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Abstract— Optimal power flow (OPF) solution is considered
a vital tool for sensitive planning, energy management and
operation analysis of the electrical power systems. The analysis of
OPF seeks to accurately estimate the best solution of the power
system nonlinear algebraic equations while satisfying the
constraints of power system operation. In this paper, two reliable
metaheuristic optimization techniques, namely, particle swarm
optimization (PSO) and whale optimization algorithm (WOA),
are used to solve the problem of OPF in electrical power systems.
Minimizing the total cost of generation units is considered the
main cost function in this study. The presented OPF formulation
includes precise generator constraints such as active and reactive
power generation limits, as well as the impacts of valve point
loading. MATLAB software is used to implement the simulation
process. To validate the accuracy of the proposed algorithms,
PSO and WOA algorithms are tested on the standard system
which called IEEE 30-bus system. The results of simulation
obtained by PSO and WOA techniques are comprehensively
compared with each other. According to the simulation results,
the proposed WOA technique has the optimal performance
compared with PSO technique in terms of locating lower-cost
values and it has successfully proved itself as a robust competitor
to PSO for tackling the problem of OPF solution.

Keywords— optimal power flow; Optimization; PSO; whale
optimization algorithm; Metaheuristic; valve point loading

I.  INTRODUCTION

The OPF is a nonlinear and difficult optimization issue in
power systems that is utilized for the processes of planning and
operation of the power system [1]. OPF is critical for
enhancing and improving the efficiency of existing power
systems, and efficient development of the future systems [2] .
OPF is an essential tool for improving the electrical efficiency
of power system, voltage distribution, stability indicator, and
reducing gas emissions especially for thermal plants [3]. OPF
manages both discrete and continuous control variables for
maximizing a certain objective function while meeting the
operational restrictions, namely equality and inequality
constraints [4, 5]. The goal objective of OPF issue might be to
reduce overall cost of generating units or to decrease
transmission line (TL) losses [6]. The generator active powers,
except on the slack bus, the generator bus voltages,
transformer tap ratios, and shunt VAR compensation units are
all control variables in the OPF problem. The equality
constraints are represented as power balance equations,
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meanwhile the inequality constraints can be represented by the
bounds of the control variables and state variables.

Many conventional techniques are utilized to solve the
OPF problem, including linear programming [7, 8], nonlinear
programming [9], quadratic programming [10], the interior
point method [11], lambda iteration approach, gradient
technique [12] and Newton-based strategies [13]. Despite
these methods are successfully developed to solve the studied
OPF issue and their dependability, each of these algorithms has
various limitations, including algorithmic complexity,
unsettled  convergence,  piecewise  quadratic  cost
approximation, inability to handle nonlinear functions, and
falling in the local optima. It should be noted that the
shortcomings of previous approaches are caused by linearizing
the objective function and system restrictions around an
operating point utilizing derivatives and gradients. These
limitations are overcome by meta-heuristic optimization
algorithms, which avoid linearizing the objective function by
selecting a set of random solutions, which are then updated
around the best solution in an iterative process until the
algorithm converges and the optimal solution is obtained.
Metaheuristic optimization approaches offer the advantage of
producing better results and consuming less computational
time.

The widely used meta-heuristic optimization methods to
solve the problem of optimal power flow are as genetic
algorithm (GA) [14, 15], gravitational search algorithm (GSA)
[16], shuffle frog leaping algorithm (SFLA) [17], differential
evolution (DE) algorithm [18], artificial bee colony (ABC)
[19, 20], particle swarm optimization (PSO) [21, 22],
differential search algorithm (DSA) [23], salp swarm
algorithm (SSA) [24], firefly algorithm (FFA) [25], and krill
herd algorithm (KHA) [26]. These approaches are adaptable
and capable of locating global solutions by directing solutions
toward different sections of the search space through rapid and
abrupt changes. In [27], based on newton second order (NSO),
GA is combined with active power flow (APF) and produced
a new hybrid technique called (HGA) due to GA's slow
convergence. In [28], a grey wolf optimizer (GWO) based on
an adaptive operator and random mutation is devised to solve
the OPF issue. According to the "no free lunch" theory [29],
which states that no single optimization strategy can solve all
problems, this motivates researchers to develop new
optimization strategies.

The main purpose of this study is to apply two different
optimization methods called PSO and WOA, for solving the
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problem of OPF. The two proposed techniques connect
Newton Raphson-based Power Flow (PF) equations to
determine the lowest cost of generation units. The losses of
TLs and trends of convergence of the IEEE 30-bus system are
compared after the optimization process end. In addition, the
optimal WOA results obtained in this study are compared to
the PSO algorithm results. However, the following are the
primary contributions of this paper:

¢ Minimizing the total cost of generation units is the main
cost function of this study.

e The PSO and WOA methods are applied to optimally
solve the OPF problem.

e A comparison between the two well-known
optimization methods (PSO and WOA) is constructed
to validate their efficiency in solving the studied
optimization problem of OPF solution.

o Standard IEEE 30-bus test system is applied to test and
confirm the reliability and strength of the developed
algorithms in solving the OPF problem.

e The obtained results prove the robustness and
reliability of WOA in solving the OPF problem
compared with PSO.

The other sections of the paper are structured as the
followings: The OPF mathematical formulation is represented
in Section 2. The developed optimization methods are
explained in Section 3. Section 4 provides the simulations
performed and the best results gained. Section 5 includes the
paper's conclusion as well as the anticipated future work.

Il. PROBLEM FORMULATION

The primary goal of the optimal power flow tool is to solve
the main equations of power flow problem to assign the control
variables values and achieve the optimal solutions for the
chosen objective function. Consequently, the resulting
solutions are constrained by both kinds of constraints. The goal
of the OPF issue in this study is to find the lowest generation
cost of generator units that fulfill equality and inequality
requirements. The inequality constraints describe the system's
operating and control boundaries, whereas the equality
constraints represent the traditional electric PF equations.

The studied problem of the optimal power flow is
mathematically formulated as a nonlinear optimization
problem with two different types of constraints , namely,
equality and inequality restrictions as follows [30],

Minimize:

F(x,u) Q)

Subject to:

g;(xu)=0 =12 ... ,m )

wi(xu)<0  j=L2, P (3)

where, F (X, u) is the studied cost function, x denotes the state
variables, u is the control variables, g (x, u) denotes the
equality constraints, w (x, u) denotes the inequality constraints,
m and p denote the equality and inequality constraints number,
respectively.
A. Objective Function

The fuel cost functions of some generating units are
nonlinear and convex, as seen in Fig. 1. This is due to the
ripples caused by the opening procedures of steam turbine
control valves. The objective function of the studied OPF
problem, including the influence of valve loading point, is
formulated as follows,

Ng _
F = (aP;+hP,+ci)+|d xsin(g x (Py" ~Py))|
i=1

where, a;, bi, and c; represent the cost coefficients of it"
generator, Ng represents the number of generators, and d;, e
represent the fuel cost coefficients of the i™ generator with the
influence of valve-loading point.
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Fig. 1. Fuel cost curves with and without the influence of valve-point.

The state variables represent the dependent variables x
which characterize a certain state of power system. The state
variables are represented by the equation, which may be
written as follows:

X= ':VLl""'VLNPQ’ Po1 Qa1+ Qanpy 1 Srigevee STLNTL] ®)

where Pg: represent the active power of slack bus, Vi
denotes the load bus voltage, Qg represents the generator
reactive power, St represents the transmission line (TL)
loading, Npg represents the number of load buses, Npy
represents the generation buses number, and Nr_ denotes the
TLs number in the power system.

The control variables represent the independent variables u
that can satisfy the power flow equations. The OPF control
variables can be formulated as the following,

U=[Ver..- Vg P Pong T Tr | (6)

where, Vg represents the generator voltage bus, Pg represent
the real output power of generator, T denotes the tap setting of
transformers, Ng represents the generators number, and Nris
the transformers number.
B. Constraints of Operation
There are two types of optimal power flow constraints:

equality constraints and inequality constraints. The equality
and inequality constraints are as follows:

1) Equality Constraints: The equations that balance active
and reactive power flow are known as equality constraints of
OPF, and they are as follows:

PGi - PLi :[Vi|i[\/j‘(eij COS(Hi _0j)+ Bij Sin(ei _9,' )) (7)
Q-0 =26, o6 -6)-B,54-6) @

where, Pgi denotes the generator real power, Py; represents the
load real power, Qg; represents the generator reactive power,
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and Qu; indicates the load reactive power. G;j represents the
transfer conductance and Bj; is the susceptance between any
two buses.

2) Inequality Constraints: The inequality constraints are
classified into generator constraints, transformer constraints
and security constraints. The inequality constraints are
formulated as follows,

Pi" <P, <P imi2 i New  (9)

Q(r':‘T;in < QGi < Qg:ax i=1,2,....... , Nev (10)

VI™ <V SVI™ icn2, N (10)
T™<T<T™ 2 on ()
SLSST L2 Nn (13)
VISV SV e N (14)

. OPTIMIZATION PROBLEMS

A. PSO

Particle swarm optimization (PSO) is a technique
developed by Eberhart, Kennedy, and Shi [31, 32]. PSO is a
population-based approach that simulates the social ties of
flocks of birds and fish education. The velocity of particles
governs their movement, which is represented as a vector with
magnitude and direction. The particles organize their route for
each generation based on their best position (local best) and
the location of the best particle (global best) of the whole
population. According to this viewpoint, particles' stochastic
properties are enhanced, resulting in better solutions and faster
convergence to global optima. PSO works similarly to the
other evolution strategies. The population size in the search
space is represented by the number of particles. Particles began
their movement at random. Every particle has a fitness value
determined by the fitness function of the issue to be solved.

PSO is determined by the values of key parameters. The
best parameter values are determined by the type of problem
under study [33]. It is critical to strike a balance between
exploration and exploitation based on the algorithm's goal.
PSO is governed by the following parameters: total number of
particles, total number of iterations, inertia weight (w), and
social behavior coefficients (c1 and c2). For given values of
cl, c2, convergence of the cost function is guaranteed [34].

The equations (15) and (160) represent a particle's position
and velocity vectors in a N dimensional search space:

........ Xn) (15)

Vi= Vi Vi (16)

where, xin and vi, represent the particle i position and velocity

in a search space with n particles, respectively. A particle's

optimal position can be described as (17) and the particle with

the best position among all the other particles in the population
is represented in (18).

best best
pbest; = (X, Xq 17

Ghest, = (x* x> (18)

........

Each particle's position and velocity are updated every
(k+1) steps as follows:

Xik+l — Xik +Vik+l (19)

The velocity of it individual at (k+1) iteration is computed as
follows,
V= wV +crand, x (pbest —x)
K K (20)
+c,rand, x (Gbest —x.")
where, K represents the number of iterations. Vik and Xik is
the velocity and position of particle i at iteration Kk,
respectively. ¢1 and c, represent the coefficients of
acceleration. w is the inertia weight parameter. rand; and rand;
are random numbers between 0 and 1. The flow chart of PSO
for the optimal power flow solution is shown in Fig. 2.
B. WOA
WOA is based on whale hunting and encirclement
techniques. This is known as the bubble-net feeding strategy.
Humpback whales seek to hunt small fish at the surface by
forming a bubble net around the prey as it climbs along a circle
path. The WOA algorithm assumes that the target prey is the
current best candidate solution. After the top search agent is
identified, the remaining search agents will aim to improve
their positions in relation to the best search agent. The
mathematical formulation of this phenomenon is as follows
[35]:
D =|C.X"(t) - X(t)| (21)
X(t+1)=X"(t)-AD (22)
where t is the current iteration, 4 and D represent coefficient vectors,
X* represents the position vector of the best solution obtained so far,
X denotes the position vector, and . is an element-by-element
multiplication if there is a better solution X* must be updated in each
individual iteration. The vectors A and C can be computed as,
A=23-t-3 (23)
C=2% (24)
where, 4 is linearly decreased from 2 to 0 through the iterations
number and ¥ is an arbitrary vector in [0, 1].
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Fig. 2. The flow chart of PSO for the OPF problem.

The flow chart of WOA for the OPF problem is presented
in Fig. 3.

Initialize the population of the whales
Xi(i=1,2, .., n) consider the
boundaries ub and Ib and maximum
no. of iterations

1

| Calculate each search agent fitness |

F=the best search agent

Output the best position

Y Y

Update the position of Update the position of Update the position of
the current search agent | [ the current search agent | | the current search agent
Y

yes
if i<n

update whales depending on
the upper and lower bounds

Fig. 3. The flow chart of WOA for the OPF problem.

IV. RESULTS AND DISCUSSION

In this work, Newton Raphson based WOA is applied to
standard IEEE 30-bus systems to find the optimal solution for
the objective function. The proposed WOA has been compared
with conventional PSO algorithm. The control variables for the
proposed WOA technique are summarized as follows,
Maximum number of iterations are 500 iterations while the
number of search agents is adjusted to 15. while for the PSO
algorithm the following control variables are utilized in the
optimization process; number of iterations = 500, number of
particles = 15, Wpmin = 0.4, Wmax = 0.9, €1 = ¢2 = 1.4. The cost
coefficients of generation units, active and reactive power
bound for IEEE 30 bus test systems are listed in Table | [27].
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TABLE . COST COEFFICIENTS OF UNITS, ACTIVE AND REACTIVE POWER
OUTPUTS FOR THE TESTED IEEE 30 BUS SYSTEM.

Bu a b c d e I:’mi Pma Qmi Qma
S n X n X
1 | oars | 2 |o|s0| %% | 50 | 200 -40 | 200
2 0.0175 157 0| 40 0.{(3)9 20 80 -20 100
5 0.0625 1 0] 0 0 15 50 -15 80
8 0'0283 352 0| 0 0 10 35 -15 60
11 0.025 3 0] 0 0 10 30 -10 50
13 0.025 3 0|0 0 12 40 -15 60

The IEEE 30-bus test system is presented in Fig. 4. In this
system, while 6 buses of the system are chosen as generation
buses (PV), the remaining 21 buses are load buses (PQ). Total
load demand of the system is defined as (PD) 283.40 MW.

THREE WINDING TRANSFORMER EQUIVALENTS
HANCOCK ROANOKE

T " -
-]
. 9

30 44

© GENERATORS
7 © SYNCHRONOUS
CONDENSORS

" FELOALE =
5

Fig. 4. Standard IEEE 30-bus test system.

The convergence curves of the proposed WOA and the
conventional PSO algorithms are presented in Fig. 5.
Moreover, the obtained results of the OF, active and reactive
power generation, power losses in the lines of the IEEE 30 bus
standard system are shown in Table Il. The results obtained
from the proposed WOA are compared with that of the
conventional PSO algorithm. The objective function is found
to be 805.805 $/h and 812.755 $/h for WOA and PSO,
respectively. The transmission line losses obtained are 9.371
MW and 8.291 MW, for WOA and PSO, respectively. It is
clearly observed that the proposed WOA method gives better
results over the PSO in terms of the generation cost of the
generating units. The main objective in this work is the total
generation cost, therefore the system losses are not taken into
consideration as an objective function. Therefore, it can be
concluded that the losses of the studied system are in the
ac;:gptable margins provided in the‘current stydy.

—_—WOA
PsSO |1

objective function ($/h)

0 50 100 150 200 250
Iterations

Fig. 5. Convergence curves of the OPF solution for standard IEEE 30-bus

system.
TABLE Il. OPF RESULTS FOR IEE 30-BUS TEST SYSTEM.
| IEEE 30-Bus | WOA | PSO |

P1 (MW) 173.733 159.194
P2 (MW) 4,49 39.286
P5 (MW) 20.84 28.450
P8 (MW) 20.84 32.726
P11 (MW) 18.859 13.531
P13 (MW) 16.51 18.505
VG1 (pu) 1.050 1.050
VG2 (pu) 1.089 1.027
VG5 (pu) 1.0105 1.004
VG8 (pu) 1.0056 1.062
VG11 (pu) 1.0861 1.093
VG13(pu) 1.0468 1.032
T11 1.0053 0.986
T12 0.968 0.975
T15 0.968 1.094
T36 0.968 1.094
Plosses (MW) 9.371 8.291
Cost ($/h) 805.805 812.755

V.  CONCLUSION

In this work, PSO and WOA optimization techniques are
applied to solve the OPF problem. The objective function is
tested on IEEE 30-bus system. The objective function has been
restricted with equality and inequality constraints to
demonstrate the reliability and robustness of OPF solutions of
the proposed algorithms. The results show that WOA can find
a better OPF solutions compared with the conventional
technique called PSO. The objective function is found to be
805.805 $/h and 812.755 $/h for WOA and PSO, respectively.
The comparison between the convergence trends of WOA and
PSO techniques proves the dominance of WOA to achieve the
OPF solution with fast convergence with fewer number of
iterations. In the future work, the WOA technique can be used
to tackle various optimization problems in power systems and
other different disciplines.
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