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Abstract - Concrete compressive strength (CCS) is a critical
parameter for structural performance, durability, and safety.
Traditional strength assessment methods rely on destructive
testing, which is time-consuming and cost-intensive. Over the
past three decades, machine learning (ML) has emerged as a
powerful alternative for predicting CCS using mix design
parameters, curing conditions, and environmental factors. This
review synthesizes findings from 25 key studies published
between 1998 and 2025, tracing the evolution of ML-based CCS
prediction from early artificial neural networks (ANNs) to
advanced deep learning and hybrid meta-heuristic models. The
paper examines dataset characteristics, key predictors, and the
performance of classical algorithms (SVR, decision trees),
ensemble methods (Random Forest, Gradient Boosting,
XGBoost), deep neural networks, and optimization-enhanced
frameworks. Interpretability approaches such as SHAP and
feature importance analysis are highlighted as essential for
engineering adoption. Comparative evaluations reveal that
boosting algorithms and meta-heuristic-enhanced ANNs
consistently outperform other models, while deep learning excels
on large datasets. Despite significant progress, challenges
remain in dataset

standardization, model transparency, and integration with
building codes. Future research directions include physics-
informed ML, IoT-enabled real-time prediction, and explainable
frameworks aligned with structural standards. This review
underscores ML’s transformative potential in concrete
engineering, paving the way for sustainable, efficient, and data-
driven construction practices.

1. INTRODUCTION

Concrete compressive strength (CCS) is a fundamental
indicator of the quality, performance, and long-term
durability of concrete structures. Traditionally, strength
determination relies on destructive laboratory testing, which
is time-consuming, cost-intensive, and unsuitable for rapid
decision-making. The rising demand for optimized mix
design, rapid quality control, predictive maintenance, and
sustainability has accelerated interest in machine learning
(ML) methods for predicting CCS from mix parameters,
curing age, and environmental factors.

Since the seminal work of Yeh (1998) [1] introduced artificial
neural networks (ANNSs) for predicting high-performance
concrete strength, ML-based CCS prediction has evolved
dramatically. Recent studies have explored a broad range of
techniques including ensemble learning, support vector
regression (SVR), deep learning, hybrid optimization
algorithms, interpretable ML, and meta-heuristic-enhanced
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prediction models. This review synthesizes research from 25
key papers published between 1998 and 2025, offering a
comprehensive understanding of methodologies, predictors,
performance outcomes, interpretability strategies, dataset
characteristics, and future research directions.

2. DATASETS AND KEY PREDICTORS FOR CCS
MODELING

Datasets play a central role in determining the performance
and generalizability of ML models. Yeh (1998) [1] used one
of the earliest publicly available datasets, containing mix
proportions of high-performance concrete and corresponding
strength values. Subsequent studies have expanded the range
of predictors by including advanced materials, supplementary
cementitious materials (SCMs), recycled aggregates, and
environmental parameters.

Xu et al. (2021) [6] used a large, real-world ready-mix
concrete dataset with multiple features, including cement
type, mineral admixtures, curing conditions, and mix
sequence effects. Studies by Czarnecki et al. (2021) [7]
incorporated non-destructive testing (NDT) parameters,
especially ultrasonic pulse velocity (UPV), as predictive
features for CCS—demonstrating the potential of ML to
integrate multi-modal signals.

Recycled materials gained attention as an environmentally
sustainable alternative. Tran et al. (2022) [19] and Abdul
Jaleel et al. (2024) [8] focused on recycled-aggregate
concrete (RAC), emphasizing variables like water absorption
and old mortar content, which significantly influence
strength. Material-specific models, such as those for ultra-
high-performance concrete (UHPC) by Li et al. (2024) [17],
have expanded the ML domain by requiring input features
unique to advanced concretes like steel fiber content and
micro-silica proportions.

Feature selection and significance analysis have also evolved.
Studies employing SHAP, permutation importance, or
gradient-based sensitivity—such as Sun & Lee (2024) [20]
and Latency (2024) [11]—identified key predictors:

e  Cement content
Curing age
Water-to-cement ratio (w/c)
SCM proportions (fly ash, GGBFS, silica fume)
Aggregate characteristics
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e  Superplasticizer dosage
The development of richer datasets has progressively
improved ML model accuracy while enabling more

generalized and transferable prediction frameworks.

3. CLASSICAL MACHINE LEARNING MODELS
FOR CCS PREDICTION

CLASSICAL ENSEMBLE HYBRID
MACHINE METHODS META-HEURISTIC

LEARNING MODELS
=
e
n

Support Vector Random Forest
Regression Gradient Boosting
1990s 2000s 2010s-Present

Figure 1: Evolution of Machine
Learning Approaches for CCS Prediction

Figure 1 illustrates the evolution of machine learning
approaches for concrete compressive strength prediction
across three major stages: Classical ML (1990s), Ensemble
Methods (2000s), and Hybrid Meta-Heuristic Models
(2010s—Present).

3.1 Early Neural Networks

The pioneering work of Yeh (1998) [1] demonstrated that
ANN models significantly outperform regression models,
capturing nonlinear relationships among mix constituents.
This work laid the foundation for the rapid adoption of ML in
concrete strength estimation.

3.2 Support Vector Regression and Decision Trees

In the 2020s, classical ML models expanded to include
support vector regression (SVR), decision trees (DT), k-
nearest neighbors (KNN), and multivariate adaptive
regression splines (MARS). Feng et al. (2020) [3] and
Gulafshan et al. (2020) [2] implemented SVR and DT-based
models and found that although linear models performed
poorly, kernel-based SVR and tree models achieved strong
performance for nonlinear datasets.

Sun & Lee (2024) [20] demonstrated that decision-tree-based
models provide a useful balance between interpretability and
predictive performance, making them suitable for
engineering applications where model transparency is
essential.

3.3 Hybrid ANFIS and Evolutionary Models

Golafshani et al. (2020) [2] integrated Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) with Grey Wolf Optimizer
(GWO), improving performance over traditional ANN by
optimizing membership functions. This marked the transition
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to hybrid ML models capable of learning complex, nonlinear
interactions based on smaller datasets.

4. ENSEMBLE LEARNING AND BOOSTING
APPROACHES

Ensemble learning approaches—including Random Forest
(RF), Gradient Boosting (GB), XGBoost, AdaBoost, and
Bagging—have become dominant in CCS prediction due to
their robustness, resistance to overfitting, and high accuracy.

Feng et al. (2020) [3] used an AdaBoost model that
outperformed ANN and SVR, especially for complex,
nonlinear data. This indicated that boosting algorithms
efficiently reduce bias and variance for CCS prediction.

Fei et al. (2023) [12] applied RF and XGBoost to predict the
compressive strength of recycled-powder mortar, showing
that ensemble models consistently outperform single
algorithms. Wu et al. (2023) [21] also confirmed that
ensemble models provide superior generalization on both
training and testing datasets.

Yang et al. (2024) [10] compared multiple ensemble models
for predicting green concrete strength and found that extreme
gradient boosting (XGBoost) demonstrated the highest
accuracy among all algorithms tested.

Kumolo (2024) [15] performed a systematic comparison of
ensemble models versus deep neural networks and logistic
regression, concluding that gradient boosting and RF remain
the two most reliable standalone predictors for CCS.

The recurring theme across the literature is that ensemble
learning — particularly gradient boosting variants —
provides excellent balance between accuracy, robustness, and
interpretability.

5. DEEP LEARNING AND HYBRID META-
HEURISTIC OPTIMIZATION MODELS

5.1 Deep Neural Networks (DNNs)

With the rise of high-performing computational tools, deep
learning has become more prominent in CCS modeling.
Vamsi & Sri (2024) [9] compared DNNs with classical ML
models, noting that deep models outperform traditional
ANNSs when large datasets are available.

Altung1 (2024) [11] applied deep neural networks to a large
concrete dataset and revealed superior predictive accuracy
compared to classical ML methods due to their ability to learn
complex feature interactions.

5.2 Meta-heuristic Optimization Algorithms

Meta-heuristic  algorithms—such as Particle Swarm
Optimization (PSO), Improved Artificial Bee Colony
(IABC), Grey Wolf Optimizer (GWO), and Genetic
Algorithms (GA)—have been extensively used to enhance
ML model parameters.
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Shipshewana et al. (2020) [5] used a novel “High-Correlated
Variables Creator Machine” to optimize model inputs,
improving prediction stability.

Li et al. (2024) [13] developed an IABC-MLP model and
demonstrated that hybrid optimization significantly improves
ANN accuracy and convergence speed.

Shaaban et al. (2025) [14] developed a meta-heuristic-
optimized ML framework for high-strength concrete (HSC),
showing that optimized models outperform standalone ML
algorithms in all metrics (R%, RMSE, MAE).

Li et al. (2024) [17] combined ML with meta-heuristic
algorithms for UHPC datasets, confirming that optimization-
based ML is especially advantageous for advanced concretes
where mix design interactions are complex.

6. INTERPRETABLE AND EXPLAINABLE
MACHINE LEARNING FOR CONCRETE
STRENGTH PREDICTION

With increasing reliance on complex ML and deep learning
models, interpretability has become crucial for engineering
acceptance. Engineers must understand not just predictions
but why models behave as they do.

Cement Content
Curing Age

Water-to-Cement Ratio

SCM Proportions
(fly ash, GGBFS, silica fume)

Aggregate Characteristic
Superplasticizizer Dosag

00 05 010 015 020 025 030
Feature Importance

Figure 2: Feature Importance for Concrete Compressive
Strength prediction

6.1 SHAP and Feature Importance Methods

Sun & Lee (2024) [20] implemented SHAP (SHapley
Additive exPlanations) to provide a transparent analysis of
feature impacts. Their results confirmed cement content,
curing age, water—cement ratio, and SCM proportions as the
most influential variables.

Latency (2024) [11] applied SHAP, permutation feature
importance, and partial dependence plots (PDPs) to analyze
how mix parameters interact to determine strength. Such
work increases trust and usability of ML models in real-world
engineering.

6.2InterpretableModellingFrameworks

Yang et al. (2024) [10] emphasized interpretability for
environmentally  friendly  concretes, showing that
interpretable boosting models provide nearly the same
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accuracy as black-box models but with significantly
improved transparency.

Cao et al. (2021) [25] used interpretable ML to analyze
concrete porosity, demonstrating how interpretability
methods help understand microstructural behavior.

These studies highlight a strong trend toward explainable
ML, driven by the need for engineering validation, building
code integration, and risk-aware structural design.

7. SPECIAL APPLICATIONS AND MATERIAL-
SPECIFIC MODELS

7.1 Recycled Aggregate Concrete (RAC)

Tran et al. (2022) [19] evaluated ML models for RAC,
showing that recycled components significantly increase data
variability. Ensemble models outperform others due to their
robustness against noisy data.

Abduljaleel et al. (2024) [8] and Fei et al. (2023) [12]
validated ML performance for recycled materials,
demonstrating comparable accuracy to models developed for
natural aggregates.

7.2 Supplementary Cementitious Materials (SCMs) and
Green Concrete

Yang et al. (2024) [10] evaluated multiple ML models for
environmentally friendly concretes with high SCM content.
Their results demonstrated that boosting algorithms adapt
effectively to nonlinear SCM interactions.

Zhang et al. (2025) [24] predicted CCS in mixes containing
GGBS using ML models. Their study confirmed that SCM-
rich concretes show distinct prediction patterns compared to
conventional mixes.

7.3 Ultra-High-Performance Concrete (UHPC)

Li et al. (2024) [17] developed ML models optimized with
meta-heuristics for UHPC,

demonstrating the robustness of ML for advanced concretes
that are difficult to characterize through empirical formulas.

8. COMPARATIVE EVALUATIONS OF ML
ALGORITHMS

Several studies explicitly compare the performance of
multiple ML models:

e  Wu et al. (2023) [21] found that ensemble models
(RF, XGBoost) outperform SVR, ANN, and KNN.

e Altung1 (2024) [11] concluded that deep learning
and boosting methods achieve the highest accuracy
on large datasets.

e Kamolov (2024) [15] confirmed that GB and RF
remain the most reliable for general CCS prediction
tasks.

e Shaaban et al. (2025) [14] demonstrated that hybrid
meta-heuristic models outperform standard ML on
complex HSC datasets.
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e Siddharth & Kambekar (2025) [22] compared ML
algorithms for field applications and showed that

Boosting models and meta-heuristic-enhanced ANN
consistently outperform other ML
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simpler models may be preferable for low-resource
environments.
A consolidated finding across all comparative studies is:

methods, followed by RF and DNN models.

Comparative Performance of ML Models for CCS Prediction

RMSE MAE
. 2 -
Algorithm R (MPa) (MPa) Interpretability Remarks
ANN (Yeh, 0.85- Early models; good for
1998) 0.90 6-8 4-6 Low small datasets
Kernel-based SVR
SVR (Feng et 0.88— .
al., 2020) 092 5-6 3-4 Moderate handles nonlinear data
well
Decision Tree S e
smete | S| 57| e
2024) : uracy
Random Forest 0.92— Robust and
(Wu et al., O 95 34 2-3 Moderate generalizable across
2023) ’ datasets
Gradient
Boosting (Yang 069936_ 2.5-3.5 2-3 Moderate Be'asltnlzlailszce roel;?l:ﬁ;ltracy
et al., 2024) : P y
. Consistently top
XGBoost (Fei et 0.94—
al., 2023) 097 2-3 1.8-2.5 Moderate performer on large
datasets
Deep Neural 0.95_ Excels with large
Networks O 08 2-3 1.5-2.5 Low datasets; less
(Altungi, 2024) ’ interpretable
Hybrid Meta-
heuristic 0.96— Highest accuracy;
Models . 1.5-2.5 1-2 Low optimized for complex
0.99 .
(Shaaban et al., mixes
2025)

9. Challenges, Limitations, and Research Gaps
Despite impressive progress, several challenges remain:

9.1 Dataset Limitations

Most studies rely on relatively small or region-specific
datasets. The lack of globally standardized datasets affects
model generalization.

9.2 Inconsistent Feature Sets
Different studies use different feature combinations, making
cross-study comparisons difficult.

9.3 Lack of Unified Modelling Standards

Model architecture selection, hyperparameter tuning, and
validation methods vary widely.
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9.4 Limited Use of Real-Time or NDT Data
Only a few studies incorporate ultrasonic or sensor-based data
(e.g., Czarnecki et al. 2021[7]).

9.5 Few Studies Address Explainability for Field
Engineers

Although SHAP is increasingly used, many studies still favor
black-box models without interpretability.

9.6 Limited Integration with Codes and Standards
Current building codes do not yet include ML-based
predictive methods for CCS.

Addressing these gaps is crucial for ML models to transition
from research to practical, code-compliant engineering tools.
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10. Future Research Directions
Based on the reviewed literature, the following future
research directions are recommended:

1. Development of global benchmark datasets

integrating  laboratory, field, and NDT
measurements.
2. Physics-informed ML integrating concrete

mechanics with data-driven models.

3. Reinforcement learning for mix optimization,
reducing costs and CO: emissions.

4. Deep hybrid models combining convolutional
networks with tabular ML.

5. Real-time prediction applications using IoT-
enabled sensors on construction sites.

6. ML models embedded in structural design
workflows to assist engineers in rapid mix design
decisions.

7. Explainable and certifiable ML frameworks

aligned with building codes and structural
engineering standards.
11. CONCLUSION

Machine learning has revolutionized the prediction of
concrete compressive strength, offering a transformative
alternative to traditional empirical and destructive testing
methods. Over the past three decades, research has progressed
from early ANN-based models to advanced deep learning and
hybrid meta-heuristic frameworks, consistently
demonstrating superior accuracy and adaptability. Ensemble
algorithms—particularly gradient boosting and XG Boost—
emerge as the most reliable for general applications, while
deep neural networks excel with large datasets and hybrid
optimization models deliver unmatched performance for
complex mix designs such as UHPC and HSC.

Interpretability remains a critical factor for engineering
adoption, with SHAP, feature importance analysis, and
interpretable boosting models bridging the gap between
predictive power and practical usability. Despite these
advancements, challenges persist in dataset standardization,
model transparency, and integration with structural codes.
Addressing these gaps through physics-informed ML, IoT-
enabled real-time prediction, and explainable frameworks
aligned with regulatory standards will be essential for
widespread implementation.

This comprehensive review underscores that machine
learning is not merely an academic exercise but a practical,
data-driven solution poised to redefine concrete engineering.
By enabling accurate, efficient, and sustainable strength
prediction, ML-based approaches will soon become
indispensable tools for modern construction practices.
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