

Comparison of various Elicitation Techniques and Requirement Prioritisation

Techniques

Nilofar Mulla

Department of Information Technology, MIT Pune 38, Maharashtra, India

Sheetal Girase

Assistant Professor, Department of Information Technology, MIT Pune 38, Maharashtra, India

Abstract

Software engineering research has been, and still is

criticised as being immature and unscientific due to

lack of evaluation. However, software engineering

community is now focusing more on empirical research.

One of the major activities within the requirements

engineering process is to use requirements elicitation

and requirements prioritization that helps to focus on

the most important requirements. Requirement

elicitation is recognized as one of the most critical

knowledge intensive activities of the development of

software. Requirements prioritization aims at

identifying the most important requirements for a

system .There are many elicitation and prioritization

techniques available; still there is lack of evidence of

which technique to prefer. The reasons could be the

differences in contexts, measurement of variables and

usage of data sets. In this paper, the area of

requirements elicitation and prioritization has been

systematically reviewed in order to assess what

evidence regarding different techniques exist.

1. Introduction
 “Software engineering does not yet have a widely

recognized and widely appreciated set of research

paradigms in the way that other parts of computer

science do”[4]. That is, we don’t recognize what our

research strategies are and how they establish their

results. Shaw, in her article says “described as a

challenge to the whole of software engineering

community” [8]. The main challenge of the software

engineering community is to satisfy the customer needs

and possibly exceed his expectations in an economic,

rapid and profitable manner. The process of

Requirements engineering has the potential of fulfilling

the customer needs and possibly exceeding them by

using rigorous and defined methodologies.

Requirements engineering can help organizations

develop quality software systems with in time and

budget constraints which are true reflection of customer

needs [4]. One of the major activ ities within

requirements engineering process is to use requirements

prioritization that evaluates requirements to focus on

the most important ones. The primary success factor of

requirements elicitation is that requirements meet end

user needs. This outcome is difficu lt to achieve because

users often have trouble identifying and articulat ing

their needs and because those needs often change as a

result of system implementation. This difficu lty is

compounded for newer technologies such as data

warehouses because requirements continue to evolve

over time as users become familiar with the systems

and their needs for information change. For these

technologies, system requirements are a moving target.

Over time, challenges arise from the simultaneous

evolution of the technology and of the users’

requirements. For these reasons, calls for effective user

involvement in requirements elicitation continue.

Effective requirements elicitat ion depends upon the

ability of users and analysts to understand and

appreciate one another's words. This represents a

significant, but not insurmountable, challenge which we

explore in this paper. Requirements elicitation is an

often poorly completed aspect of systems analysis.

Mistakes made in elicitation have been shown many

times to be major causes of systems failure or

abandonment and this has a very large cost either in the

complete loss or the expense of fixing mistakes.

2. Challenges in Requirements Elicitation
Domain experts, customers, and users are essential

during requirements elicitation; however, they do not

necessarily understand the intricacies of software

development. On the other hand, software engineers are

likely to be unfamiliar with the application domain.

This creates a communications barrier between the

software engineers and the domain experts, customers,

and users, which can be overcome by formal elicitation

methods. Requirements elicitation involves end users

and analysts interacting to identify and 'capture' the data

and processes that will make up the eventual system.

User-analyst communicat ion is an important part of

requirements elicitation, but communication styles and

techniques most readily associated with requirements

elicitation - interv iews and questionnaires, for instance -

arc rarely sufficient to elicit the whole range of

requirements [6]. The use of such standard 'instruments'

in any user-analyst exchange introduces the potential

for errors of omission that arise as a consequence of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

analyst's difficulty in eliciting system requirements that

are outside the instrument's scope. The majority of

requirements elicitation techniques fail to address the

less conspicuous and often more tacit requirements,

priorities, and issues that analysts do not know to ask

about and those users do not or cannot readily identify

and articulate. Traditional techniques are unable to fully

diagnose how such contextual issues will affect system

requirements, system development, and system

evolution. Furthermore, analysts need unbiased,

systematic approaches during communication to assist

users in identify ing and articulating needs. To overcome

the limitations and perceptual biases of traditional

requirements elicitation approaches, the concept of

user-centred analysis - the process of 'capturing'

requirements from the user's point of view - has

frequently been promoted as a means to achieve a more

comprehensive understanding of end user system needs.

3. Requirements Elicitation
Developing a large system is a complex and difficult

process. In the early days of computing, there was no

particular o rganisation to this process: programmers just

sat down and tried to write code that would be useful.

To- day, few doubt that a task that can consume

hundreds of person-years should be carefully planned

and managed. Therefore the system \life cycle" has

been broken into a number of so called \phases," of

which Requirements Engineering is the earliest phase3

that lies largely within Computing Science. The

requirements phase is typically p receded by business

planning, and is formally in itiated by the client.

Requirements describe goals, functions, and

constraints of a software system. The term “elicitation”

is preferred to “capture”, to avoid the suggestion that

requirements are out there to be collected simply by

asking the right questions [5]. Rather, the data collected

during requirements elicitation often has to be

interpreted, analyzed, modelled, and validated.

“Elicitation” is also referred to as “acquisition” in some

literature.

3.1 Requirements Elicitation techniques
Following is the table (Table 1) showing various

Requirements Elicitation techniques [7] along with their

advantages and disadvantages.

There are a variety of techniques that can be

employed to elicit requirements. The approach taken by

a requirements engineer is not limited to one particular

technique. Organizational processes, application type,

available resources, and individual preference all p lay a

role in determining a particu lar approach. For instance,

applications that need early customer feedback might

benefit from the use of prototyping combined with

group elicitation. The requirements elicitation process

involves all stakeholders, which includes customers,

developers, and users. Better technique selection will

improve the quality of the requirements elicitation

process and increase the success of software

development projects.

4. Requirements Prioritisation
After requirements are identified, they also need to be

prioritised. Requirement priorit ization process is used

to determine which candidate requirement of a software

project should be included in a certain release, for this

purpose different techniques are used [1]. Projects often

have more requirements than time, resource, and budget

allow for. A function can always be added and the user

interface enhanced. Some requirements are crit ical for

the success of the software system. Hence, requirements

should be prioritised so that the ones that are most

likely to achieve customer satisfaction can be selected

for implementation. It is essential to decide what is

important before these requirements are incorporated

into the software development process. By addressing

the high-priority requirements before considering the

low-priority ones, one can significantly reduce both the

costs and duration of a project.

4.1 Requirements Prioritisation techniques
Following is the table (Table 2) showing various

Requirements Prioritization techniques [2] along with

their advantages and disadvantages.

Requirement Priorit izat ion is the most important step in

requirement engineering process. Without assigning

proper and accurate requirement to each release, it is

almost impossible to complete project on time and

within budget. In a review of the state of the practice in

requirements engineering, Lubars found that many

organizations believe that it is important to assign

priorities to requirements and to make decisions about

them according to rational, quantitative data. Still it

appeared that no company really knew how to assign

priorities or how to communicate these priorities

effectively to project members. According to us all the

factors listed in (Table 2) should be considered while

prioritizing requirements. It is better to spend time in

choosing the right requirements for releases rather than

choosing the wrong ones and wasting time, budget and

resources. Before starting prioritizing requirements first

of all check the dependencies between requirements

(Dependency Constraints). If dependencies between

requirements are not taken properly it gets very difficult

to select an appropriate requirement sets for the

releases, because it is highly possible that you are

selecting a requirement in the current release and

leaving another for the next release but both

requirements should be in the same release. Therefore,

the first step is to check dependency constraints

between requirements. It is almost impossible to

implement all the requirements in one release. That is

why some sort of prioritizat ion process is needed to

implement the most important requirements in the first

release and leave the less important ones for the future

releases.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

5. Conclusion
Requirements engineering interacts with many technical

as well as social sciences to improve the process of

eliciting, analyzing, documenting and maintain ing

requirements. Requirements elicitation is an often

poorly completed aspect of systems analysis. Mistakes

made in elicitat ion have been shown many times to be

major causes of systems failure o r abandonment. This

has a very large impact on the cost either in terms of

complete loss or the expenses on fixing mistakes. In this

paper, the different requirement elicitation methods are

studied, compared and discussed. Requirements

prioritization is highly emphasized area within

requirements engineering that helps different

stakeholders decide on the final set of requirements,

which will eventually make up a system. Certain

techniques exist within requirements prioritizat ion with

their own advantages and limitations. All these

techniques could be of valuable help for organizations

to decide which requirements are important and which

are less important in the overall development of a

project. Requirements elicitation is a crit ical step in the

requirements development process. It is consequently

imperative that requirements engineers apply

appropriate methods to perform the process sufficiently.

This paper has attempted to present meaningful insights

into the feature of different types of requirements

elicitation techniques.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

Table 1. Requirement Elicitation Techniques

Method Description Advantages Disadvantages

Interviews Analyst discusses the desired product

with different groups of people and

builds up an understanding of their

requirements. If the interview is

conducted with pre-defined agenda

and questions, it is called structured

interview; otherwise, it is an open-

ended interview.

• Collecting the rich and

detailed data

• Collecting information to

design a survey or

other usability activ ity

• Getting a holistic view of the

whole system

• Collect ing data

from large samples or

people

• When it need to

collect the data very

rapidly

Workshop,

focus

groups

Stakeholder representatives gather

together for a short but intensely

focused period to create or review

high -level features of the desired

products.

• This technique is very much

effective to resolve the conflicts

among customers in order to

bring them at one table.

• Each and every aspect of

requirements is discussed and

proper suggestions are given

using group work.

• The stakeholders provide the

direct remarks about the

software requirements.

• Stakeholders work in the

environment.

• Group work Provides the

remarkable

• This technique

needs a lot of effort

as compared the other

requirements

engineering

techniques.

• Somet imes all the

stakeholders can join

at the same time as it

may be possible that

they may be busy in

other tasks.

• Group work is less

effective in the highly

political tense

situation.

Brainstorming Stakeholder representatives gather

together and rapidly develop a large

and broad list of ideas. It encourages

“out -of-the-box” thinking without

normal constraints, and involves both

idea generation and idea reduction.

• Brainstorming is mostly used

for the innovative sort of

projects where each participant

provides his or her own ideas

after their personal research

about the project to be started.

• Th is technique is often used

make the key decisions about

the requirements of the project.

• It promotes free thinking and

expression of ideas.

• Brainstorming provides the

innovative ideas about the

project to be developed.

• Brain storming is

seriously affected by

exploring the critique

ideas.

• Brainstorming is not

used to resolve the

major issues.

Scenarios,

passive

Storyboards

It is an interaction session to describe

a sequence of actions and events for a

specific case of some generic task

which the system is intended to

accomplish.

Clarified system requirements related

to procedures and data flows of a

task.

 In a highly uncertain situation, an

effective and relatively inexpensive

way to develop an initial set of

requirements.

Because storyboards exist

independently of the software

system they describe, they have

many advantages over regular

prototypes. They cannot crash,

are very easy to share with large

groups, and do not give the

false impression that the system

is already developed.

Additionally, feedback is easier

to accommodate.

One of the biggest

problems with

storyboards is that

they can become

outdated very

quickly. User

interfaces originally

defined often change

over time, and that

creates a maintenance

burden.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

Prototyping Prototype is a version of a product

launched into market to provide the

so for services to the customers.

Prototyping is used to provide a

version of the software and which is

not final so that the customer can gain

the experience and also may be able

to provide other requirements that

need to be implemented in the next

prototyping. The response of the user

is in the form of a feedback which is

recorded as like requirements of the

system.

• Prototyping provides the detail

informat ion by investing each

and every prototype by the

customer.

• Prototypes are mostly used in

conjunction with other

elicitation techniques such as

interviews.

• Prototypes useful when

developing human computer

GUI interfaces.

• Prototypes provide a good

chance to the stakeholders an

effective rule and to be

involved in the requirements

engineering.

• The technique is extremely

helpful developing new systems

for entirely new applications.

• In many cases

prototypes are

expensive to produce

in terms of time and

cost.

• A great problem for

prototyping is that the

user often resists

making changes if

once they get

experienced.

Table 2. Requirement Prioritisation Techniques

Method Description Advantages Disadvantages

Value-

oriented

prioritisation

method

Priorit ises requirements based on their

contribution to the core business values

and their perceived risks. The first step

in setting up a value-oriented

prioritization process is to establish the

framework and this framework is used

to identify the value of the business and

the relative relat ionship of those

values. Business values are established

at the level of organization. After

indentifying the core values, the

organization must provide some

indication of importance of those

values to the organization. This is

accomplished by assigning weights that

use a simple ordinal scale ranging from

0(not important) to 10(critical).

 As priorit isations involve a

small subset of stakeholders;

the results are biased

towards the perspective of

those involved in the

process.

Pairwise

comparison

approach

Requirements engineers compare two

requirements to determine the more

important one, which is then entered in

the corresponding cell in the matrix .

The comparison is repeated for all

requirements pairs such that the top

half of the matrix is filled. If both

requirements are equally important,

then they both appear in the cell. Then,

each requirement is ranked by the

number of cells in the matrix that

contain the requirement.

Pairwise comparison

is simple.

Since all unique pairs of

requirements need to be

compared, the effort is

substantial when there are

many requirements.

Priorit ising n requirements

needs n×(n–1)/2

comparisons . Hence, a

project with 100

requirements would require

4,950 comparisons.

Analytic The analytic hierarchy process (AHP) On the other hand On the one hand AHP is a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

Hierarchy

Process

(AHP)

is a decision-making method. Using

AHP to priorit ize software

requirements involves comparing all

unique pairs of requirements to

determine which of the two is of higher

priority, and to what extent.

AHP is very

trustworthy since the

huge amount of

redundancy in the

pairwise comparisons

makes the process

fairly insensitive to

judgmental errors.

Another advantage is

that the resulting

priorities are relative

and based on a ratio

scale, which allows

for useful

assessments of

requirements.

demanding method due to

the dramatically increasing

number of required pair-

wise comparisons when the

number of requirements

grows.

100-point test Each stakeholder is given 100 points

that they can distribute as they desire

among the requirements. Requirements

that are more important to a

stakeholder are given more points.

Requirements are then priorit ised based

on the total points allocated to them.

100-point test

incorporates the

concept of constraint

in the stakeholder’s

prioritisation by

giving each of them a

limited number of

points.

It can be easily manipu lated

by stakeholders seeking to

accomplish their own

objectives . For example,

stakeholders may distribute

their points based on how

they think others will do it.

In addition, it is difficult for

stakeholders to keep an

overview of a large number

of requirements.

Hierarchical

cumulat ive

voting (HCV)

Enables prio rit isations to be performed

at different levels of a hierarchy.

Stakeholders perform prio rit isation

using 100- point test within each

prioritisation block. The intermediate

priorities for the requirements are

calculated based on the characteristics

of the requirements hierarchy. Final

priorities are calculated for all

requirements at the level of interest

through normalisation. If several

stakeholders have prioritised the

requirements, their individual results

are then weighted and combined.

The hierarchical

prioritisation in HCV

makes it easier for the

stakeholders to keep

an overview of all the

requirements

The prioritisations need to

be interpreted in a rational

way as stakeholders can

easily play around with the

numbers.

Requirements

triage method

In the requirements triage method,

Davis proposed that stakeholders

should be gathered in one location and

group voting mechanisms used to

prioritise requirements. One method to

collect group vote is to use the show of

fingers to indicate the stakeholders’

enthusiasm for a requirement.

 A disadvantage is the

relative priorities of

requirements depend on the

stakeholders who attended

the prioritisation meeting,

and dominant participants

may influence the

prioritisation.

Win-win

approach

In the win-win approach proposed by

Boehm, stakeholders negotiate to

resolve disagreements about candidate

requirements. Using this approach,

Win-win negotiations

encourage

stakeholders to focus

on their interest

The approach is labour

intensive, particularly in

large projects.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

each stakeholder ranks the

requirements privately before

negotiations start. They also consider

the requirements they are willing to

give up on. Stakeholders then work

collaboratively to forge an agreement

through identifying conflicts and

negotiating a solution.

rather than positions,

negotiate towards

achieving mutual

gain, and use

objective criteria to

prioritise

requirements.

Binary search

tree (BST)

In BST, a requirement from the set of

requirements is selected as the root

node. Then, a binary tree is constructed

by inserting less important

requirements to the left and more

important ones to the right of the tree.

A prioritised list of requirements is

generated by traversing the BST in

order. The output is a prioritised list of

requirements with the most important

requirements at the start of the list, and

the least important ones at the end.

This method is

simple to implement

Provides only a simple

ranking of requirements as

no priority values are

assigned to the requirements .

6. REFERENCES
[1] Joachim Karlson, Claes Wholin, Bjorn Regnell “An
evaluation of methods for prioritizing software

requirements”.

[2] Aaqib Iqbal, Farhan M, Khan, Shahbaz. A. Khan “A

Critical Analysis of Techniques for Requirement

Prioritization and Open Research Issues”. International
Journal of Reviews in Computing 2009 IJRIC

[3] Goguen, J. and Linde, C. (1993), “Techniques for

requirements elicitation”, Requirements Engineering, IEEE,

152-164.

[4] Kotonya, G. and Sommerville, I. (1998), “Requirements
Engineering: Processes and Techniques”, John Wiley, 1998.

[5] “Knowledge Elicitation Techniques: Comparison of Three

Methods”, Proceedings of the Second International

Conference on Requirements Engineering (ICRE96),

Colorado Springs. CO, April 15-18, 1996. pp. 4-11
[6] Davis, C. J., Fuller, R. M., Tremblay, M. C., & Berndt, D.

J. (2006). “Communication challenges in requirements

elicitation and the use of the repertory grid technique”.

Journal of Computer Information Systems, 78.

[7] Pitts, M. G., & Browne, G. J. (2007). “Improving
requirements elicitation: An empirical investigation of

procedural prompts”. Information Systems Journal, 17, 89-

110.

[8] Shaw, M. (2001) “The coming of age of software
architecture research” Proceedings of the 23rd International

Conference on Software Engineering (ICSE’01), pp: 657-664

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

7www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

8www.ijert.org

