting models provide nearly the same 

accuracy as black-box models but with significantly 

improved transparency. 

 

Cao et al. (2021) [25] used interpretable ML to analyze 

concrete porosity, demonstrating how interpretability 

methods help understand microstructural behavior. 

 

These studies highlight a strong trend toward explainable 

ML, driven by the need for engineering validation, building 

code integration, and risk-aware structural design. 

 

7. SPECIAL APPLICATIONS AND MATERIAL-

SPECIFIC MODELS 

 

7.1 Recycled Aggregate Concrete (RAC) 

Tran et al. (2022) [19] evaluated ML models for RAC, 

showing that recycled components significantly increase data 

variability. Ensemble models outperform others due to their 

robustness against noisy data. 

 

Abduljaleel et al. (2024) [8] and Fei et al. (2023) [12] 

validated ML performance for recycled materials, 

demonstrating comparable accuracy to models developed for 

natural aggregates. 

 

7.2 Supplementary Cementitious Materials (SCMs) and 

Green Concrete 

Yang et al. (2024) [10] evaluated multiple ML models for 

environmentally friendly concretes with high SCM content. 

Their results demonstrated that boosting algorithms adapt 

effectively to nonlinear SCM interactions.  

 

Zhang et al. (2025) [24] predicted CCS in mixes containing 

GGBS using ML models. Their study confirmed that SCM-

rich concretes show distinct prediction patterns compared to 

conventional mixes. 

 

7.3 Ultra-High-Performance Concrete (UHPC) 

Li et al. (2024) [17] developed ML models optimized with 

meta-heuristics for UHPC,  

demonstrating the robustness of ML for advanced concretes 

that are difficult to characterize through empirical formulas. 

 

8. COMPARATIVE EVALUATIONS OF ML 

ALGORITHMS 

Several studies explicitly compare the performance of 

multiple ML models: 

• Wu et al. (2023) [21] found that ensemble models 

(RF, XGBoost) outperform SVR, ANN, and KNN. 

• Altunçı (2024) [11] concluded that deep learning 

and boosting methods achieve the highest accuracy 

on large datasets. 

• Kamolov (2024) [15] confirmed that GB and RF 

remain the most reliable for general CCS prediction 

tasks. 

• Shaaban et al. (2025) [14] demonstrated that hybrid 

meta-heuristic models outperform standard ML on 

complex HSC datasets. 
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• Siddharth & Kambekar (2025) [22] compared ML 

algorithms for field applications and showed that 

simpler models may be preferable for low-resource 

environments. 

A consolidated finding across all comparative studies is: 

  

Boosting models and meta-heuristic-enhanced ANN 

consistently outperform other ML  

methods, followed by RF and DNN models. 

 

 

Comparative Performance of ML Models for CCS Prediction 

 

Algorithm R² 
RMSE 

(MPa) 

MAE 

(MPa) 
Interpretability Remarks 

ANN (Yeh, 

1998) 

0.85–

0.90 
6–8 4–6 Low 

Early models; good for 

small datasets 

SVR (Feng et 

al., 2020) 

0.88–

0.92 
5–6 3–4 Moderate 

Kernel-based SVR 

handles nonlinear data 

well 

Decision Tree 

(Sun & Lee, 

2024) 

0.86–

0.91 
5–7 3–5 High 

High interpretability; 

moderate accuracy 

Random Forest 

(Wu et al., 

2023) 

0.92–

0.95 
3–4 2–3 Moderate 

Robust and 

generalizable across 

datasets 

Gradient 

Boosting (Yang 

et al., 2024) 

0.93–

0.96 
2.5–3.5 2–3 Moderate 

Best balance of accuracy 

and interpretability 

XGBoost (Fei et 

al., 2023) 

0.94–

0.97 
2–3 1.8–2.5 Moderate 

Consistently top 

performer on large 

datasets 

Deep Neural 

Networks 

(Altunçı, 2024) 

0.95–

0.98 
2–3 1.5–2.5 Low 

Excels with large 

datasets; less 

interpretable 

Hybrid Meta-

heuristic 

Models 

(Shaaban et al., 

2025) 

0.96–

0.99 
1.5–2.5 1–2 Low 

Highest accuracy; 

optimized for complex 

mixes 

9. Challenges, Limitations, and Research Gaps 

Despite impressive progress, several challenges remain: 

 

9.1 Dataset Limitations 

Most studies rely on relatively small or region-specific 

datasets. The lack of globally standardized datasets affects 

model generalization. 

 

9.2 Inconsistent Feature Sets 

Different studies use different feature combinations, making 

cross-study comparisons difficult. 

 

9.3 Lack of Unified Modelling Standards 

Model architecture selection, hyperparameter tuning, and 

validation methods vary widely. 

 

9.4 Limited Use of Real-Time or NDT Data 

Only a few studies incorporate ultrasonic or sensor-based data 

(e.g., Czarnecki et al. 2021[7]). 

 

9.5 Few Studies Address Explainability for Field 

Engineers 

Although SHAP is increasingly used, many studies still favor 

black-box models without interpretability. 

 

9.6 Limited Integration with Codes and Standards 

Current building codes do not yet include ML-based 

predictive methods for CCS. 

Addressing these gaps is crucial for ML models to transition 

from research to practical, code-compliant engineering tools. 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010298 Page 4

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



 

10. Future Research Directions 

Based on the reviewed literature, the following future 

research directions are recommended: 

1. Development of global benchmark datasets 

integrating laboratory, field, and NDT 

measurements. 

2. Physics-informed ML integrating concrete 

mechanics with data-driven models. 

3. Reinforcement learning for mix optimization, 

reducing costs and CO₂ emissions. 

4. Deep hybrid models combining convolutional 

networks with tabular ML. 

5. Real-time prediction applications using IoT-

enabled sensors on construction sites. 

6. ML models embedded in structural design 

workflows to assist engineers in rapid mix design 

decisions. 

7. Explainable and certifiable ML frameworks 

aligned with building codes and structural 

engineering standards. 

 

11. CONCLUSION 

Machine learning has revolutionized the prediction of 

concrete compressive strength, offering a transformative 

alternative to traditional empirical and destructive testing 

methods. Over the past three decades, research has progressed 

from early ANN-based models to advanced deep learning and 

hybrid meta-heuristic frameworks, consistently 

demonstrating superior accuracy and adaptability. Ensemble 

algorithms—particularly gradient boosting and XG Boost—

emerge as the most reliable for general applications, while 

deep neural networks excel with large datasets and hybrid 

optimization models deliver unmatched performance for 

complex mix designs such as UHPC and HSC. 

 

Interpretability remains a critical factor for engineering 

adoption, with SHAP, feature importance analysis, and 

interpretable boosting models bridging the gap between 

predictive power and practical usability. Despite these 

advancements, challenges persist in dataset standardization, 

model transparency, and integration with structural codes. 

Addressing these gaps through physics-informed ML, IoT-

enabled real-time prediction, and explainable frameworks 

aligned with regulatory standards will be essential for 

widespread implementation. 

This comprehensive review underscores that machine 

learning is not merely an academic exercise but a practical, 

data-driven solution poised to redefine concrete engineering. 

By enabling accurate, efficient, and sustainable strength 

prediction, ML-based approaches will soon become 

indispensable tools for modern construction practices. 
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