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Abstract— Optimal power flow (OPF) solution is considered 

a vital tool for sensitive planning, energy management and 

operation analysis of the electrical power systems. The analysis of 

OPF seeks to accurately estimate the best solution of the power 

system nonlinear algebraic equations while satisfying the 

constraints of power system operation. In this paper, two reliable 

metaheuristic optimization techniques, namely, particle swarm 

optimization (PSO) and whale optimization algorithm (WOA), 

are used to solve the problem of OPF in electrical power systems.  

Minimizing the total cost of generation units is considered the 

main cost function in this study. The presented OPF formulation 

includes precise generator constraints such as active and reactive 

power generation limits, as well as the impacts of valve point 

loading. MATLAB software is used to implement the simulation 

process. To validate the accuracy of the proposed algorithms, 

PSO and WOA algorithms are tested on the standard system 

which called IEEE 30-bus system. The results of simulation 

obtained by PSO and WOA techniques are comprehensively 

compared with each other. According to the simulation results, 

the proposed WOA technique has the optimal performance 

compared with PSO technique in terms of locating lower-cost 

values and it has successfully proved itself as a robust competitor 

to PSO for tackling the problem of OPF solution.  

 

Keywords— optimal power flow; Optimization; PSO; whale 

optimization algorithm; Metaheuristic; valve point loading 

 

I. INTRODUCTION  
The OPF is a nonlinear and difficult optimization issue in 

power systems that is utilized for the processes of planning and 
operation of the power system [1]. OPF is critical for 
enhancing and improving the efficiency of existing power 
systems, and efficient development of the future systems [2] . 
OPF is an essential tool for improving the electrical efficiency 
of power system, voltage distribution, stability indicator, and 
reducing gas emissions especially for thermal plants [3]. OPF 
manages both discrete and continuous control variables for 
maximizing a certain objective function while meeting the 
operational restrictions, namely equality and inequality 
constraints [4, 5]. The goal objective of OPF issue might be to 
reduce overall cost of generating units or to decrease 
transmission line (TL) losses [6]. The generator active powers, 
except on the slack bus, the generator bus voltages, 
transformer tap ratios, and shunt VAR compensation units are 
all control variables in the OPF problem. The equality 
constraints are represented as power balance equations, 

meanwhile the inequality constraints can be represented by the 
bounds of the control variables and state variables. 

Many conventional techniques are utilized to solve the 
OPF problem, including linear programming [7, 8], nonlinear 
programming [9], quadratic programming [10], the interior 
point method [11], lambda iteration approach, gradient 
technique [12] and Newton-based strategies [13]. Despite 
these methods are successfully developed to solve the studied 
OPF issue and their dependability, each of these algorithms has 
various limitations, including algorithmic complexity, 
unsettled convergence, piecewise quadratic cost 
approximation, inability to handle nonlinear functions, and 
falling in the local optima. It should be noted that the 
shortcomings of previous approaches are caused by linearizing 
the objective function and system restrictions around an 
operating point utilizing derivatives and gradients. These 
limitations are overcome by meta-heuristic optimization 
algorithms, which avoid linearizing the objective function by 
selecting a set of random solutions, which are then updated 
around the best solution in an iterative process until the 
algorithm converges and the optimal solution is obtained. 
Metaheuristic optimization approaches offer the advantage of 
producing better results and consuming less computational 
time.  

The widely used meta-heuristic optimization methods to 
solve the problem of optimal power flow are as genetic 
algorithm (GA) [14, 15], gravitational search algorithm (GSA) 
[16], shuffle frog leaping algorithm (SFLA) [17], differential 
evolution (DE) algorithm [18], artificial bee colony (ABC) 
[19, 20], particle swarm optimization (PSO) [21, 22], 
differential search algorithm (DSA) [23], salp swarm 
algorithm (SSA) [24], firefly algorithm (FFA) [25], and krill 
herd algorithm (KHA) [26].  These approaches are adaptable 
and capable of locating global solutions by directing solutions 
toward different sections of the search space through rapid and 
abrupt changes. In [27], based on newton second order (NSO), 
GA is combined with active power flow (APF) and produced 
a new hybrid technique called (HGA) due to GA's slow 
convergence. In [28], a grey wolf optimizer (GWO) based on 
an adaptive operator and random mutation is devised to solve 
the OPF issue. According to the "no free lunch" theory [29], 
which states that no single optimization strategy can solve all 
problems, this motivates researchers to develop new 
optimization strategies. 

The main purpose of this study is to apply two different 
optimization methods called PSO and WOA, for solving the 
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problem of OPF. The two proposed techniques connect 
Newton Raphson-based Power Flow (PF) equations to 
determine the lowest cost of generation units. The losses of 
TLs and trends of convergence of the IEEE 30-bus system are 
compared after the optimization process end. In addition, the 
optimal WOA results obtained in this study are compared to 
the PSO algorithm results. However, the following are the 
primary contributions of this paper: 

• Minimizing the total cost of generation units is the main 
cost function of this study. 

• The PSO and WOA methods are applied to optimally 
solve the OPF problem. 

• A comparison between the two well-known 
optimization methods (PSO and WOA) is constructed 
to validate their efficiency in solving the studied 
optimization problem of OPF solution. 

• Standard IEEE 30-bus test system is applied to test and 
confirm the reliability and strength of the developed 
algorithms in solving the OPF problem.   

•  The obtained results prove the robustness and 
reliability of WOA in solving the OPF problem 
compared with PSO.   

The other sections of the paper are structured as the 
followings: The OPF mathematical formulation is represented 
in Section 2. The developed optimization methods are 
explained in Section 3. Section 4 provides the simulations 
performed and the best results gained. Section 5 includes the 
paper's conclusion as well as the anticipated future work. 

 

II. PROBLEM FORMULATION 
The primary goal of the optimal power flow tool is to solve 

the main equations of power flow problem to assign the control 
variables values and achieve the optimal solutions for the 
chosen objective function. Consequently, the resulting 
solutions are constrained by both kinds of constraints. The goal 
of the OPF issue in this study is to find the lowest generation 
cost of generator units that fulfill equality and inequality 
requirements. The inequality constraints describe the system's 
operating and control boundaries, whereas the equality 
constraints represent the traditional electric PF equations. 

The studied problem of the optimal power flow is 
mathematically formulated as a nonlinear optimization 
problem with two different types of constraints , namely, 
equality and inequality restrictions as follows [30], 

Minimize: 

( , )F x u                                       (1) 

Subject to: 

( , ) 0jg x u =          j=1, 2, ……., m           (2) 

( , ) 0jw x u           j=1, 2, ……., p            (3) 

where, F (x, u) is the studied cost function, x denotes the state 
variables, u is the control variables, g (x, u) denotes the 
equality constraints, w (x, u) denotes the inequality constraints, 
m and p denote the equality and inequality constraints number, 
respectively.                       
A. Objective Function 

The fuel cost functions of some generating units are 
nonlinear and convex, as seen in Fig. 1. This is due to the 
ripples caused by the opening procedures of steam turbine 
control valves. The objective function of the studied OPF 
problem, including the influence of valve loading point, is 
formulated as follows, 

2 min

1

( ) sin( ( ))
Ng

i gi i gi i i gi gi

i

F a P b P ci d e P P
=

= + + +   −  (4) 

where, ai, bi, and ci represent the cost coefficients of ith 
generator, Ng represents the number of generators, and di, ei 
represent the fuel cost coefficients of the ith generator with the 
influence of valve-loading point.  

 
Fig. 1. Fuel cost curves with and without the influence of valve-point. 

 

The state variables represent the dependent variables x 
which characterize a certain state of power system. The state 
variables are represented by the equation, which may be 
written as follows: 

1 1 1 1..... , , ..... , .....L LNPQ G G GNPV TL TLNTLx V V P Q Q S S =                  (5) 

where PG1 represent the active power of slack bus, VL 
denotes the load bus voltage, QG represents the generator 
reactive power, STL represents the transmission line (TL) 
loading, NPQ represents the number of load buses, NPV 
represents the generation buses number, and NTL denotes the 
TLs number in the power system. 

The control variables represent the independent variables u 
that can satisfy the power flow equations. The OPF control 
variables can be formulated as the following, 

                1 2 1..... , ..... , .....G GNG G GNG NTu V V P P T T=       (6) 

where, VG represents the generator voltage bus, PG represent 
the real output power of generator, T denotes the tap setting of 
transformers, NG represents the generators number, and NT is 
the transformers number. 

B. Constraints of Operation 
There are two types of optimal power flow constraints: 

equality constraints and inequality constraints. The equality 
and inequality constraints are as follows: 

1) Equality Constraints: The equations that balance active 

and reactive power flow are known as equality constraints of 

OPF, and they are as follows: 

1

( cos( ) sin( ))
N

Gi Li i j ij i j ij i j

j

P P V V G B   
=

− = − + −      (7)  

1

( cos( ) sin( ))
N

Gi Li i j ij i j ij i j

j

Q Q V V G B   
=

− = − − −      (8)                                      

where, PGi denotes the generator real power, PLi represents the 
load real power, QGi represents the generator reactive power, 
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and QLi indicates the load reactive power. Gij represents the 
transfer conductance and Bij is the susceptance between any 
two buses.                              

2) Inequality Constraints: The inequality constraints are 

classified into generator constraints, transformer constraints 

and security constraints. The inequality constraints are 

formulated as follows, 

min max

Gi Gi GiP P P     i=1, 2, ……., NPV           (9) 

min max

Gi Gi GiQ Q Q      i=1, 2, ……., NPV        (10) 

min max

Gi Gi GiV V V      i=1, 2, ……., NPV      (11)  

min max

i i iT T T          i=1, 2, ……., NT       (12)                                      

max

TLi TLiS S          i=1, 2, ……., NTL                 (13)  

min max

Li Li LiV V V      i=1, 2, ……., NPQ            (14)                                      

III. OPTIMIZATION PROBLEMS 

A. PSO  
Particle swarm optimization (PSO) is a technique 

developed by Eberhart, Kennedy, and Shi [31, 32]. PSO is a 
population-based approach that simulates the social ties of 
flocks of birds and fish education. The velocity of particles 
governs their movement, which is represented as a vector with 
magnitude and direction. The particles organize their route for 
each generation based on their best position (local best) and 
the location of the best particle (global best) of the whole 
population. According to this viewpoint, particles' stochastic 
properties are enhanced, resulting in better solutions and faster 
convergence to global optima. PSO works similarly to the 
other evolution strategies. The population size in the search 
space is represented by the number of particles. Particles began 
their movement at random. Every particle has a fitness value 
determined by the fitness function of the issue to be solved. 

PSO is determined by the values of key parameters. The 
best parameter values are determined by the type of problem 
under study [33]. It is critical to strike a balance between 
exploration and exploitation based on the algorithm's goal. 
PSO is governed by the following parameters: total number of 
particles, total number of iterations, inertia weight (w), and 
social behavior coefficients (c1 and c2). For given values of 
c1, c2, convergence of the cost function is guaranteed [34]. 

The equations (15) and (160) represent a particle's position 
and velocity vectors in a N dimensional search space: 

1,......,( )i i inX x x=                               (15) 

1,......,( )i i inV v v=                                  (16) 

where, xin  and vin represent the particle ith position and velocity 
in a search space with n particles, respectively. A particle's 
optimal position can be described as (17) and the particle with 
the best position among all the other particles in the population 
is represented in (18).  

1 ,......,( )best best

i i inpbest x x=                        (17)  

1 ,......,( )best best

i i inGbest x x=                        (18)                                      

 Each particle's position and velocity are updated every 
(k+1) steps as follows: 

1 1k k k

i i iX X V+ += +                              (19)  

The velocity of ith individual at (k+1) iteration is computed as 
follows, 

1

1 1

2 2

( )

( )

k k k k

i i i i

k k

i i

V wV c rand pbest x

c rand Gbest x

+ = +  −

+  −
    (20)                                      

where, K represents the number of iterations. 
k

iV and 
k

ix   is 

the velocity and position of particle i at iteration k, 
respectively. c1 and c2 represent the coefficients of 
acceleration. w is the inertia weight parameter. rand1 and rand2 
are random numbers between 0 and 1. The flow chart of PSO 
for the optimal power flow solution is shown in Fig. 2. 

B. WOA 
WOA is based on whale hunting and encirclement 

techniques. This is known as the bubble-net feeding strategy. 
Humpback whales seek to hunt small fish at the surface by 
forming a bubble net around the prey as it climbs along a circle 
path. The WOA algorithm assumes that the target prey is the 
current best candidate solution. After the top search agent is 
identified, the remaining search agents will aim to improve 
their positions in relation to the best search agent. The 
mathematical formulation of this phenomenon is as follows 
[35]: 

𝐷 = |𝐶. 𝑋⃗∗(𝑡) − 𝑋⃗(𝑡)|                           (21)  

𝑋(𝑡 + 1) = 𝑋⃗∗(𝑡) − 𝐴. 𝐷⃗⃗⃗                       (22)   

where t is the current iteration, 𝐴 and 𝐷⃗⃗⃗ represent coefficient vectors, 

𝑋⃗∗ represents the position vector of the best solution obtained so far, 

𝑋⃗  denotes the position vector, and .  is an element-by-element 

multiplication if there is a better solution  𝑋⃗∗ must be updated in each 

individual iteration. The vectors A⃗⃗⃗  and 𝐶  can be computed as, 

A⃗⃗⃗  =  2a⃗⃗  · r⃗ – a⃗⃗                            (23)  

𝐶 = 2. r⃗                                       (24)  
where, a⃗⃗ is linearly decreased from 2 to 0 through the iterations 
number and r⃗ is an arbitrary vector in [0, 1].   
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Fig. 2. The flow chart of PSO for the OPF problem. 

                           

The flow chart of WOA for the OPF problem is presented 
in Fig. 3. 

 
 

Fig. 3. The flow chart of WOA for the OPF problem. 

 

IV. RESULTS AND DISCUSSION  
In this work, Newton Raphson based WOA is applied to 

standard IEEE 30-bus systems to find the optimal solution for 
the objective function. The proposed WOA has been compared 
with conventional PSO algorithm. The control variables for the 
proposed WOA technique are summarized as follows, 
Maximum number of iterations are 500 iterations while the 
number of search agents is adjusted to 15. while for the PSO 
algorithm the following control variables are utilized in the 
optimization process; number of iterations = 500, number of 
particles = 15, wmin = 0.4, wmax = 0.9, c1 = c2 = 1.4.  The cost 
coefficients of generation units, active and reactive power 
bound  for IEEE  30 bus test systems  are listed in Table I [27]. 

 
 
 

START

Random initial population within feasible range

Update the velocity and position of 

particle

Is stopping criteria 

satisfied? 

Record the best and global best positions

Run  NR for every particle

Record the violation values of voltage and line

Is population 
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NO

Calculate the objective function
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START PSO

Evaluate the objective function for 

updated population 

Run NR for every updated particle
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STOP
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Initialize the population of the whales 
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no. of iterations 

Calculate each search agent fitness 

F=the best search agent 

if p<0.5 
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i=i+1
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Output the best position

J=1

End
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TABLE I.  COST COEFFICIENTS OF UNITS, ACTIVE AND REACTIVE POWER 

OUTPUTS FOR THE TESTED IEEE 30 BUS SYSTEM. 

Bu

s 
a b c d e 

Pmi

n 

Pma

x 

Qmi

n 

Qma

x 

1 0..375 2 0 50 
0.06

3 
50 200 -40 200 

2 0.0175 
1.7
5 

0 40 
0.09

8 
20 80 -20 100 

5 0.0625 1 0 0 0 15 50 -15 80 

8 
0.0083

4 

3.2

5 
0 0 0 10 35 -15 60 

11 0.025 3 0 0 0 10 30 -10 50 

13 0.025 3 0 0 0 12 40 -15 60 

The IEEE 30-bus test system is presented in Fig. 4. In this 
system, while 6 buses of the system are chosen as generation 
buses (PV), the remaining 21 buses are load buses (PQ). Total 
load demand of the system is defined as (PD) 283.40 MW.   

 
Fig. 4. Standard IEEE 30-bus test system. 

 

The convergence curves of the proposed WOA and the 
conventional PSO algorithms are presented in Fig. 5. 
Moreover, the obtained results of the OF, active and reactive 
power generation, power losses in the lines of the IEEE 30 bus 
standard system are shown in Table II. The results obtained 
from the proposed WOA are compared with that of the 
conventional PSO algorithm. The objective function is found 
to be 805.805 $/h and 812.755 $/h for WOA and PSO, 
respectively. The transmission line losses obtained are 9.371 
MW and 8.291 MW, for WOA and PSO, respectively. It is 
clearly observed that the proposed WOA method gives better 
results over the PSO in terms of the generation cost of the 
generating units. The main objective in this work is the total 
generation cost, therefore the system losses are not taken into 
consideration as an objective function. Therefore, it can be 
concluded that the losses of the studied system are in the 
acceptable margins provided in the current study.  

 
Fig. 5. Convergence curves of the OPF solution for standard IEEE 30-bus 

system.   
TABLE II.  OPF RESULTS FOR IEE 30-BUS TEST SYSTEM. 

IEEE 30-Bus WOA PSO 

P1 (MW) 173.733 159.194 

P2 (MW) 4,.49 39.286 

P5 (MW) 20.84 28.450 

P8 (MW) 20.84 32.726 

P11 (MW) 18.859 13.531 

P13 (MW) 16.51 18.505 

VG1 (pu) 1.050 1.050 

VG2 (pu) 1.089 1.027 

VG5 (pu) 1.0105 1.004 

VG8 (pu) 1.0056 1.062 

VG11 (pu) 1.0861 1.093 

VG13(pu) 1.0468 1.032 

T11 1.0053 0.986 

T12 0.968 0.975 

T15 0.968 1.094 

T36 0.968 1.094 

Plosses (MW) 9.371 8.291 

Cost ($/h) 805.805 812.755 

V. CONCLUSION 
In this work, PSO and WOA optimization techniques are 

applied to solve the OPF problem. The objective function is 
tested on IEEE 30-bus system. The objective function has been 
restricted with equality and inequality constraints to 
demonstrate the reliability and robustness of OPF solutions of 
the proposed algorithms. The results show that WOA can find 
a better OPF solutions compared with the conventional 
technique called PSO. The objective function is found to be 
805.805 $/h and 812.755 $/h for WOA and PSO, respectively. 
The comparison between the convergence trends of WOA and 
PSO techniques proves the dominance of WOA to achieve the 
OPF solution with fast convergence with fewer number of 
iterations. In the future work, the WOA technique can be used 
to tackle various optimization problems in power systems and 
other different disciplines. 
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