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Abstract 

This paper introduces a method to develop the state transition matrix for n-dimensional linear, 

continuous time-varying systems. The state transition matrix is essential for determining the 

complete solution, stability, controllability and observability of linear time-varying systems.  

Cayley-Hamilton technique for finding the solution of linear-time invariant systems is extended 

to find the state transition matrix of general, n-dimensional continuous time-varying systems.  

The method gives a general procedure to find the state transition matrix for n-dimensional linear 

time-varying systems and is very useful in the study of time-varying systems. 
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1. INTRODUCTION 

Applications of linear time-varying systems include rocket dynamics, time-varying linear 

circuits, satellite systems and pneumatic actuators. Linear time-varying structure is also often 

assumed in adaptive and standard gain scheduled control systems. 

In particular, we are interested in linear time-varying systems of the form 

.

x t A t x t B t u t

y t C t x t D t u t
                (1) 

where  
nx t  is the state vector, 

mu t is the control input and 
py t  is the system 

output. The state transition matrix is the unique solution to  

0
0

( , )
( ) ( , )

t t
A t t t

t  ,        0 0( , ) nt t I                                            (2) 
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where nI  is the identity matrix. The state transition matrix is essential in determining the 

complete solution, stability, controllability and observability of (1). It is also useful in the 

design of controllers and observers. 

 Several formulations exist to find the state transition matrix of continuous time-varying systems 

[1,2,3] but no method is developed to find the state transition matrix for a linear time-varying 

system of nth order. In [1], Peano Baker series method has been used to define the transition 

matrix for time-varying systems but it  says that computation of solutions via the Peano-Baker 

series is a frightening prospect, though calm calculations is profitable in the simplest cases.  

Floquet theorem [4 ]  is also used to find the fundamental matrix of homogeneous linear systems 

with periodic coefficients. In [5], five general classes of methods have been described to 

compute the exponential of a matrix but the systems considered are defined by linear, constant 

coefficient ordinary differential equations.  

In this paper the well known Cayley-Hamilton technique that is used for the systems described 

by the linear, constant coefficient ordinary differential equations has been extended to find the 

state transition matrix for the general linear time-varying systems. It has been shown that this 

methodology is very versatile and works for periodic coefficients also. 

 

2. STATE TRANSITION MATRIX PROPERTIES 

The state transition matrix is an integral component in the study of linear-time-varying systems 

of the form given by (1). It is used for determining the complete solution, stability, controllability 

and observability of the system. It can also be used in the design of controllers and observers for 

equation (1).  In this section we will discuss some of the properties of the state transition matrix. 

The state transition matrix which satisfies 

0
0

( , )
( ) ( , )

t t
A t t t

t                                                                                                                     (3)
 

has the following important properties [6] 

( , ) nt t I                     (4) 

1

0 1 1 0( , ) ( , )t t t t                                   (5) 

2 0 2 1 1 0( , ) ( , ) ( , )t t t t t t                  (6) 

Stability of the homogenous system 

.

x t A t x t                             (7) 

whose solution is given by  

0 0( , )x t t t x                             (8) 
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where  0 0x x t  , can be determined from the state transition matrix, according to well  known 

stability theorem [6]. The necessary and sufficient conditions on 0( , )t t  for stability are 

summarized in [6]. 

It is easy to verify that the solution to the non-homogenous system (1) is given by  

0

0

0 0

0 0

( , ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( )

t

t

t

t

x t t t x t B u d

y t C t t t x C t t B u d D t u t

            (9) 

To guarantee that the system can be driven from one state 0x to another state 1x with an input    

( )u t , it is necessary to show that the system is controllable. The linear time-varying system (1) is 

said to be controllable if any given 0x there exists an input 0 1( )[ , ]u t t t such that 1 0x t .  

Controllability of (1) can be determined from the state transition matrix according to well known 

theorem [1]. 

To guarantee that the system ( )x t can be estimated from the system output ( )y t , it is necessary 

to show that the system is observable. The linear time-varying system (1) is said to be observable 

on 0 1[ , ]t t   if the initial state 0x  is uniquely determined by the output ( )y t  for  0 1[ , ]t t t . 

Observability of (1) can be determined from the state transition matrix according to a well 

known theorem [1]. The controllability and observability Gramians can also be used in the 

design of controllers and observers for (1). 

It is clear that the state transition matrix is important for studying stability, controllability and 

observability of (1). Calculation of the state transition matrix for linear time-invariant system is a 

straight forward task. Unfortunately for linear time-varying systems, it is often difficult if not 

impossible to calculate the state transition matrix.  

 

3. CALCULATION OF STATE TRANSITION MATRIX  

Consider the general linear time –varying system, defined as  

.

1 1 2 1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

cos cos cos cosn n

x t x t

c k t c k t c k t c k t





    





  (10) 

where 1 2 3 1, , ,....., ,n nc c c c c are constants and cos t  is time-varying factor. 

The solution of the time-varying varying system (10) under the zero initial conditions is  
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( ) ( ,0) (0)x t t x   

where ( ,0)t  is the state transition matrix of (10). According to Cayley-Hamilton technique 

( ,0) Bt e where 

0

1 1 2 1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

cos cos cos cos

t

n n

B d

c k c k c k c k





    





 

1 1 2 1 1 1 1

0 0 0 0

0 0 0 0

     

0 0 0 0

sin sin sin sinn nc k t c k t c k t c k t





    





 

Using Cayley-Hamilton technique, we say that  

2 3 4 1

1 2 3 4 5

B n

ne I B B B B B  

and  

2 3 4 1

1 2 3 4 5
i n

i i i i n ie   for 1,2,3i , 4 …….n 

Solving for 1 2 3 4, , , n   

1 1 2 1 1 1 1

0 0 0

0 0 0

det( ) det

0 0 0

sin sin sin sinn n

I B

c k t c k t c k t c k t





    





 

1

1 sin 0n

nc k t  

1 2 3 10, 0, 0, , n  and 1 sinn nc k t  

Solving for 1 2 3 4, , , , , n   

For 1 0
’  1 1 
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2 3 4 1

1 2 3 4 5( ) ( )i n

i i i i n i

i i

d d
e

d d
  

2 3 2

2 3 4 52 3 4 ( 1)i n

i i n ie n  

For 2 0
,
  2 1 1/1!  

2 2
2 3 4 1

1 2 3 4 52 2
( ) ( )i n

i i i i n i

i i

d d
e

d d
  

2 3

3 4 52 6 12 ( 1)( 2)i n

i i n ie n n  

For 3 0
, 3 1/ 2 1/ 2! 

Similarly              

 

 6 7 11/120 1/ 5!,  1/ 720 1/ 6!,  , 1/( 2)!n n  

For 1 sinn nc k t  

1 sin2 3 4 2
1 1 1 1 1

1
1

( 1) 1/1!( sin ) 1/ 2!( sin ) 1/ 3!( sin ) 1/ 4!( sin ) 1/( 2)!( sin )

( sin )

nc k tn
n n n n n

n n
n

c k t c k t c k t c k t n c k t e

c k t



Let 

1

2 3

1 1 1

sin4 2

1 1

( 1) 1/1!( sin ) 1/ 2!( sin ) 1/ 3!( sin )

        1/ 4!( sin ) 1/( 2)!( sin ) n

n n n

c k tn

n n

A c k t c k t c k t

c k t n c k t e  

1

1( sin )
n n

n

A

c k t
 

2 3 4 1

1 2 3 4 5( ,0) n

nt I B B B B B  

4 51/ 6 1/ 3!, 1/ 24 1/ 4!
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1 1 2 1 1 1 1

2 2 2 2 2 2 2 2

1 1 2 1 1 1 1

0 0 0 01 0 0 0

0 0 0 00 1 0 0

1/1!

0 0 0 00 0 1 0

sin sin sin sin0 0 0 1

0 0 0 0

0 0 0 0

1/ 2!

0 0 0 0

sin sin sin s

n n

n n n n n

c k wt c k wt c k wt c k wt

c c k wt c c k wt c c k wt c k





        









    



 2

2 3 3 2 3 3 2 3 3 2 3 3

1 1 2 1 1 1 1

3 4 4 3 4 4 3 4 4 4 4

1 1 2 1 1 1 1

in

0 0 0 0

0 0 0 0

1/ 3!

0 0 0 0

sin sin sin sin

0 0 0 0

0 0 0 0

1/ 4!

0 0 0 0

sin sin sin s

n n n n n

n n n n n

wt

c c k wt c c k wt c c k wt c k wt

c c k wt c c k wt c c k wt c k





    









    



 4in wt



1

1

2 1 1 2 1 1 2 1 1 1 1 1

1 1 2 1 1 1 1

0 0 0 0

0 0 0 0

/( sin )

0 0 0 0

sin sin sin sin

n

n

n n n n n n n n n n n n

n n n n n

A c k t

c c k wt c c k wt c c k wt c k wt





    





1 2 1

1 0 0 0

0 1 0 0

( ,0)

0 0 1 0

( ,0) ( ,0) ( ,0) ( ,0)n n

t

n t n t n t n t





    




 

where 
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2 2 2 3 3 3 4 4

1 1 1 1 1 1 1 1 1

2 1 1
1 2 2 1 1

1 1 1

1

1 1 1
( ,0) sin sin sin sin

2! 3! 4!

( sin )1
              + sin

2! ( sin )

n n n

n n n
n n n n
n n

n

n t c k t c c k t c c k t c c k t

A c c k t
c c k t

n c k t



 
2 2 2 3 3 3 4 4

2 2 1 2 1 2 1 2 1

2 1 1
1 2 2 2 1

2 1 1

1

1 1 1
( ,0) sin sin sin sin

2! 3! 4!

( sin )1
             + sin

2! ( sin )

n n n

n n n
n n n n
n n

n

n t c k t c c k t c c k t c c k t

A c c k t
c c k t

n c k t


 





 
2 2 2 3 3 3 4 4

1 3 1 3 1 3 1 3 1

2 1 1
1 2 2 3 1

3 1 1

1

1 1 1
( ,0) sin sin sin sin

2! 3! 4!

( sin )1
                + sin

2! ( sin )

n n n n

n n n
n n n n
n n

n

n t c k t c c k t c c k t c c k t

A c c k t
c c k t

n c k t


 

2 2 2 3 3 3 4 4 4

1 1 1 1

1 1 1
2 2 2 1

1 1

1

1 1 1
( ,0) 1 sin sin sin sin

2! 3! 4!

( sin )1
            + sin

2! ( sin )

n n n n n

n n n
n n n n
n n

n

n t c k t c k t c k t c k t

A c k t
c k t

n c k t


 

 

1 2 -1Solving for ( ,0), ( ,0), , ( ,0), and ( ,0)n nn t n t n t n t

 
1 sin1

1( ,0) [ 1 ]nc k t

n

c
n t e

c

 1sin2
2 ( ,0) [ 1 ]nc k t

n

c
n t e

c

 1
sin1

-1
Similarly, ( , 0) [ 1 ]n

c k tn

n

n

c
n t e

c

 
1 sin

And  n (t,0) nc k t

n e  

The state transition matrix is given as  
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1 1 1 1sin sin sin sin11 2

1 0 0 0

0 1 0 0

( ,0)
0 0 1 0

( 1) ( 1) ( 1)n n n nc k t c k t c k t c k tn

n n n

t

cc c
e e e e

c c c





    





 

The solution of (10) is  

1 1 1 1sin sin sin sin11 2

1 0 0 0

0 1 0 0

( )
0 0 1 0

( 1) ( 1) ( 1)n n n nc k t c k t c k t c k tn

n n n

x t

cc c
e e e e

c c c





    





   

      

4. EXAMPLES 

Example1: Consider the system (1) with[7] 

2 5

2

6 3
( )

0 3

t t
A t

t
,  0t     and zero initial conditions. 

Thus    ( ,0) Bt e   where  

6
3

30

2
( ) 2

0

t t
t

B A d

t

 

Using the Cayley-Hamilton technique where we assume that 

1 2

Be B  

1 2
i

ie  for 1i  and 2 

Solving for 
1
 and 

2
  

3

1
2t  and 

3

2
t  

Solving for 
1
and 

2
 yields 
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3 32

1 2 t te e  ,  

3 32

2 3

t te e

t
 

Then   

3 3 3

3

3
2 2( )

( ,0) 2

0

t t t

t

t
e e e

t

e

 

 

Example 2: Consider the system equation (1) with[8] 

1 0
( )

0 2
A t

t
,   0t     and non-zero initial conditions. 

Thus 0( , ) Bt t e    

where  

0

0

2 2

0

0
( )

0

t

t

t t
B A d

t t
 

Using the Cayley-Hamilton technique where we assume that 

1 2

Be B  

1 2

i

ie  for 1i  and 2 

1 0t t  and 2 2

2 0t t  

Solving for 1 and 2  yields 

2 2
0 0

0

1

0

( )
1

t t t t
t t e e

e
t t

 ,    

2 2
0 0

2 2 2

0 0

t t t t
e e

t t t t
 

0

2 2
0

0

0
( , )

0

t t

t t

e
t t

e
 

 

5. CONCLUSION 

The paper presents a method to calculate the state transition matrix for linear, continuous time-

varying systems utilizing Cayley -Hamilton theorem.  Periodic systems can also be evaluated by 

this methodology. A powerful technique for studying the important properties of time -varying 

systems viz stability, controllability and observability has been presented. The application of the 

method has been demonstrated through two examples. 
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