
Concept of Designing Medical Software using

Design Pattern

Niranjan R Chougala

Research Scholar,

 Visvesvaraya Technological University,

Belagavi, India.

Dr. Shreedhara K.S.

Professor & Chairman DOS in CS & E,

University BDT College of Engineering

 Davanagere, India.

INTRODUCTION
Considering a modern design and development of medical

software systems, a concept of design patterns application is

proposed and developed to enhance various software design

attributes and qualities. Configuration examples are

enhanced, reusable answers for the programming issues that

we experience each day. A plan example is not a class or a

library that we can essentially connect to our framework; it's

a great deal more than that. It is a format that must be

actualized in the right circumstance. It's not dialect particular

either. A decent outline example ought to be coded in most—if

not all—dialects, contingent upon the abilities of the coding

dialect. Configuration examples are, by guideline, well-

thoroughly considered answers for programming issues.

Numerous software engineers have experienced these issues

before, and have utilized these "arrangements" to

comprehend them. In the event that you experience these

issues, why reproduce an answer when you can utilize an

officially demonstrated arrangement? How about we

consider, making effective social insurance programming –

from patient administration frameworks to medicinal gadgets,

to electronic restorative records – varies considerably from

customary programming.

Keywords: Software Design Patterns, Medical Software,

Software resuse.

MEDICAL SOFTWARE SYSTEMS

Medicinal services programming requests select space skill,

extend practice, and programming engineering shapes.

While numerous sellers and specialists would demand that

great programming practices and client focused plan

principals are worldwide crosswise over spaces, we trust

that social insurance tasks are distinctive. Social insurance

area ability, joined with programming best practices, can

essentially enhance venture's odds of progress. Creating

effective medicinal services programming generously

varies from customary venture programming in that it

requests area particular mastery, extend system, and

programming engineering designs. The dangers and

expenses related with conveying to advertise an

exceedingly secure, adaptable arrangement, firmly

coordinated with a scope of clinical clients' work processes,

is high regarding the sum and nature of highlight readiness

and improvement in a venture. Assist, item conveyance is

in no way, shape or form a certification of commercial

center achievement. Consider a general Healthcare

Management systems with related services.

The goals of such Healthcare Systems includes the

following

 Accuracy.

 Reliability.

 Better Patient Data Security.

 Enhancing Patient Safety.

 No Redundancy

 Easy retrieval of Stored Information.

 Improved Patient Services.

 Reduces Paper Work.

 Improving Hospital Inventory Management.

 Optimal Utilization of Resources.

A software development methodology adapted for a

medical software development and its related processes is

shown:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICPCN - 2017 Conference Proceedings

Volume 5, Issue 19

Special Issue - 2017

1

Patient portals with an intuitive user interface and multiple

patient-engagement tools:

 Handy treatment plans

 Modifiable personal health records

 Opinion and evaluation forms

 Electronic appointment management

 E-billing

 E-consultations

Mobile healthcare applications to help patients take even

more control over their health trough:

 Quick access to medical data

 E-consultations with a doctor

 E-prescribing

 Educational materials in audio, video and text forms

 Notices and alerts

 Newsfeeds

 GPS navigation and maps to provide directions to

the nearest clinic

HEALTHCARE SOFTWARE DEVELOPEMENT:

Developer viewpoint of the new healthcare system would

be on:

•Task-situated approach. To convey simple to-utilize

programming, we give careful consideration to each

application's motivation. Having as a main priority the

prerequisites of each specific office, we make redid

answers for help your staff satisfy assignments all the more

productively.

•User-accommodating UI/UX plan. As medicinal services

application engineers, we make explained UX designs. On

account of a far reaching interface and smooth route, your

representatives will play out the required assignments

without experiencing numerous screens, which is depleting

and tedious.

•Integration with numerous inward frameworks. To convey

extra an incentive to your association, we make the

versatile application a door to different arrangements in

your foundation, including EHR, rehearse administration,

booking, income cycle administration and different

frameworks.

•Security confirmation. We comprehend the significance of

information security in human services portable application

improvement. We ensure that lone approved faculty get to

clinical data – inside the extent of their power.

Pattern based healthcare software design practice typically

shown using the following UML.

All things considered, creating programming is extremely

troublesome, and creating programming that can be

effectively reused is considerably harder. the outlines for

areas of programming code ought to be sufficiently general

answers for have the capacity to address future issues and

prerequisites adaptably while as yet being sufficiently

particular with a specific end goal to address the present

issue nearby. Developers that are experienced at planning

programming frameworks know not to outline their

framework utilizing one-off issue arrangements, and rather

reuse designs that they have developed acquainted with

through earlier use in comparable circumstances and

situations and reuse these arrangements as a reason for their

new outlines. The essential thing standard of programming

designing known as the "Rule of sweeping statement"

predicts and energizes this conduct or a certain something,

it is totally intriguing to sit in a meeting room with a

gathering of developers who have been working all

together on a product advancement extend utilizing designs

for a couple of months. The rate of data trade is to a great

degree high, with a thought said by one developer, and a

couple others all the while completing the main software

engineer's sentence with a shouted, harmony word like

"Scaffold!", and after that one of them jotting lines of code

wildly on the whiteboard as the rest gesture in compliment.

The dialect of the programming group utilizing examples is

puzzling and enchanted, practically like mantras talked in

some guileful dark dialect. Numerous software engineering

educators fight with conviction that the instructing of

examples and the learning of them speeds the learner's

reception of the standards of question arranged

programming innovation. It is unquestionable that the

learning of examples enhances the software engineers'

improvement vocabulary.

Programming configuration designs likewise help in

finding proper articles, in deciding the relevant protest

granularity and in outlining a product framework that is

architected from the beginning to better adjust to change.

At the outline level, designs empower huge scale reuse of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICPCN - 2017 Conference Proceedings

Volume 5, Issue 19

Special Issue - 2017

2

programming structures by catching the master information

of example based improvement and dispersing it all

through the advancement group.

It is for the most part recognized that these are the two

most essential advantages: the path in which they frame a

vocabulary for articulating outline choices amid the

ordinary course of advancement discussions among

software engineers. This can likewise become possibly the

most important factor amid the nearby programming work

of alleged "combine programming", among the individuals

who have observed it to be helpful for them.

When you are working with a gathering of software

engineers who are either working in sets or as a feature of a

gathering utilizing design based improvement, you much of

the time hear talk like "I think we require a methodology

here", or, from one developer to whatever is left of the

gathering, "We should actualize this usefulness as an

Observer".

Software engineers' commonality with example based

improvement has additionally turned into a sort of

contracting shorthand. At whatever point a skilled

developer leaves a product improvement group I am

driving, and we have to supplant him or her with anther

software engineer, I utilize the "Do we require a developer

acquainted with configuration designs" address as a line of

division for enlisting and employing choices. The

appropriate response is *not* dependably to enlist a costly

developer personally comfortable with configuration

designs, either.

An example is an issue arrangement match that can be

connected in a comparative mold in new settings; the

example is finished with exhortation on the most proficient

method to apply it in the new setting. Note that the formal

meaning of an example is not steady in the writing.

There are three types of patterns:

1. An architectural pattern occurs across software

subsystems.

2. A design pattern occurs within a subsystem but is

independent of the language.

3. An idiom is a low-level pattern that is programming

language-specific.

Each individual pattern is compromised of four elements:

1. A name. Some of the names of the software design

patterns can be rather whimsical: “flyweight”, and

“singleton”. The whimsy is to serve the purpose of making

the patterns memorable to programmers.

2. A problem description. The problem part of the pattern

describes the problem and its context, as well as specific

design issues such as how to represent algorithms as

objects. The problem statement may also speak about when

it is best to apply this particular pattern and may also

describe class structures that are symptoms of an inflexible

software design.

3. A solution to the problem. The solution part of the

design pattern does not desibe any one particular concrete

design or implementation, but only describes the elements

that make up the design, The solution only provides a

general arrangement of objects and classes which can be

used to solve this type of problem.

4. The consequences of the solution. This part of the design

pattern describes the results and inherent risks and trade-

offs associated with applying this particular design pattern.

It may include the impact of this design pattern on space

and time, programming language and implementation

issues, or include notes on software flexibility, system

extensibility, and portability. These consequences are

critical for evaluating alternative software design patterns.

Be cautious, before using Software design patterns:

All things considered, really, there are a few downsides to

the greater part of this discussion of example based

programming advancement.

One of the primary disadvantages, and a standout amongst

the most imperative thing for specialized venture

administrators and business partners and also senior

supervisors to remember, is that examples don't prompt

direct programming reuse.

Coordinate reuse of areas of programming code is for

programming libraries. Examples don't make or advance

programming libraries of reuable attachment and-play

programming code, but instead prompt reuable outline,

designs and methods which can be changed over by PC

developers into one of a kind program code.

Despite the fact that the cutesy names of programming

configuration examples may persuade that they are

additionally simpe to learn, they are most certainly not. It is

sufficiently simple to ace some of their names, and to

likewise remember their structure outwardly, yet it is not

simple to perceive how they can prompt genuine outline

arrangements. This can take even exceptionally

experienced PC software engineers forever and a day of

practice, training and working background.

Coordinating the utilization of programming examples into

a real, true advancement association's every day

improvement life and normal organization cycle can be an

overwhelming errand. The joining, beside the requests the

previously mentioned instruction and preparing can go up

against an improvement staff bargained of PC developers

new to the product configuration designs depicted above, is

an extremely work escalated action.

A product advancement group's software engineers may

encounter design over-burden, whereby in their unending

journey to utilize design based procedures, they have

turned into a fixation instead of as a compelling and

proficient unfortunate obligation. Aa said above,

programming configuration examples are no silver

projectile, and don't prompt direct code reuse, but instead

give another way to deal with efficiently tackling

programming plan issues that are generally and every now

and again experienced by programming improvement

groups.

CONCLUSION

Softwae deign patterns are the most convinent ways of

designing modern healthcare systems in a time critical

environment along with changing requirement in near

future. The present need for the healthcare software greatly

depend on modern needs and rapid application

development. Pattern approach surely supports these kinds

of requirements and support for the software evolution. It is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICPCN - 2017 Conference Proceedings

Volume 5, Issue 19

Special Issue - 2017

3

highly recommended to adopt pattern based software

design to make software future compactable.

REFERENCES:
[1] K. T. Gribbon, D. G. Bailey, C. T. Johnston, "Using Design

Patterns to Overcome Image Processing Constraints on

FPGAs", Institute of Information Sciences and Technology

Massey University, Private Bag 11 222, Palmerston North,

New Zealand. 2006.

[2] Gribbon, K. T. and Bailey, D. G., “A Novel Approach to

Real-time Bilinear Interpolation,” Second IEEE International

Workshop on Electronic Design, Test and Applications,

Perth, Australia, pp. 126-131, Jan, 2004.

[3] Gribbon, K. T., Johnston, C. T., and Bailey, D. G., “A

Realtime FPGA Implementation of a Lens Distortion

Correction Algorithm with Bilinear Interpolation,” Proc.

Image and Vision Computing New Zealand, Massey

University, Palmerston North, New Zealand, pp. 408-413,

Nov, 2003.

[4] Deepak Alur, John Crupi and Dan Malks, “Core J2EE”

patterns, Second Edition, 2003.

[5] Douglas C. Schmidt, "Using Design Patterns to Develop

Object-Oriented Communication Software Frameworks and

Applications", Washington University, St. Louis.

[6] Tom Fischer, John S, Pete S, Chaur G Wu “Professional

Design Patterns in VB.NET, Building Adaptable

Applications”, Wrox Press, 2002. [7]. Gama, Helm, Johnson,

Vlissides, Design Patterns Elements of Reusable Object-

Oriented Software, Addison Wesley, 1995,B. Cheng –

Michigan State University.

[7] Niranjan R Chougala & Dr. Shreedhara K.S. Professor &

Chairman DOS in CS & E, University BDT College of

Engineering – Davanagere, Karnataka, Application building

concepts in medical image processing using software design

patterns, International Journal of Advanced Trends in

Computer Science and Engineering (IJATCSE)

[8] Advances in Medical Image Processing (A special issue on

the Workshop in Aachen, germany, March 2010) – Thomas,

Til Aach, Katrin, Walter, Torsten and Ingrid

[9] Kullback-Leibler error Criteria To Reduce the Complexity of

NN Applied to traffic sign Recognition – Dr KS Shreedhar,

TY narasimha Reddy – 2nd National Conference on

RCCIT’11

[10] Iconic Fuzzy Sets for MR Image Segmentation – Wido

Menhardt, Philips Research Labs, Hamburg, West Germany

[11] Blackboard – Software Architecture in Practice (2nd

Edition)- Leb Bass, Paul, Rick Kazman, Pearson education.

[12] A pattern Similarity Scheme for Medical Image Retrieval –

Dimitris K Iakovidis, Nikos Pelekis, Evangelos, Ioannis,

Haralampos and Yannis Theodoridis

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICPCN - 2017 Conference Proceedings

Volume 5, Issue 19

Special Issue - 2017

4

