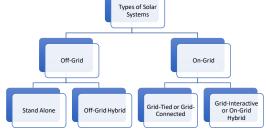
Component Selection Criteria & Sizing of Solar PV System

Japen Gor GORenewable Technology Ahmedabad, India


Abstract—The paper focuses on explanation of Solar PV System Designing, Component sizing and selection based on the practical experience as a consultant in Solar PV industry. Designing of On-Grid-Grid-Tied Solar PV System is taken into consideration for complete system designing.

Keywords— Solar Photovoltaic Systems, On-grid Solar System, Grid-Tied Solar PV Systems, System Designing, Component Sizing, Component Selection.

I. INTRODUCTION

Use of solar photovoltaic systems is increasing day-by-day. It is one of the best portable renewable energy solutions in modern times. Due to lack of understating of functioning and critical design parameters installers often end up installing incorrect size of components together. The paper focuses on delivering the details understanding component selection including and not limited to solar PV Modules, inverters, cables and safety switches. The method explained in the paper is completely based on the practical experience of an author.

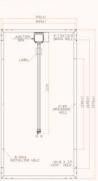
III. SIZING OF GRID-TIED OR GRID-CONNECTED (ON-GRID) SOLAR PV SYSTEMS

- Components to be sized/calculated
 - 1. Solar Modules/Panels
 - 2. Inverter (Selection)
 - 3. DCDB (DC Fuse, DC MCB, DC SPD)
 - 4. ACDB (AC Fuse, AC MCB, AC SPD)
 - 5. DC Cable
 - 6. AC Cable
- A. Steps of System Sizing
 - Step 1: Module Calculations
 - Step 2: Inverter Selection
 - Step 3: Strings and Arrays of Modules
 - Step 4: Calculations of Balance of System (BOS)
 - Step 5: Simple Single Line Diagram (SLD)

B. Practice Question 1: System sizing for 4 kWp (DC) Step 1: Module Calculations

There are many solar module manufacturers.

It is important to select appropriate module manufacturer/supplier.


Ever module manufacturer makes different ratings of modules. i.e., 250Wp, 300Wp, 320Wp, 325Wp, 335Wp etc...

It is important to receive updated datasheet from manufacturer/supplier and keep it handy while doing the system sizing.

Technical Data

w.adanisolar.com

Electrical data - All data measured to STC *

Peak power, (0 -+ 4.99 Wp) Pmax(Wp)	300	305	310	315	320	325	330
Maximum voltage, Vmpp (V)	34.92	35.26	35.61	36.01	36.41	36.81	37.21
Maximum current, Impp (A)	8.59	8.65	8.71	8.75	8.79	8.83	8.87
Open circuit voltage, Voc (V)	44.83	44.94	44.98	45.1	45.5	45.69	45.87
Short circuit current, Isc (A)	8.90	9.00	9.14	9.25	9.3	9.4	9.42
Module efficiency (%)	15.30	15.56	15.81	16.07	16.32	16.58	16.84
*STC: Imadiance 1000 Wi/m ^a , cell ter efficiency reduction of 4.5 % at 200					to EN 60	904-3. Au	erage
Electrical parame	ters a	t NO					
Electrical parame	ters a 217.9	223.1		232.0	238.4	242.5	246.8

adanı

whith Burroci	34.39	34.04	34.47	24,47	.34.02	24.24	34.01
Impp @ NOCT	6.3	6.44	6.6	6.76	6.88	7.02	.7.13
Voe @ NOCT	41.8	42.1	42.3	42.5	42.7	42.9	43.1
Isc @ NOCT	6.9	7.02	7.17	7.3	7.43	7.57	7.8
Temperature of operating con		nts (TC) ar	nd pe	rmiss	ible	
TC of open circuit volta	ge (ß)				-0.31%	/°C	
TO of the state of the state							

TC of short circuit current (a)	0.069 % /°C
TC of power (¥)	-0.42 % /°C
Maximum system voltage	1000 V (IEC & UL)
NOCT	45°C ± 2°C
Temperature range	-40°C to + 85°C
	TC of power (Y) Maximum system voltage NOCT

(Source: https://www.adanisolar.com/Downloads)

B-REA DISTALLING HOLE		TC of open circuit voltage (B)	-0.31% /°C
INSTALLING HOLE	16-8 X 35 VD0 +015-	TC of short circuit current (a)	0.069 % /*C
1		TC of power (Y)	-0.42 % /C
2		Maximum system voltage	1000 V (IEC & UL)
INCK VE	EV.	NOCT	45°C ± 2°C
		Temperature range	-40°C to + 85°C
		Mechanical data	
		Length	1976 mm
Packing inform	hation	Width	992 mm
Container	40HC	Height	35 mm / 40 mm
Pallets / Container	22	Weight	22 Kg (35 mm) / 27 Kg (4Dmm)
Pieces / Container	660	Junction box	IP67
		Cable and connectors	1200 mm length cable, MC4 8 Amphenol compatible connectors
	certifications	Application class	Class A (Safety class II)
Product warranty**		Application class Superstrate	Class A (Safety class II) High transmittance ARC glass
Product warranty** 25 years linear power war Performance guarantee*	manty.		
Product warranty** 25 years linear power war Performance guarantee* Power Degradation < - 2.1	rranty 5 % in first year	Superstrate	High transmittance ARC glass 72 multi-crystalline solar cells; 4 bus bars, 156.75 x 156.75 mm
Product warranty** 25 years linear power war Performance guarantee** Power Degradation < - 2.9 < - 0.68 %/ year in 2-25 y	rranty 5 % in first year reacs	Superstrate Cetts	High transmittance ARC glass 72 multi-crystalline solar cells; 4 bus bars, 156.75 x 156.75 mm
Product warranty** 25 years linear power war Performance guarantee** Power Degradation < - 2.3 (- 0.68 % / year in 2-25 y Approvals and certificate 61750, IEC 61767, UL 170.	rranty 5 % in first year reacs	Superstrate Cetts Cett encapsulation	High tranumittance ARC glass 72 multi-crystalline solar cells; 4 bus bars, 156.75 x 156.75 mm Superior dielectric strength 8 PID resistant EVA Tri layer backsheet
Product warranty** 25 years linear power war Performance guarantee** Power Degradation < - 2.3 (- 0.68 % / year in 2-25 y Approvals and certificate 61750, IEC 61767, UL 170.	rranty 5 % in first year rears ss: IEC 61215 Ed2, IEC	Superstrate Cells Cell encepsulation Substrate	High transmittance ARC glass 72 multi-crystalline solar cells; 4 bus bars, 156.75 x 156.75 mm Superior dielectric strength 8 PID resistant EVA
Warranty and o Product warranty" 25 years linear power war Performance guarantee" Power Degradation (~ 2.3 (~ 0.68 %/year in 2.25 y Approvals and certificate 61750, IEC 61701, UL 170 IEC 62716	rranty 5 % in first year rears ss: IEC 61215 Ed2, IEC	Superstrate Cells Cell encapsulation Substrate Frame Mechanical load test as per IEC & UL	High transmittance ARC glass 72 multi-systalline solar cells; 4 bus bars, 156:73 x 156-75 mm Superior dielectric strength 8 PID resistant EVA Tri layer backsheet Anodized aluminum frame with texin wall profile 5400 Pe-front; 2400 Pe-back
Product warranty** 25 years linear power war Performance guarantee** Power Degradation (- 2) C - 0.6B % / year in 2-25 y Approvals and certificate 61750, IEC 61701, UL 170: IEC 62716	rranty 5 % in first year rears ss: IEC 61215 Ed2, IEC	Superstrate Cells Cell encapsulation Substrate Frame Mechanical land text as per IEC 8 UL Maximum series frue recing Superstrations included in the set - The electrications included in the set	High transmittance APC glass 22 munit organization service that the batt, 156 JF a 156 JF am Supporter directicit strangelli & PC resistant EVA Thi layer backhett Anoltzer al unimitation frame with their wall polifie 5400 P p-franct ; 2400 Pp-back 15 A attailent are subject to change without notice.

(Source: https://www.adanisolar.com/Downloads)

Out of above options let us assume we select 325Wp modules as modules to be used for our project.

						90	sb	
echnical Data							_	
ensions in mm	Electrical data -	All da	ta me	asure	ed to	STC		
	Peak power, (0 -+ 4.99 Wp) Pmax(Wp)	300	305	310	315	320	325	330
99241	Maximum voltage, Vmpp (V)	34.92	35.26	35.61	36.01	36.41	36.81	7.21
94.941	Maximum current, Impp (A)	8.59	8.65	8.71	8.75	8.79	8.83	8.87
	Open circuit voltage. Voc (V)	44.83	44.94	44.98	45.1	45.5	45.69	45.87
4-7.587.5/2 BOX F0.1	Short circuit current, Isc (A)	8,90	9.00	9.14	9.25	9.3	9.4	9.42
H.	Module efficiency (%)	15.30	15.56	15.81	16.07	16.32	16.58	16.84
8	Electrical parame	ters a	223.1	CT 227.5	232.0	238.4	242.5	246.8
0021					232.0	238.4 34.65	242.5	246.8
1200 0.61 1601 1641	Pmax @ NOCT	217.9	223.1	227.5				
1200 444 000 100 11 11 11 10 10 10 10 10 10 10 1	Pmax @ NOCT Vinpp @ NOCT	217.9 34.59	223.1 34.64	227.5 34.47	34.47	34.65	34.54	34.61
1290 200 200 200 200 200 200 200 200 200	Pmax @ NOCT Vinpp @ NOCT Impp @ NOCT	217.9 34.59 6.3	223.1 34.64 6.44	227.5 34.47 6.6	34.47 6.76	34.65 6.88	34.54 7.02	34.61 7.13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pmax @ NOCT Vmpp @ NOCT Impp @ NOCT Vee @ NOCT ise @ NOCT "NOCT instance 800 Win2, amb Temperature co-co	217.9 34.59 6.3 41.8 6.9 ent tamper	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 m/sec	34.65 6.88 42.7 7.43	34.54 7.02 42.9 7.57	34.61 7.13 43.1
erourouro Houe	Pmax @ NOCT Vmpp @ NOCT Impp @ NOCT Voe @ NOCT Isc @ NOCT WOCT irradiance 800 Win2, amb	217.9 34.59 6.3 41.8 6.9 ent tamper	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 m/sec	34.65 6.88 42.7 7.43	34.54 7.02 42.9 7.57	34.61 7.13 43.1
	Pmax @ NOCT Vmpp @ NOCT Impp @ NOCT Vee @ NOCT ise @ NOCT "NOCT instance 800 Win2, amb Temperature co-co	217.9 34.59 6.3 41.8 6.9 ent tamper efficie ONS	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 m/sec	34.65 6.88 42.7 7.43	34.54 7.02 42.9 7.57	34.61 7.13 43.1
00000000 1000 000	Pmax @ NOCT Vinpp @ NOCT Impp @ NOCT Vice @ NOCT NoCT Vice @ NOCT NOCT Vice and Not Not A set NoCT Vice and Not Not A set NoCT Vice and Not Not A set Not Not Not Not Not Not Not Not Not Not	217.9 34.59 6.3 41.8 6.9 ent tamper efficie	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 m/sec	34.65 6.88 42.7 7.43 miss	34.54 7.02 42.9 7.57 ible //c	34.61 7.13 43.1
	Pmax @ NOCT Vmpp @ NOCT Impp @ NOCT Vee @ NOCT Iso @ NOCT Iso @ NOCT Vec Wratenee 800 Wind, anth Temperature co-ce operating conditi TC of open circuit voltage (#)	217.9 34.59 6.3 41.8 6.9 ent tamper efficie	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 m/sec	34.65 6.88 42.7 7.43	34.54 7.02 42.9 7.57 ible //c	34.61 7.13 43.1
0 0 176.156 HOLE VIST 0.25	Pmax @ NOCT Vmpp @ NOCT Impp @ NOCT Vme @ NOCT Isc @ NOCT MOCT reastance BOD Win2, ambi Temperature core operating conditi TC of short circuit vottage (F) TC of short circuit current (F)	217.9 34.59 6.3 41.8 6.9 ent tamper ons	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 n/sec	34.65 6.88 42.7 7.43 miss	34.54 7.02 42.9 7.57 ible //c //c	34.61 7.13 43.1
	Pmax @ NOCT Vmpg @ NOCT impg @ NOCT Vie @ NOCT To dopan creative addo Win2, web To of shart create same whole (%) To of shart create surved (a	217.9 34.59 6.3 41.8 6.9 ent tamper ons	223.1 34.64 6.44 42.1 7.02 ature 20°C	227.5 34.47 6.6 42.3 7.17 wind spe	34.47 6.76 42.5 7.3 ed 1 n/sec	34.65 6.88 42.7 7.43 	34.54 7.02 42.9 7.57 ible //c //c //c c & UL)	34.61 7.13 43.1

So Now, Parameters of selected modules are as follows

- Wp = 325Wp
- Voc = 45.69V
- Vm = 36.81V
- Isc = 9.40A
- Im = 8.83A

Temperature has vital effect on performance of PV modules. Output and life of PV modules have direct connection with the surrounding temperature, however for sizing of system we are not going to consider the effect of temperature in such method of sizing.

Effect of Temperature

Temperature has vital effect on performance of PV modules. Output and life of PV modules have direct connection with the surrounding temperature.

All Solar Modules are tested at 25 Deg. C.

With increase in temperature, Voltage of Module decreases and current increases. However, % decrease of V is higher than % increase of I hence overall power output decreases. Eg.

For selected 325 Wp panel, performance of module at 45 Deg. C is expected as follows.

Temperature co-efficients (TC) and permissible operating conditions

TC of open circuit voltage (β)	-0.31% /°C
TC of short circuit current (α)	0.069 % /°C
TC of power (Y)	-0.42 % /°C
Maximum system voltage	1000 V (IEC & UL)
NOCT	45°C ± 2°C
Temperature range	-40°C to + 85°C

Rise in surrounding temperature is 45 - 25 Deg. C. = 20 Deg. C

Deduction in Voltage would be = $0.31\% \times 20$ Deg. C. = 6.2%

Rated Voc (@25 Deg. C.) = 45.87V

Hence Voc @45 Deg. C = 45.87 - (45.87 x 0.062) = ~43.03V

Rise in surrounding temperature is 45 - 25 Deg. C. = 20 Deg. C

Rise in Current would be = $0.069\% \times 20$ Deg. C. =

1.38%

Rated Isc (@25 Deg. C.) = 9.40A

Hence Isc @45 Deg. C. = $9.40 + (9.40 \times 0.0138) =$

~9.53A

Please remember Pm = Im x Vm and same calculation are to be done for Vm and Im instead Voc and Isc to determine the loss in power due to rise in temperature.

For the purpose of sizing of the system we are not going to consider above calculations in this method of sizing of system.

Now,

Total No. of Solar Modules required = System Size (DC)/Wp of Chosen Modules

= System Size (DC)/Wp of Chosen Modules

= 4000Wp (DC)/325Wp

= ~12.31 Nos.

Here

If we select 12nos of 325Wp modules total system size would be = 325Wp x 12 = 3900Wp = 3.9kWp And

If We select 13nos of 325Wp modules total system size would be = $325Wp \times 13 = 4225Wp = 4.225kWp$

In practical scenario the selection of number of modules depends on various factors like

- 1. State policy
- 2. Space available
- 3. Energy required
- 4. Budget
- 5. Designer's ideology

Here for sake of calculations we select 13nos of 325Wp panels and hence our updated system size would be $\underline{13nos x}$ 325Wp = 4.225kWp

377

Step 2: Inverter Selection

Grid - Tie So Technical																														3,	En	S	Pyt	LIN
			Sin	gle	Ph	asi	2																Т	hre	e P	ha	se							
Model (KSY)		1.2 KW	1.5 108	2	2.2 KW	3 KW	3.2 KW	3.3 KW	4	4.2 KW	S KW	5.2 KW	S.3 KW	6 KW	6.2 KW	s nw	6 KW	7 101	8 KW		10 KW	12 KW	15 KW	18 KW	20 KW	25 KW	30 KW	33 KW	35 ICW	40 KW	50 KCW	60 KW	70 KIW	80 KW
input (DC)				1			_	_		_			-		-			_		-		-	_	_		_	_		_		-		-	
Nominal Input Power (KW)	1	1.2	1.5	2	2.2	3	3.2	3.3	4	4.2	5	5.2	5.3	6	6.2	5	6	7	8	9	10	12	15	18	20	25	30	33	35	40	50	60	70	80
Max Peak DC Input Power (KW)	1.2	1.4	1.8	2.4	2.6	3.6	3.8	4	4.8	5	6	6.2	6.4	6.5	6.6	6	7	8	9	10	12	13.5	17.5	20	22	27.5	33	36	38.5	44	55	66	77	88
Max. DC 1/P (V dc)							5	00V 0	ю															10	00V	ю								
Max, MPPT I/P Current(A)				1	AG							104								2	AD										28.5			
MPPT Short Circuit Current(A)				;	ISA .							154								26	Ampi									37	7 Amp	ps		
MPPT Tracking Voltage(Vdc)	70	-500	1						10	0-500	V													20	0-85	N								
Min. Start Voltage(V)		80V								120V											25	iovoi	/ 15	NDC	low)	å 10	00 V0	C(H)	(h)					
Number of MPPT Tracker					1							2											2								3		4	
strings per MPPT Trackers								1											1											1			3	/4

(Souce: https://ksolare.com/product-4/)

For On-Grid Systems, generally the DC capacity and AC capacity (of inverter) are very much similar.

Hence here we shall look for inverter which can take min. 4.225kWp (DC) input.

Looking at datasheet, 4.0kW inverter (Model: KSY 4kW) has <u>**"Max Peak DC Input Power"**</u> of 4.8kWp and hence that inverter serves the purpose.

Here we select KSY 4kW inverter for our calculations and make note of important parameters next. Note: every single detail mentioned on datasheet are important however for the purpose of calculations and demonstration we shall focus on few as follows.

- Nominal Input Power: 4kW
- Nominal AC output power: 4kW
- Max Peak DC Input Power: 4.8kW
- Max Peak Output Power: 4.4kW
- MPPT Tracking Voltage: 100-500V
- Max output current AC: 19.1A
- Min. Start Voltage: 120V
- No. of MPPT Trackers: 2
- Strings per MPPT Trackers: 1
- Max MPPT I/P Current: 10A
- MPPT Short Circuit Current: 15A

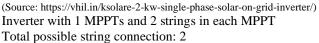
One of the most important point in datasheet is to identify the maximum DC input that can be connected to Inverter, and this detail can be decided based on

No. of MPPT Trackers and Strings per MPPT Tracker

No. of Total Inputs (Total Strings) Available

= No. of MPPT Tracker x Strings per MPPT Tracker

in our case


No. of Total Inputs (Total Strings) Available $= 2 \times 1 = 2$.

(Source: https://ksolare.com/)

Inverter with 2 MPPTs and 1 string in each MPPT, Total possible string connection: 2

(Source: https://www.indiamart.com/proddetail/ksolar-15kw-3-phasesolar-grid-tie-inverter-22785960633.html) Inverter with 2 MPPTs and 1 string in each MPPT Total possible string connection: 2

(Source:https://www.deyeinverter.com/product/three-phase-stringinverter/sun30-33-35-40-50kg03.html) Inverter with 4 MPPTs and 4 string in each MPPT Total possible string connection: 16

Step 3: Strings & Arrays of Modules

For On-Grid Systems we try to keep voltage of DC and AC as high as possible (with in inverter and grid permissible limits).

Hence here we shall try to make as many series connection as possible among the modules since in series connections voltage adds up.

Remember:

Series connection of any electrical component is known as STRING

&

Parallel connection of any electrical component is known as ARRAY

- Max. No. of Modules in a Series
- = Max. MPPT (I/P DC) Voltage of Inverter/Voc of Module = 500/45.69
- = 10.94
- =~ 10 (Always Round Down)

Electrical data - All data measured to STC *

Peak power, (0 ~+ 4.99 Wp) Pmax(Wp)	300	305	310	315	320	325	330
Maximum voltage, Vmpp (V)	34.92	35.26	35.61	36.01	36.41	36.81	37.21
Maximum current, Impp (A)	8.59	8.65	8.71	8.75	8.79	8.83	8.87
Open circuit voltage, Voc (V)	44.83	44.94	44.98	45.1	45.5 (45.69	45.87
Short circuit current, Isc (A)	8.90	9.00	9.14	9.25	9.3	9.4	9.42
Module efficiency (%)	15.30	15.56	15.81	16.07	16.32	16.58	16.84

*STC: Irradiance 1000 W/m², cell temperature 25°C, air mass AM 1.5 according to EN 60904-3. Average efficiency reduction of 4.5 % at 200 W/m² according to EN 60904-1

Model (KSY)	1 кw	1.2 KW	1.5 КW	2 KW	2.2 KW	3 KW	3.2 KW	3.3 KW	4 KW	4.2 KW	5 KW	5.2 KW	5 K
Input (DC)													
Nominal Input Power (KW)	1	1.2	1.5	2	2.2	3	3.2	3.3	4	4.2	5	5.2	5
Max Peak DC Input Power (KW)	1.2	1.4	1.8	2.4	2.6	3.6	3.8	4	4.8	5	6	6.2	6
Max. DC I/P (V dc)							5		С				
Max. MPPT I/P Current(A)				10	DA							10A	
MPPT Short Circuit Current(A)				1	5A							15A	
MPPT Tracking Voltage(Vdc)	70-	500V						(100	0-500	v		
Min. Start Voltage(V)	8	BOV							1	20V			
Number of MPPT Tracker				6	L							2	
strings per MPPT Trackers								1					

No. of Strings (Input to Inverter)

= Total No. of Modules/Max. No. of Modules per string = 13/10

= 1.3

 $= \sim 2$ (Always Round Up)

Hence arranging 13 modules in 2 strings = 13/2

Hence arranging 13 modules in 2 strings

= 13/2

- S1 = 7 Modules
- S2 = 6 Modules

Or

- S1 = 6 Modules
- S2 = 7 Modules

Step 4: Calculations of BOS SPDs

There are mainly three types of SPDs as follows Type I – Permanently Connected, Hard-Wired, intended for installation between secondary of the service transformer and line side of main service equipment.

Type II – Permanently Connected, Hard-Wired, intended for installation on load side of the main service equipment Type III – Called 'Point of Utilization SPDs', to be installed at a minimum conductor length of 10 meter from electrical service panels.

DCDB (DC Fuse, DC MCB, DC SPD) Ratings of DC Fuse and DC MCB = Isc (of string) x 1.25 = 9.4A x 1.25 = 11.75A =~15A Hence DC Fuse Rating = 15A DC MCB Rating = 15ADC SPD Rating = Type II

ACDB (AC Fuse, AC MCB, AC SPD) Ratings of AC Fuse and AC MCB = Imax (AC output of Inverter) x 1.56 = 19.1A x 1.56 = 29.796A =~30A Hence AC Fuse Rating = 30A AC MCB Rating = 30A

AC SPD Rating = Type II

DC Cable

As per government regulations, DC Cable must be minimum 4sq.mm.

Hence here we shall consider

Cu. 1C 4sq.mm. DC Cable

Single Core Size in	Tinned Copper Maximum		Current Carrying Capacity of DC Solar Cable with XL-LSOH Insulation and XL-LSOH Sheathing at 60°C										
	Resistance @20°C	Single Cable in Air	Single Cable on Surface	2 Adjacent Cables on Surface									
Sq.mm	Ohms-Q/Km	in Amps-A	in Amps-A	in Amps-A									
1.5	13.700	30	29	24									
2.5	8.210	41	39	33									
4	5.090	55	52	44									
6	3.390	70	67	57									
10	1.950	98	93	79									
16	1.240	132	125	107									
25	0.795	176	167	142									
35	0.565	218	207	176									
50	0.393	274	260	219									
70	0.277	406	386	325									
95	0.210	491	467	393									
120	0.164	576	547	461									
150	0.132	670	637	536									
185	0.108	784	745	627									
240	0.0817	944	897	755									

(Source: https://deekayelectricals.com/polycab-solar-dc-cable/)

AC Cable

Core of AC is determined based on AC-Phase output of inverter

i.e.

1-Phase output – 2 Core AC Cable

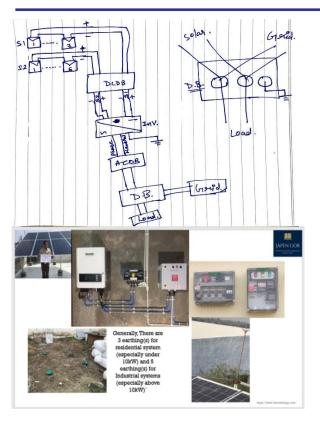
3-Phase output – 4 Core AC Cable

Here since our inverter is single core, we should consider Cu 2C sq.mm. AC Cable

	O VOLIS																* Normal
Nominal Stae of Conduc- tor	Form of Conductor Clevelar Shaped	Nominal Thick- ness of XLPE Totala- tion	Mini- man Thick- ness of PVC Inney Sheath	Uni Nominal Thick- ness of PVC Outer Sheath	Approx. Overall Diameter of Cable	Approx. Weight of Cables	Forme Nomical Dimen- dan of GL Rat Strip.	d Wire/ Stri Hickman Thick ness of PVC Outer Sheath	Approx. Overall Blaneter of Cable.	Approx. Weight of Cable.	Nominal Dimgo- sten of GL Round Wire	Plinimum Hisch- ness of PVC Outor Shouth	Approx. Overall Diameter of Cable.	Ac Approx. Weight of Calife.	Current In Ground.	Rating. In Air	ballvery Leagth.
Sq.mm.				1000		Kgs./Km				Kgs./Kes				Eqs./Km		Amps.	MLD.
- 4	Set II O	0.7	0.3	1.8	12.5	165	-N.A.	-NA-	-24.A-	-NA-	3.4	1.24	14.5	480	51	- 66	1000
-4	Standed o	0.7	0.3	1.0	13.0	175	- NA-	- NA-	- NA-	- 76.6-	1.4	1.24	15.5	525	51	-44	1000
6	Solid O	0.7	0.3	1.6	13.5	210	-NA-	-NA-	-NA-	-NA-	1.4	1.2.6	15.5	564	63	56	1000
6	Strended o	0.7	0.3	1.8	14.0	225	-NA-	-NA-	-NA-	-NA-	1.4	1.24	16.5	610	63	56	1000
10	Standed o	0.7	0.8	1.8	16.0	300	- 110-	-NA-	- NA-	- 065-	1.6	1.26	18.0	740	88	75	1000
36	Stranded in	0.7	0.3	1.6	14.0	475	-NA-	- NA -	-246-	-NA-	3.4	1.40	17.0	770	118	948	1090
25	Stranded (a)	0.9	0.3	2.0	17.0	640	4 × 0.8	1.40	10.5	910	9.6	1.40	20.0	1100	144	131	1000
35	Standed m	0.9	0.3	2.0	19.0	640	-do-	1.40	20.0	1025	1.0	1.40	22.0	1350	175	150	
50	Strended O	1.0	0.3	2.0	21.0	1120	-do-	1,40	22.5	1435	1.6	1.40	24.0	1670	205	194	1000
70	Stranded in	1.1	0.8	2.0	25.0	1540	-do-	1.56	85.5	1910	1.6	1.56	27.0	55.00	596	246	1000
95	Standed on	1.1	0.4	2.2	26.5	2075	-do-	1.96	29.0	2675	2.0	1.56	30.5	29.25	300	298	500
120	Stranded co	1.2	0.4	2.2	28.5	5232	-do-	1.56	20.5	2985	2.0	1.56	33.0	36.85	366	331	500
150	Stranded O	1.4	0.4	2.2	32.0	3070	-40-	1.72	34.0	3600	2.0	1.72	36.0	41.00	300	381	500
185	Strended m	1.0	0.5	2.4	35.5	3600	-do-	1.72	37.0	4490	2.0	1.86	40.0	5040	438	438	500
240	Strended in	1.7	0.5	2.6	39.5	4570	-do-	1.88	41.0	5575	2.5	2.04	45.0	7570	506	512	500
300	Stranded in	1.8	0.6	2.8	43.5	6075	-do-	2.05	45.5	6910	2.5	05.5	49.0	90 10	562	581	500
400	Stranded Co.	2.0	0.6	3.0	49.0	8050	-do-	2.36	\$1.0	8950	2.5	2.36	56.6	10250	612	662	500

=

(Source: https://pdf4pro.com/view/details-make-the-differenceindiancables-net-5b17c3.html)


In above table Look into column of "Current Ratings". Look into "In Air" Find out AC output current of inverter in that column i.e. 19.1A Keep eye on that raw and look into first column of that corresponding raw.

In our case that Ans is "4"

Hence our AC Cable would be Cu 2C 4 sq.mm. AC Cable

Step 5: Single Line Diagram

IJERTV10IS050022

- IV. CRITERIA FOR SELECTION OF MODULE
- Cost: What is the rate in terms of Rs. per Watt?
- Power: Range <u>OR</u> Specific?
- Size: (Mono/ Poly-crystalline silicon) 60 <u>OR</u> 72 Cell <u>OR</u> smaller?
- Type: Mono/ Poly-crystalline silicon <u>OR</u> thin-film?
- Bypass Diodes in Junction Box: 3 <u>OR</u> 6 <u>OR</u> 12 <u>OR</u> other?
- IEC Certification available?
- Warranty on Performance and Workmanship available?
- Payment terms: How much advance?
- Delivery time: Readily available or months?
- Reputation and Bankability of Manufacturer

V. CRITERIA FOR SELECTION OF INVERTER

Main Components of PCU

- IGBTs
- Gate Driver Cards
- Snubber Capacitors & Discharge Resistors
- Heat sink with blower fans
- DC Bus Capacitor
- L-C-L Filter
- Grid Synchronizing Contactor
- DC and AC Isolators
- Fuses for DC inputs
- Cabinet and L-C-L filter cooling fans
- Transformer (Only for PCUs with transformer isolation)
- EMI & EMC Filters
- Surge Protection Devices (SPDs)

Important Parameters of PCU

- DC Nominal and Maximum Power
- Efficiency Maximum and European
- Total Harmonic Distortion (THD)
- MPPT Range
- Aux. power consumption
- Grid voltage and frequency tolerances
- Protection Features
- Ingress Protection (IP) rating
- Operating range of temperature
- Dimensions and Weight
- Remote & Local controlling and monitoring

VI. REFERENCES

- Adanisolar.com. 2021. [online] Available at: https://www.adanisolar.com/Downloads [Accessed 8 May 2021].
- KSolar. (2021, May 3). Solar Inverter Manufacturers in India. KSolar | India's Best Solar Inverter Manufacturer. https://ksolare.com/product-4/
- [3] KSolare.com. 2021. [online] Available at:< https://ksolare.com/> [Accessed 8 May 2021]. https://ksolare.com/
- [4] No Name (2021) https://vhil.in/ksolare-2-kw-single-phase-solaron-grid-inverter/, Available at: <u>https://vhil.in/ksolare-2-kw-singlephase-solar-on-grid-inverter/</u> (Accessed: 08th May 2021).
- [5] No Name (2021) https://www.indiamart.com/proddetail/ksolar-15kw-3-phase-solar-grid-tie-inverter-22785960633.html, Available at: https://www.indiamart.com/proddetail/ksolar-15kw-3-phasesolar-grid-tie-inverter-22785960633.html (Accessed: 08th May 2021).
- [6] No Name (2021) https://www.deyeinverter.com/product/threephase-string-inverter/sun30-33-35-40-50kg03.html, Available at: https://www.deyeinverter.com/product/three-phase-stringinverter/sun30-33-35-40-50kg03.html (Accessed: 08th May 2021).
- [7] No Name (2021) https://deekayelectricals.com/polycab-solar-dccable/, Available at: <u>https://deekayelectricals.com/polycab-solardc-cable/</u> (Accessed: 08th May 2021).
- [8] No Name (2021) https://pdf4pro.com/view/details-make-thedifference-indiancables-net-5b17c3.html, Available at: https://pdf4pro.com/view/details-make-the-differenceindiancables-net-5b17c3.html (Accessed: 08th May 2021).
- [9] GERMI (2016) 26. Component Selection and Sizing, 1 edn., Gandhinagar: Presentation.