Completely B[#] Continuous Mappings in Intuitionistic Fuzzy Topological Spaces

S. Dhivya¹
Master of Philosophy (Mathematics)
Avinashilingam (Deemed to be) University
Coimbatore, India

Abstract — In this chapter we have introduced two types of $b^{\#}$ continuous mappings namely intuitionistic fuzzy completely $b^{\#}$ continuous mappings and intuitionistic fuzzy perfectly $b^{\#}$ continuous mappings. Also we have provided some interesting results based on these continuous mappings.

Keywords — Intuitionistic fuzzy sets, intuitionistic fuzzy topology, intuitionistic fuzzy completely b# continuous mapping.

I INTRODUCTION

Intuitionistic fuzzy set is introduced by Atanassov in 1986. Using the notion of intuitionistic fuzzy sets, Coker [1997] has constructed the basic concepts of intuitionistic fuzzy topological spaces. The concept of b# closed sets and b# continuous mappings in intuitionistic fuzzy topological spaces are introduced by Gomathi and Jayanthi (2018). In this paper we have introduced intuitionistic fuzzy completely b# continuous mappings and intuitionistic fuzzy perfectly b# continuous mappings. Also we have provided some interesting results based on these continuous mappings.

II PRELIMINARIES

Definition 2.1: [Atanassov 1986] An intuitionistic fuzzy set(IFS) A is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle: x \in X \}$, where the functions $\mu_A \colon X \to [0, 1]$ and $\nu_A \colon X \to [0, 1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. An IFS A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle: x \in X \}$.

Definition 2.2: [Atanassov 1986] Let A and B be two IFSs of the form $A = \{(x, \mu_A(x), \nu_A(x)): x \in X\}$ and $B = \{(x, \mu_A(x), \nu_A(x)): x \in X\}$. Then the following properties hold:

- i. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- ii. A=B if and only if $A \subseteq B$ and $A \supseteq B$,
- iii. $A^c = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\},$
- iv. A \cup B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X$ },
- $v. \qquad A \cap B = \{\langle \ x, \ \mu_A(x) \ \land \ \mu_B(x) \ , \ \nu_A(x) \ \lor \ \nu_B(x) \rangle : x \in X\}.$

The IFSs $0 = \langle x, 0, 1 \rangle$ and $1 = \langle x, 1, 0 \rangle$ are respectively the empty set and whole set of X.

Dr. D. Jayanthi²
Assistant Professor of Mathematics
Avinashilingam (Deemed to be) University
Coimbatore, India

Definition 2.3: [Coker, 1997] An intuitionistic fuzzy topology (IFT) on X is a family τ of IFSs in X satisfying the following axioms:

- i. $0_{\sim}, 1_{\sim} \in \tau$
- ii. $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- iii. $\cup G_i \in \tau$ for any $\{G_i : i \in J\} \subseteq \tau$.

In this case the pair $(X,\,\tau)$ is called the intuitionistic fuzzy topological space (IFTS) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS) in X. Then the complement A^c of an IFOS A in an IFTS $(X,\,\tau)$ is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4: [Coker, 1997] Let (X,τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

 $int(A) = \bigcup \{G/G \text{ is an IFOS in } X \text{ and } G \subseteq A\},\$

 $cl(A) = \bigcap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Definition 2.5: [Gurcay, Coker and Hayder, 1997] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- i. intuitionistic fuzzy semi closed set if $int(cl(A)) \subseteq A$
- ii. intuitionistic fuzzy pre closed set if $cl(int(A)) \subseteq A$
- iii. intuitionistic fuzzy regular closed set if cl(int(A)) = A
- iv. intuitionistic fuzzy α closed set if $cl(int(cl(A))) \subseteq A$
- v. intuitionistic fuzzy β closed set if int(cl(int(A))) \subseteq

Definition 2.6: [Hanafy, 2009] An IFS $A=\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy γ closed set if $int(cl(A)) \cap cl(int(A)) \subseteq A$.

Definition 2.7: [Gomathi and Jayanthi, 2018] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an intuitionistic fuzzy $b^{\#}$ closed set (IFb $^{\#}$ CS) if int(cl(A)) \cap cl(int(A)) = A.

Definition 2.8: [Coker, 1997] Let X and Y be two non empty sets and f: $X \rightarrow Y$ be a mapping. If $B = \{\langle y, \mu_B(y), \nu_B(y) / y \in Y \rangle \}$ is an IFS in Y, then the preimage of B under f is denoted and defined by $f^1(B) = \{\langle x, f^1(\mu_B)(x), f^1(\nu_B)(x) / x \in X \rangle \}$, where $f^1(\mu_B)(x) = \mu_B(f(x))$ for every $x \in X$.

ISSN: 2278-0181

Definition 2.9: [Gurcay, Coker and Hayder, 1997] Let f be a mapping from an IFTS (X,τ) into an IFTS (Y,σ) . Then f said to be an intuitionistic fuzzy continuous mapping if $f^{-1}(V)$ is an IFCS in (X,τ) for every IFCS V of (Y,σ) .

Definition 2.10: [Joung Kon Jeon, 2005] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f said to be an

- i. intuitionistic fuzzy semi continuous mapping if $f^1(V)$ is an IFSCS in (X, τ) for every IFCS V of (Y,σ) .
- ii. intuitionistic fuzzy α continuous mapping if $f^{-1}(V)$ is an IF α CS in (X, τ) for every IFCS V of (Y, σ) .
- iii. intuitionistic fuzzy pre continuous mapping if $f^1(V)$ is an IFPCS in (X, τ) for every IFCS V of (Y, σ) .
- iv. intuitionistic fuzzy β continuous mapping if $f^{-1}(V)$ is an IF β CS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.11: [Gomathi and Jayanthi, 2018] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- i) intuitionistic fuzzy $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFCS V of (Y, σ) .
- ii) intuitionistic fuzzy contra $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFOS V of (Y, σ) .
- iii) intuitionistic fuzzy $b^{\#}$ irresolute mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFb $^{\#}$ CS V of (Y, σ) .

Definition 2.12: [Hanafy and El-Arish, 2003] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy completely continuous mapping if $f^{-1}(V)$ is an IFROS in (X, τ) for every IFOS V of (Y, σ) .

Definition 2.13: [Coker and Demirci, 1995] Intuitionistic fuzzy point (IFP), written as $p_{(\alpha, \beta)}$, is defined to be an IFS of X given by $p_{(\alpha, \beta)}(x) = \begin{cases} (\alpha, \beta) & \text{if } x = p \\ (0, 1) & \text{otherwise} \end{cases}$. An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.14: [Thakur and Rekha Chaturvedi, 2008] Two IFSs A and B are said to be q-coincident (A $_q$ B) if and only if there exist an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.15: [Seok Jong Lee and Eun Pyo Lee, 2000] Let $p_{(\alpha, \beta)}$ be an IFP in (X, τ) . An IFS A of X is called an intuitionistic fuzzy neighbourhood of $p_{(\alpha, \beta)}$ if there exist an IFOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

Definition 2.16: [Dhivya and Jayanthi, 2019] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy almost $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFb $^{\#}$ CS in (X, τ) for every IFRCS V of (Y, σ) .

III COMPLETELY b* CONTINUOUS MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

In this chapter we have introduced and investigated intuitionistic fuzzy completely b[#] continuous mappings and intuitionistic fuzzy perfectly b[#] continuous mappings. We have provided many interesting results using these continuous mappings.

Definition 3.1: A mapping f: $(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy completely $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an IFRCS in (X, τ) for every IFb $^{\#}$ CS V of (Y, σ) .

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$. Then $\tau = \{0_{-}, G_{1}, G_{2} 1_{-}\}$ and $\sigma = \{0_{-}, G_{3}, G_{4} 1_{-}\}$ are IFS on X and Y respectively, where, $G_{1} = \langle x, (0.2_{a}, 0.3_{b}), (0.4_{a}, 0.5_{b}) \rangle$, $G_{2} = \langle x, (0.4_{a}, 0.5_{b}), (0.2_{a}, 0.3_{b}) \rangle$, $G_{3} = \langle y, (0.2_{u}, 0.3_{v}), (0.4_{u}, 0.5_{v}) \rangle$ and $G_{4} = \langle y, (0.4_{u}, 0.5_{v}), (0.2_{u}, 0.3_{v}) \rangle$. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an intuitionistic fuzzy completely $b^{\#}$ continuous mapping.

Proposition 3.3: A mapping $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy completely $b^{\#}$ continuous mapping if and only if the inverse image of each IFb $^{\#}$ OS in Y is an IFROS in X.

Proof: Obviously.

Proposition 3.4: If $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy completely $b^{\#}$ continuous mapping where Y is an IFT $b^{\#}$ space[4], then for each IFP $p_{(\alpha, \beta)} \in X$ and for every intuitionistic fuzzy neighbourhood A of $f(p_{(\alpha, \beta)})$, there exists an IFROS B of X such that $p_{(\alpha, \beta)} \in B$ and $f(B) \subseteq A$.

Proof: Let $p_{(\alpha, \beta)}$ be an IFP of X and let A be an intuitionistic fuzzy neighbourhood of $f(p_{(\alpha, \beta)})$ such that $f(p_{(\alpha, \beta)}) \in C \subseteq A$, where C is an IFOS in X. Since every IFOS is an IFb[#]OS in an IFT $_{b^{\#}}$ space, C is an IFb[#]OS in Y as Y is an IFT $_{b^{\#}}$ space. Hence by hypothesis, $f^{-1}(C)$ is an IFROS in X and $p_{(\alpha, \beta)} \in f^{-1}(C)$. Put $B = f^{-1}(C)$. Therefore $p_{(\alpha, \beta)} \in B = f^{-1}(C) \subseteq f^{-1}(A)$. Thus $f(B) \subseteq f(f^{-1}(A)) \subseteq A$. That is $f(B) \subseteq A$.

Proposition 3.5: A mapping $f: (X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy completely $b^{\#}$ continuous mapping then $cl(int(f^{-1}(cl(B)))) \supseteq f^{-1}(B)$ for every IFS B in Y where Y is an IFT $_{b^{\#}}$ space.

Proof: Let $B \subseteq Y$ be an IFS. Then cl(B) is an IFCS in Y and hence an IFb[#]CS in Y as Y is an IFT_b[#] space. By hypothesis, $f^{-1}(cl(B))$ is an IFRCS in X. Hence $cl(int(f^{-1}(cl(B)))) = f^{-1}(cl(B)) \supseteq f^{-1}(B)$.

Proposition 3.6: Let $f: (X, \tau) \to (Y, \sigma)$ be an mapping. Then the following are equivalent:

- intuitionistic fuzzy completely b# i. f is an continuous mapping
- ii. f -1(V) is an IFROS in X for every IFb#OS V in Y
- for every IFP $p_{(\alpha, \beta)} \in X$ and for every IFb#OS B iii. in Y such that $f(p_{(\alpha, \beta)}) \in B$ there exists an IFROS in X such that $p_{(\alpha, \beta)} \in A$ and $f(A) \subseteq B$

Proof: (i) \Rightarrow (ii): Let V be an IFb[#]OS in Y. Then V^c is an IFb#CS in Y. Since f is an intuitionistic fuzzy completely b# continuous mapping, f⁻¹(V^c) is an IFRCS in X. Since f⁻¹(V^c) $= (f^{-1}(V))^{c}, f^{-1}(V)$ is an IFROS in X.

(ii) \Rightarrow (iii): Let $p_{(\alpha, \beta)} \in X$ and B \subseteq Y such that $f(p_{(\alpha, \beta)}) \in$ B. This implies $p_{(\alpha,\beta)} \in f^{-1}(B)$. Since B is an IFb[#]OS in Y, by hypothesis $f^{-1}(B)$ is an IFROS in X. Let $A = f^{-1}(B)$. Then $p_{(\alpha, \beta)} \in f^{-1}(f(p_{(\alpha, \beta)})) \in f^{-1}(B) = A$. Therefore $p_{(\alpha, \beta)} \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$. This implies $f(A) \subseteq B$.

(iii) \Rightarrow (ii): Let B \subseteq Y be an IFb[#]OS. Let $p_{(\alpha, \beta)} \in X$ and $f(p_{(\alpha, \beta)}) \in B$. By hypothesis, there exists an IFROS C in X such that $p_{(\alpha, \beta)} \in C$ and $f(C) \subseteq B$. This implies $C \subseteq$ $f^{-1}(f(C)) \subseteq f^{-1}(B)$. Therefore $p_{(\alpha, \beta)} \in C \subseteq f^{-1}(B)$. That is

$$\begin{split} \mathbf{f}^{\text{-1}}(\mathbf{B}) &= \bigcup_{\mathbf{p}(\alpha,\beta) \in \mathbf{f}^{\text{-1}}(B)} P_{(\alpha,\beta)} \subseteq \bigcup_{\mathbf{p}(\alpha,\beta) \in \mathbf{f}^{\text{-1}}(B)} C \subseteq \mathbf{f}^{\text{-1}}(\mathbf{B}). \text{ This implies} \\ \mathbf{f}^{\text{-1}}(\mathbf{B}) &= \bigcup_{\mathbf{p}(\alpha,\beta) \in \mathbf{f}^{\text{-1}}(B)} C \text{ . Since the union IFROSs is an IFROS,} \end{split}$$

 $f^{-1}(B) =$

f⁻¹(B) is an IFROS in X. Hence f is intuitionistic fuzzy completely b# continuous mapping.

Proposition 3.7: A mapping $f: X \to Y$ is an intuitionistic fuzzy completely b# continuous mapping then the following are equivalent:

- i. For any IFb[#]OS A in Y and for any IFP $p_{(\alpha, \beta)} \in$ X, if $f(p_{(\alpha, \beta)})_q A$, then $p_{(\alpha, \beta)q} \operatorname{int}(f^{-1}(A))$.
- For any IFb[#]OS A in Y and for any $p_{(\alpha, \beta)} \in X$, if $f(p_{(\alpha, \beta)})_q A$, then there exists an IFOS B such that $p_{(\alpha, \beta)q}$ B and $f(B) \subseteq A$.

Proof: (i) \Rightarrow (ii): Let A \subseteq Y be an IFb#OS and let $p_{(\alpha, \beta)} \in$ *X*. Let $f(p_{(\alpha, \beta)})_q$ A. Then $p_{(\alpha, \beta)q}f^{-1}(A)$ (i) implies that $p_{(\alpha, \beta)q}$ int($f^{-1}(A)$) where int($f^{-1}(A)$) is an IFOS in X. Let B = int(f⁻¹(A)). Since int(f⁻¹(A)) \subseteq f⁻¹(A), B \subseteq f⁻¹(A). Then $f(B) \subseteq f(f^{-1}(A)) \subseteq A$.

(ii) \Rightarrow (i): Let $A \subseteq Y$ be an IFb#OS and let $p_{(\alpha, \beta)} \in X$. Suppose f $(p_{(\alpha, \beta)})_q$ A, then by (ii) there exists an IFOS B in X such that $p_{(\alpha,\ \beta)^{\mathrm{q}}}$ B and $\mathrm{f}(\mathrm{B})\subseteq\mathrm{A}.$ Now $\mathrm{B}\subseteq\ \mathrm{f}^{\mathrm{-1}}(\mathrm{f}(\,\mathrm{B}))\subseteq$ $f^{-1}(A)$. That is $B = int(B) \subseteq int(f^{-1}(A))$. Therefore $p_{(\alpha, \beta)q}B$ implies $p_{(\alpha, \beta)^q}$ int(f⁻¹(A)).

Proposition 3.8: Let $f_1: (X, \tau) \to (Y, \sigma)$ and $f_2: (X, \tau) \to$ (Y, σ) be any two intuitionistic fuzzy completely $b^{\#}$ continuous mappings. Then the mapping $(f_1, f_2) : (X, \tau) \rightarrow$ $(Y \times Y, \sigma \times \sigma)$ is also an intuitionistic fuzzy completely b[#] continuous mapping.

Proof: Let $A \times B$ be an IFb#CS of $Y \times Y$. Then $(f_1, f_2)^{-}$ $^{1}(A \times B)(x) = (A \times B)(f_{1}(x), f_{2}(x)) =$ $\langle x, \min(\mu_A(f_1(x)), \mu_B(f_2(x))), \max(\nu_A(f_1(x)), \nu_B(f_2(x))) \rangle =$ $\langle x, \min(f_1^{-1}(\mu_A)(x), f_2^{-1}(\mu_B)(x)), \max(f_1^{-1}(\nu_A)(x), f_2^{-1}(\nu_B)(x) \rangle =$ $f_1^{-1}(A) \cap f_2^{-1}(B)(x)$. Since f_1 and f_2 are an intuitionistic fuzzy completely b# continuous mapping, f-1(A) and f-1(B) are IFROSs in X. Since the intersection of two IFROSs is an

IFROS, $f_1^{-1}(A) \cap f_2^{-1}(B)$ is an IFROS in X. Hence

(f₁,f₂) is an intuitionistic fuzzy completely b# continuous

mapping.

Proposition 3.9: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. If f and g are intuitionistic fuzzy completely b# continuous mapping, then g o f is also an intuitionistic fuzzy completely b# continuous mapping, where Y is an IFT L# space.

Proof: Let B be an IFb#CS in Z. Since g is an intuitionistic fuzzy completely b# continuous mapping, g-1(B) is an IFRCS in Y. Since every IFRCS is an IFCS, g-1(B) is an IFCS in Y. As Y is an IFT _b# space, g⁻¹(B) is an IFb#CS in Y. Now as f is an intuitionistic fuzzy completely b# continuous mapping, $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$ is an IFRCS in X. Hence g o f is an intuitionistic fuzzy completely b# continuous mapping.

Proposition 3.10: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. If f is an intuitionistic fuzzy completely b# continuous mapping and g is an intuitionistic fuzzy b# irresolute mapping then g o f is also an intuitionistic fuzzy completely b[#] continuous mapping.

Proof: Let B be an IFb#CS in Z. Since g is an intuitionistic fuzzy b# irresolute mapping, g-1(B) is an IFb#CS in Y. Also, since f is an intuitionistic fuzzy completely b# continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFRCS in X. Since $(g \circ f)^{-1}(B) =$ $f^{-1}(g^{-1}(B))$, $g \circ f$ is an intuitionistic fuzzy completely $b^{\#}$ continuous mapping.

Proposition 3.11: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. If f is an intuitionistic fuzzy completely b# continuous mapping and g is an intuitionistic fuzzy b# continuous mapping then g o f is also an intuitionistic fuzzy completely continuous mapping.

Proof: Let B be an IFCS in Z. Since g is an intuitionistic fuzzy b# continuous mapping, g-1(B) is an IFb#CS in Y. Also, since f is an intuitionistic fuzzy completely b# continuous mapping, f⁻¹(g⁻¹(B)) is an IFRCS in X. Since (g • $f^{-1}(B) = f^{-1}(g^{-1}(B)), (g \circ f)$ is an intuitionistic fuzzy completely continuous mapping.

Proposition 3.12: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. If f is an intuitionistic fuzzy completely b# continuous mapping and g is an intuitionistic fuzzy b# continuous mapping then g o f is also an intuitionistic fuzzy completely continuous mapping.

ISSN: 2278-0181

Proof: Let B be an IFCS in Z. Since g is an intuitionistic fuzzy b[#] continuous mapping, $g^{-1}(B)$ is an IFb[#]CS in Y. Also, since f is an intuitionistic fuzzy completely b[#] continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFRCS in X. Since (g \circ f)⁻¹(B) = $f^{-1}(g^{-1}(B))$, g \circ f is an intuitionistic fuzzy completely continuous mapping.

Proposition 3.13: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. If f is an intuitionistic fuzzy almost $b^\#$ continuous mapping and g is an intuitionistic fuzzy completely $b^\#$ continuous mapping then $g \circ f$ is also an intuitionistic fuzzy $b^\#$ irresolute mapping.

Proof: Let B be an IFb[#]CS in Z. Since g is an intuitionistic fuzzy completely b[#] continuous mapping, $g^{-1}(B)$ is an IFRCS in Y. Also, since f is an intuitionistic fuzzy almost b[#] continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFb[#]CS in X. Since (g \circ f)⁻¹(B) = $f^{-1}(g^{-1}(B))$, g \circ f is an intuitionistic fuzzy b[#] irresolute mapping.

Definition 3.14: A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping if $f^{-1}(V)$ is an intuitionistic fuzzy clopen set in (X, σ) for every IFb $^{\#}$ CS V of (Y, σ) .

Example 3.15: Let $X = \{a, b\}$, $Y = \{u, v\}$. Then $\tau = \{0_{\neg}, G_1, G_2, 1_{\neg}\}$ and $\sigma = \{0_{\neg}, G_3, G_4, 1_{\neg}\}$ are IFS on X and Y respectively, where, $G_1 = \langle x, (0.2_a, 0.3_b), (0.4_a, 0.5_b) \rangle$, $G_2 = \langle x, (0.4_a, 0.5_b), (0.2_a, 0.3_b) \rangle$, $G_3 = \langle y, (0.2_u, 0.3_v), (0.4_u, 0.5_v) \rangle$ and $G_4 = \langle y, (0.4_u, 0.5_v), (0.2_u, 0.3_v) \rangle$. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping.

Proposition 3.16: A mapping $f:(X,\tau)\to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^\#$ continuous mapping if and only if the inverse image of each IFb $^\#$ OS in Y is an intuitionistic fuzzy clopen in X.

Proof: Straight forward.

Proposition 3.17: A mapping $f: (X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^\#$ continuous mapping then f is an intuitionistic fuzzy continuous mapping where Y is an IFT $_{b^\#}$ space.

Proof: Let B be an IFCS in Y. Since every IFCS is an IFb#CS in an IFT $_{b^{\#}}$ space, B is an IFb#CS in Y, as Y is an IFT $_{b^{\#}}$ space. Since f is an intuitionistic fuzzy perfectly b# continuous mapping, f¹(B) is an intuitionistic fuzzy clopen set in X. Thus f¹(B) is an IFCS in X. Hence f is an intuitionistic fuzzy continuous mapping.

Proposition 3.18: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping, then f is an intuitionistic fuzzy almost $b^{\#}$ continuous mapping, where X and Y are IFT $_{b^{\#}}$ spaces.

Proof: Let B be an IFRCS in Y. Since every IFRCS is an IFCS, B is an IFCS in Y. Since Y is an IFT $_{b^\#}$ space, B is an IFb#CS in Y. Since f is an intuitionistic fuzzy perfectly b# continuous mapping, $f^1(B)$ is an intuitionistic fuzzy clopen set in X. Thus $f^1(B)$ is an IFCS in X. Since every IFCS is an IFb#CS in an IFT $_{b^\#}$ space, $f^1(B)$ is an IFb#CS in X, as X is an IFT $_{b^\#}$ space. Hence f is an intuitionistic fuzzy almost b# continuous mapping.

Proposition 3.19: A mapping $f:(X, \tau) \to (Y, \sigma)$ is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping and then f is an intuitionistic fuzzy $b^{\#}$ continuous mapping where X and Y are IFT $_{h^{\#}}$ spaces.

Proof: Let B be an IFCS in Y. Since every IFCS is an IFb#CS in an IFT $_{b^{\#}}$ space, B is an IFb#CS in Y, as Y is an IFT $_{b^{\#}}$ space. Since f is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping, $f^{-1}(B)$ is an intuitionistic fuzzy clopen set in X. Thus $f^{-1}(B)$ is an IFCS in X. Since every IFCS is an IFb#CS in an IFT $_{b^{\#}}$ space, $f^{-1}(B)$ is an IFb#CS in X, as X is an IFT $_{b^{\#}}$ space. Hence f is an intuitionistic fuzzy $b^{\#}$ continuous mapping.

Proposition 3.20: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping, then f is an intuitionistic fuzzy semi continuous mapping, where Y is an IFT $_{b^{\#}}$ space.

Proof: Let B be an IFCS in Y. Since every IFCS is an IFb#CS in an IFT $_{b^{\#}}$ space, B is an IFb#CS in Y as Y is an IFT $_{b^{\#}}$ space. Since f is an intuitionistic fuzzy perfectly b# continuous mapping, f¹(B) is an intuitionistic fuzzy clopen set in X. Thus f¹(B) is an IFCS in X. Since every IFCS is an IFSCS, f¹(B) is an IFSCS in X. Hence f is an intuitionistic fuzzy semi continuous mapping.

Proposition 3.21: A mapping $f:(X,\tau)\to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^\#$ continuous mapping, then f is an intuitionistic fuzzy α continuous mapping, where Y is an IFT $_{h^\#}$ space.

Proof: Let B be an IFCS in Y. Since every IFCS is an IFb[#]CS in an IFT $_{b^{\#}}$ space, B is an IFb[#]CS in Y, as Y is an IFT $_{b^{\#}}$ space. Since f is an intuitionistic fuzzy perfectly b[#] continuous mapping, f¹(B) is an intuitionistic fuzzy clopen set in X. Thus f¹(B) is an IFCS in X. Since every IFCS is an IF α CS, f¹(B) is an IF α CS in X. Hence f is an intuitionistic fuzzy α continuous mapping.

Proposition 3.22: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping then f is

an intuitionistic fuzzy pre continuous mapping, where Y is an IFT $_{b^\#}$ space.

Proof: Let B be an IFCS in Y. Since every IFCS is an IFb $^{\#}$ CS in an IFT $_{h^{\#}}$ space. B is an IFb $^{\#}$ CS in Y as Y is an

IFT $_{b^{\#}}$ space. Since f is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping, $f^{-1}(B)$ is an intuitionistic fuzzy clopen set in X. Thus $f^{-1}(B)$ is an IFCS in X. Since every IFCS is an IFPCS, $f^{-1}(B)$ is an IFPCS in X. Hence f is an intuitionistic fuzzy pre continuous mapping.

Proposition 3.23: Let $f: X \to Y$ and $g: Y \to Z$ be any two intuitionistic fuzzy perfectly $b^\#$ continuous mappings where Y is an IFT $_{b^\#}$ space. Then their composition $g \circ f: X \to Z$ is an intuitionistic fuzzy perfectly $b^\#$ continuous mapping.

Proof: Let A be an IFb[#]CS in Z. Then by hypothesis, $g^{-1}(A)$ is an intuitionistic fuzzy clopen set in Y. Since Y is an IFT $_{b^{\#}}$ space, $g^{-1}(A)$ is an IFb[#]CS in Y. Again by hypothesis, $f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy clopen set in X. Since $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$, $(g \circ f)^{-1}(A)$ is an intuitionistic fuzzy clopen set in X. Hence $g \circ f$ is an intuitionistic fuzzy perfectly $b^{\#}$ continuous mapping.

REFERENCES

- [1] Atanassov, K., "Intuitionistic fuzzy sets, Fuzzy Sets and Systems," 20, 1986, 87-96.
- [2] Coker, D., "An introduction to intuitionistic fuzzy topological spaces," Fuzzy Sets and Systems, 88, 1997, 81 - 89.
- [3] Coker, D. and Demirci, M., "On intuitionistic fuzzy points," Notes on Intuitionistic Fuzzy Sets, 1, 1995, 79-84.
- [4] Dhivya, S., and Jayanthi, D., "Almost b# continuous mappings in intuitionistic fuzzy topological spaces," IOSR Jour. of Mathematics (to be appeared).
- [5] Gomathi, G., and Jayanthi, D., "Intuitionistic fuzzy b* continuous mapping, Advances in Fuzzy Mathematics," 13, 2018, 39 47.
- [6] Gomathi, G., and Jayanthi, D., "b# Closed sets in Intuitionistic Fuzzy Topological Spaces," International Journal of Mathematical Trends and technology, 65, 2019, 22-26.
- [7] Gurcay, H., Coker, D. and Hayder, Es, A., "On fuzzy continuity in intuitionistic fuzzy topological spaces," The Journal of Fuzzy Mathematics, 5, 1997, 365-378.
- [8] Hanafy, I. M., "Intuitionistic fuzzy γ continuity," Canad, Math. Bull, 52, 2009, 1-11.
- [9] Joung Kon Jeon, Young Bae Jun and Jin Han Park, "Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity," International Journal of Mathematics and Mathematical Sciences, 19, 2005, 3091-3101.
- [10] Seok Jong Lee and Eun Pyo Lee, "The Category of intuitionistic fuzzy topological spaces," Bull. Korean Math. Soc., 37, 2000, 63-76.