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Abstract - We Aim to promote a standard approach for 

estimating sparse signals in noise is Convex optimization with 

sparsity-promoting convex Regularization. In order to promote 

sparsity more strongly than convex regularization, it is also 

standard practice to employ non-convex optimization. In this 

paper, we take a third approach. We utilize a non-convex 

regularization term chosen such that the total cost function 

(consisting of data consistency and regularization terms) is 

convex. Therefore, sparsity is more strongly promoted than in 

the standard convex formulation, but without sacrificing the 

attractive aspects of convex optimization. We use this idea to 

improve the recently developed ‘overlapping group shrinkage’ 

(OGS) algorithm for the de-noising of group-sparse signals. The 

algorithm is applied to the problem of speech enhancement with 

favorable results in terms of both SNR and perceptual quality. 

 

Index Terms—Convex optimization, Sparse optimization, de-

noising, Threshold function, non-convex optimization, speech 

enhancement. 

 

I. INTRODUCTION  

 This paper aims to develop an approach that promotes 

sparsity more strongly than convex formulation. An example 

of such a vector (in 2D) is the spectrogram of a speech 

waveform. The spectrogram of a speech waveform exhibits 

areas and ridges of large magnitude, but not isolated large 

values. The method proposed in this work will be 

demonstrated on the problem of speech filtering. 

 Convex and non-convex optimization are both common 

practice for the estimation of sparse vectors from noisy data. 

Generally, convex approaches are based on sparsity-

promoting convex penalty functions (e.g., the  l1 norm), while 

non-convex approaches are based on non-convex penalty 

functions   

 The algorithm we present is derived according to the 

principle of majorization-minimization (MM) . The proposed 

approach: 

1)  does not underestimate large amplitude components of 

sparse solutions to the extent that convex penalties do,  

2)  is translation invariant (due to groups in the proposed 

method being fully overlapping), 

3)  is computationally efficient ( O(N) per iteration) with 

monotonically decreasing cost function. 

4)  requires no algorithmic parameters (step-size, Lagrange, 

etc.). 

 

 

 

 

A.Related Work 

This paper develops a specific threshold function designed 

so as to have the three properties advocated in unbiasedness 

(of large coefficients), sparsity and continuity. Further, the 

threshold function ϴ and its corresponding penalty function  

φ are parameterized by two parameters: the threshold T and 

the right-sided derivative of ϴ at the threshold,  a measure of 

the threshold function’s sensitivity. 

 

II.  PRELIMINARIES 

A. Notation 

      We will work with finite-length discrete signals which we 

denote in lower case bold. The -point signal is written as  

                   X = [x(0),….,x(N-1)] Ɛ RN 

We use the notation 

                    Xi,K = [x(i),….,x(i+K-1)] Ɛ RK                             

to denote the i-th group of size K. We consistently use K (a 

positive integer) to denote the group size. At the boundaries 

(i.e., for i < 0 and i > N-K). 

 

B. Penalty Functions 

We will make the following assumptions on the penalty 

function, φ : R     R 

1)  φ is continuous on R 

2)  φ  is twice differentiable on R / {0} 

3)  φ (-x) = φ(x) (symmetric) 

4)  φ’(x) > 0 (increasing on R*
+) 

5)  φ’(0+) = 1 (unit slope at zero) 

6)  φ”(x) ≤ 0 (concave on R*
+) 

7)  φ”(0+) ≤ φ”(x) 

8)  φ”(0+)  is finite. 

 

C. Threshold Functions 

      The fact that the soft threshold function reduces large 

values by a constant amount is considered its deficiency. In 

the estimation of sparse signals in AWGN, this behavior 

results in a systematic underestimation (bias) of large 

magnitude signal values. Hence, threshold functions that are 

asymptotically unbiased are often preferred to the soft 

threshold function, and the penalty functions from which they 

are derived promote sparsity more strongly than the l1 norm. 

Threshold functions corresponding to several 

penalty functions. The threshold function corresponding to 

the absolute value penalty function is called the soft threshold 

function. Notice that, except for the soft threshold function, 

the threshold functions approach the identity function 
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asymptotically. The atan threshold function approaches 

identity the fastest. 

 
Fig.. Threshold functions derived from the four penalty functions given in 

Section II-B; three of which are non-convex. 

 

III. OGS WITH  NON-CONVEX REGULARIZATION 

For de-noising group-sparse signals in AWGN, we propose 

to minimize the cost function,  

 

 

where  is a (non-convex) sparsity promoting penalty 

function satisfying the assumptions in Section II-B, and . 

The notation , denotes a -point group starting at index . 

The group size, (a positive integer), should be selected based 

roughly on the size of the groups (clusters) arising in the data. 

This constitutes one’s ‘prior knowledge’ regarding the data to 

be denoised and may need to be set through some trial-and-

error. We note that does not impose any strict constraint on 

the size of groups, not does it define the boundaries of 

groups. The current work addresses the case where and is a 

non-convex regularizer, so as to promote group sparsity more 

strongly in comparison to convex regularization. 

 

A. Overlapping Group Thresholding[OGS] 

        Using the results above, we can find a condition on a to 

ensure F  is strictly convex. The result permits the use of non-

convex regularization to strongly promote group sparsity 

while preserving strict convexity of the total cost function. A 

small a, in turn, limits the non-convexity of the regularizer. 

Hence, it appears the benefit of the proposed non-convex 

regularization method is diminished for large K. However, 

two considerations offset this reasoning. First, for larger K, a 

smaller value of is needed so as to achieve a fixed level of 

noise suppression. Secondly, for larger K, there is greater 

overlap between adjacent groups because the groups are 

fully-overlapping; so, regularization may be more sensitive to 

a. 

 

 

 

 

B. Minimization Algorithm 

          To derive an algorithm minimizing the strictly convex 

function, we use the majorization-minimization (MM) 

procedure. The MM procedure replaces a single minimization 

problem by a sequence of (simpler) ones. Specifically, MM is 

based on the iteration 

 

 
Fig.. Majorization of non-convex φ (x) by q(x,v) . 

 

To specify a majorizer of the cost function  F, we first specify 

a majorizer of the penalty function φ, . To simplify notation, 

we suppress the dependence of φ on a. 

 

 
 

The OGS algorithm proceeds by iteratively reducing x(i), i Ɛ 

S, toward their optimal values (including zero). The 

attenuation is multiplicative, so the the value never equals 

zero, even though it may converge to zero. But if a value 

reaches ‘machine epsilon’ then a divide-by-zero error may 

subsequently occur in the implementation. Hence, to avoid 

possible divide-by-zero errors due to finite precision 

arithmetic, the OGS algorithm updates S at the end of the 

loop. The small number Ɛ, may be set to ‘machine epsilon’, 

which for single precision floating point is about 10-6. 

 

IV. EXPERIMENTAL RESULTS 

A. Example 1: One-Dimensional Signal Denoising 

 This example compares the proposed non-convex 

regularized 

 OGS algorithm with the earlier (convex regularized) 

version of OGS and with scalar thresholding. The SNRs are 

summarized in below Table. 

 The noisy signl was obtained by adding white Gaussian 

noise (AWGN) with SNR of 10 dB. 
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For each of soft and hard thresholding, we used the threshold, 

T, that maximizes the SNR. The SNR values are summarized 

in the top row of above Table. 

 We selected T and λ for each method, so as to reduce the 

noise standard deviation, σ, down to 0.01σ. The resulting 

SNRs, given in the second row of Table, are much lower. 

(This method does not maximize SNR, but it does ensure 

residual noise is reduced to the specified level.) The low SNR 

in these cases is due to the attenuation (bias) of large 

magnitude values. However, it can be observed that OGS, 

especially with non-convex regularization, significantly 

outperforms scalar thresholding. 

 
 

Example 1: Group-sparse signal denoising.  (a) Signal; 

(b) Signal+noise(SNR=10dB) (c) OGS[abs](SNR=12.30db); (d) OGS[atan] 

 

B. Example 2: Speech Denoising 

This example evaluates the use of the proposed OGS 

algorithm for the problem of speech enhancement 

(denoising). We compare the OGS algorithm with several 

other algorithms. For the evaluation, we use female and male 

speakers, multiple sentences, two noise levels, and two 

sampling rates. Throughout this example, we use the non-

convex arctangent penalty function with a set to its maximum 

value of a = (1/K1K2λ). In all cases, we use a fixed number 

of 25 iterations within the OGS algorithm. 

 

 
Fig.. Spectrograms before and after denoising (male speaker). (a) Noisy 

signal. (b) OGS[atan] with group size(K=(8,2)).Gray scale represents 
decibels. 

 

Regularization Parameter:  

 We have found empirically, that setting to maximize 

SNR yields speech with noticeable undesirable perceptual 

artifacts (‘musical noise’). This known phenomenon is due to 

residual noise in the STFT domain. Therefore, we instead set 

the regularization parameter, using the noise suppression 

approach described . In particular, we set so as to reduce the 

noise standard deviation σ. We have selected this value so as 

to optimize the perceptual quality of the denoised speech 

according to informal listening tests. In particular, this value 

is effective at suppressing the ‘musical noise’ artifact. We 

also note that this approach leads to greater regularization 

(higher ) than SNR-optimization. 

Group Size: The perceptual quality of speech denoised using 

OGS depends on the specified group size. As we apply OGS 

to a time-frequency spectrogram, the size of the group with 

respect to both the temporal and spectral dimensions must be 

specified. We let K1 and K2 denote the number of spectral 

and temporal samples, respectively. 
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Fig.. Denoised spectrograms; female speaker. (a) Noisy spectrogram with 

SNR=10dB. (b, c) Areas A and B, denoised with group size (8, 2). (d, e) 

Areas A and B, denoised with group size (2, 4). 

 

Table V 

 
AVERAGE SNR FOR SIX SPEECH ENHANCEMENT 

ALGORITHMS. (a)fz=16 kHz (average of 30 samples); (b) 

fz=8 kHz (average of 15 samples) 

Algorithm Comparisons: In Table V we compare the 

OGS[atan] algorithm with several other speech enhancement 

algorithms. The table summarizes the output SNR for two 

sampling rates, male and female speakers, and two input SNR 

(noise) levels. Each SNR value is averaged over 30 or 15 

sentences, depending on the sampling rate. It can be observed 

that the proposed algorithm, OGS[atan], achieves the highest 

SNR in each case. (We also note that in all cases, OGS is 

used not with SNR-optimized , but with the larger , set 

according to the noise suppression method. The SNR of OGS 

could be further increased, but at the cost of perceptual 

quality. 

 

 
 
Fig.. Example 1. Comparison of OGS[abs] and OGS[atan] (a)Output versus 

input; (b) sorted error. 

 

The proposed algorithm, OGS[atan], achieves the 

highest SNR for both noise levels and genders. For example, 

for the male speaker with an input SNR of 10 dB, OGS[atan] 

attains the highest output SNR of 16.58 dB. BT achieves the 

second highest, 15.61 dB. In terms of perceptual quality, SS 

and LMA have clearly audible artifacts; BT and PS have 

slight audible artifacts; OGS[atan], OGS[abs] and SUB have 

the least audible artifacts. However,SUB has a high 

computational complexity due to eigenvalue factorization. 

Compared to OGS[abs] and SUB, OGS[atan] better preserves 

the perceptual quality of high frequencies. Similar results can 

be observed for different noise levels and the female speaker. 

 

       Empirical Wiener post-processing (EWP) improves the 

SNR for all methods at all noise levels, but least for 

OGS[atan]. EWP is effective for increasing SNR because it 

effectively rescales large-amplitude STFT coefficients that 

are unnecessarily attenuated by these algorithms (the results 

of which are biased toward zero). The fact that EWP yields 

the least improvement for OGS[atan] demonstrates that this 

algorithm inherently induces less bias than the other 

algorithms. 
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Fig.. Frequency spectrum of denoised spectrograms at t=0.79 seconds.(a) 

OGS[abs]. (b) OGS[atan]. The group size is K=8,2  in both cases. The noise-

free spectrum is in gray. 

 

V. REMARKS 

 Several aspects of the non-convex regularized OGS 

algorithm are sufficiently similar to those of the convex 

regularized OGS algorithm. In particular, remarks  regarding 

the convergence behavior, implementation issues, 

computational complexity, and relationship of OGS, apply 

also to the version of OGS presented here. The proximal 

framework has proven effective for convex optimization 

problems arising in sparse signal estimation and 

reconstruction. The proposed non-convex regularized OGS 

algorithm resembles a proximity operator; however, a 

proximity operator is defined in terms of a convex penalty 

function. Hence, the proposed approach appears to fall 

outside the proximal framework. 

 The proximal framework has proven effective for convex 

optimization problems arising in sparse signal estimation and 

reconstruction The proposed non-convex regularized OGS 

algorithm resembles a proximity operator; however, a 

proximity operator is defined in terms of a convex penalty 

function .Hence, the proposed approach appears to fall 

outside the proximal framework. Due to the effectiveness of 

the proximal framework for solving inverse problems much 

more general than denoising (e.g. deconvolution), it will be of 

interest in future work to explore the extent to which the 

proposed method can be used for more general inverse 

problems by using proximal-like techniques. 

 
Fig.. SNR comparison of speech enhancement algorithms (30 male 

sentences, input SNR of 10 dB). Each algorithm is used without EWP (a) and 
with EWP (b). The sentences are ordered according the SNR of OGS[atan]. 

 

VI. CONCLUSION 

 This paper formulates group-sparse signal denoising as a 

convex optimization problem with a non-convex 

regularization term. The regularizer is based on overlapping 

groups so as to promote group-sparsity. The regularizer, 

being concave on the positive real line, promotes sparsity 

more strongly than any convex regularizer can. For several 

non-convex penalty functions, parameterized by a variable, , 

it has been shown how to constrain a to ensure the 

optimization problem is strictly convex. We also develop a 

fast iterative algorithm for the proposed approach. Numerical 

experiments demonstrate the effectiveness of the proposed 

method for speech enhancement. 
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