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Abstract— Deep learning algorithms, and Convolution
Neural Networks in particular, have advanced significantly in
the last decade and have seen ever-increasing applications to
real-life problems—medical applications being some of the most
promising. CNNs have been shown to perform better than
traditional image processing methods and machine learning
algorithms used in medical image classification or segmentation.
In this paper, we adapt the Faster Region-based Convolutional
Neural Network to the purpose of malaria parasite localization
and classification in Giemsa-stained thin-blood smear through
the process of transfer learning. Five convolutional neural
networks i.e., (ResNet-50, ResNet-101, VGG16, VGG19 and
EfficientNet B3) are used as feature extractors for Faster R-
CNN and their impact on the accuracy of the model is
compared. We use the BBBC041v1 dataset as the source of the
thin-blood smear images used in the experiments and the feature
extractors are compared separately in detecting and localizing
the six different classes of cells contained in the dataset. The
experiment results demonstrate that ResNet-101 exhibits the
best performance relative to the other four models tested as
feature extractors.

Keywords— Malaria, transfer-learning, object detection, faster
r-cnn.

. INTRODUCTION
Malaria is a deadly yet treatable illness that affects
millions of people each year. Infection with a Plasmodium
parasite, of which five species (Plasmodium falciparum,
Plasmodium vivax, Plasmodium ovale, Plasmodium malariae,
and Plasmodium knowlesi) may infect humans, causes
malaria. Severe malaria is multi-syndromic and often
manifests as cerebral malaria. Mortality is high if severe
malaria is not promptly and effectively managed. A majority
of the severe cases occur due to infection with the falciparum
parasite [1]. These parasites are mostly transferred to humans

by the bite of female Anopheles mosquitoes.

According to the 2021 World Malaria Report by the World
Health Organization, there was an estimate of 241 million
malaria cases globally in 2020, which was an increase from
227 million in 2019. Twenty-nine countries accounted for
95% percent of the cases worldwide, and six countries for
55% of the cases. The percentage of total malaria deaths in
children under the age of 5 years was 77%. Most of the cases
were from the African continent [2].

When malaria is detected early on, it may be efficiently
treated with medicine, avoiding a mild case from becoming
life-threatening. For adequate treatment and illness

monitoring, an accurate malaria diagnosis is required. Due to
the constraint of resources and remoteness, access to
diagnostic procedures is restricted in places where the malaria
load is highest [3].

Clinical diagnosis of malaria (based on symptoms such as
fever rather than a diagnostic test) uses the fewest resources
and is hence still extensively used. Malaria symptoms, on the
other hand, are variable and overlap with those of many other
prevalent tropical illnesses, resulting in low specificity in the
clinical diagnosis. False positives are widespread in highly
endemic areas, resulting in not only the underlying source of
symptoms remaining untreated, but also over-prescription of
antimalarial medications, which causes unwanted side effects
and contributes to parasite drug resistance [4]-[6].

As a result, the WHO recommends that all suspected cases
of malaria be verified with a parasitological test. The
percentage of instances when this occurs has risen
considerably in Sub-Saharan African nations over the last
decade, from 38% of all suspected cases in 2010 to 85% in
2018, owing to the advent of Rapid Diagnostic Tests (RDTS).
Manual inspection of blood smears by light microscopy is the
current gold-standard method for correctly identifying malaria
parasites. The standard microscopic diagnostic procedure
recommended by the WHO follows four steps: blood film
preparation, staining, examination, and interpretation [7].

This manual inspection is slow and requires expertise;
which, in resource-strained countries, can be costly and
scarce. Therefore, automating the process of counting and
classification of malaria-parasitized cells would be beneficial.

Our work seeks to apply recent advances in Computer
Vision to the problem to the problem of malaria parasite
localization and classification in thin blood smear images. We
seek to implement a robust object detection model that can
surmount the challenges presented in examining malaria
microscopy images such as the differences in illumination,
color, cell shape and density, and the insufficiency of
annotated well-balanced training data.

1. METHODS

A. Conventional Malaria Image Analysis Methods

A lot of research has been proposed that has sought to
leverage image processing technologies for the automation of
malaria diagnosis. Many proposed methods that use traditional
image processing techniques for the classification of thin
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blood smear images aim to automatically count all uninfected
and parasitized cells. They typically follow a process that
includes preprocessing, segmentation, feature extraction, and
classification [8], [9].

Figure 1 depicts a schematic representation of the typical
pipeline for automated malaria image analysis using
traditional image processing techniques.
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Fig. 1. [lllustration depicting a schematic representation of the basic image
analysis pipeline followed by most automated malaria diagnosis techniques.

B. Proposed Method

One of the main areas of research interest in Computer
vision is Object Detection. In contrast to image classification,
object detection not only identifies objects in an image but
also localizes them. Object detection algorithms have seen
increasing application in medical image processing and have
shown very good results when compared to human experts.

Our method, based on Faster R-CNN [10] is shown in
figure 2. We tested five different CNNs, which are ResNet50,
ResNet101, VGG16, VGG19, and EfficientNet B3, as feature
extractors using transfer learning. These networks have
achieved excellent results in image classification tasks. The
nature of Faster R-CNN allows us to use any CNN as a feature
extracting backbone. We performed tests to ascertain which of
the five CNNs performed best as a feature extractor in the
detection of parasitized cells.

The features extracted from the CNN are shared between
the Regional Proposal Network (RPN) and the Region of
Interest (ROI) pooling layer. The RPN takes fixed bounding
boxes, which are referred to as anchors and are placed
throughout the image with different aspect ratios and sizes,
and categorizes those that overlap with a ground truth object
with an Intersection over union (loU) greater than 0.5 as
foreground objects and those that have an loU less than 0.1 or
have no overlap with any ground truth object as being
background object. The RPN outputs a set of rectangular
object proposals, each with an objectness score. The ROI
pooling layer fixes the feature vectors of the object proposals
to a uniform size and the feature vectors are finally sent to the
classifier to complete the detection process.

In this paper we aim to study the performance of the above
mentioned CNNs as feature extractors for Faster R-CNN in
the task of malaria parasite detection.
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Fig. 2. Faster RCNN architecture used in this study, with the CNN
Backbone being either one of the five CNNs we test.

C. Dataset

We used image set BBBC041v1, available from the Broad
Bioimage Benchmark Collection [11]. This dataset consists of
1,328 images of Giemsa reagent stained thin-blood smears.
The data came from ex vivo samples from Plasmodium vivax
infected patients. For the training data, four patients were used
and one was used for the testing data. There are seven classes
in the dataset: red blood cells, trophozoites, rings, schizont,
gametocytes, leukocytes and a “difficult” class that annotators
were allowed to label as if they weren’t certain of the cell
type. The object classes in the dataset have a heavy but natural
imbalance, with red blood cells accounting for 97 % of the
total cells in the dataset. The images are stored in .png or .jpg
file formats and 24-bit color depth. There is a total of 85,985
cells in those images. 1208 of the images in the dataset are
1600x1200 pixels and the remaining 120 images are
1944x1383. 88% of the dataset is used to train the models, and
the remainder to test them.
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Fig. 3. Distribution of the number of cells over the seven classes.

D. Image Pre-processing

One of the most essential properties of Computer-Aided
Diagnosis systems for microscopy images is robustness.
However, if the systems work with multi-source images
gathered under various configurations, it is difficult to assure
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this property. Changes in lighting and acquisition devices
modify the color of images and, in many cases, degrade the
system's performance. As a result, before training and testing
the models, the colors of the images in the dataset were
adjusted. This normalization of colors in images is called color
constancy.

The Shades of Gray algorithm [12] is used for the color
transformation with a gamma correction step .with a gamma
set to the standard value of 2.2 [13] was applied to all the
images before the color constancy was performed.

1. RESULTS

A. Parameter Settings

The models were implemented using the PyTorch
framework version 1.9.1 on Python 3.7.12 and were trained on
a single NVIDIA Tesla P100 with 16GB RAM in Ubuntu
20.04.

The original framework parameters of Faster RCNN are
initially used in our experiments. We aim to repurpose the
original object detection framework to malaria parasite
detection on high-resolution blood smear images through
transfer learning. We use the Albumentations library [14] to
perform image augmentations during the training process.
Generalized R-CNN Transform operations of normalizing the
images and resizing them (bilinear mode) are also applied.

In all feature extractors, batch normalization is applied
after every convolution. The parameters of the batch
normalization are frozen to the parameters estimated during
ImageNet pre-training.

We used stochastic gradient descent with a momentum of
0.9 as the optimizer. The initial learning rates we used
depended on the particular feature extractors as detailed
below. The learning rate was regulated by the
ReduceLROnPlateau scheduler implemented in the Pytorch
library.

e ResNet-50 [15]: We use ResNet50 with a Feature
Pyramid Network. All layers from the FPN were used.
The initial learning rate was set to 3e-3.

e ResNet-101 [15]: We use ResNet101 along with a
Feature Pyramid Network that extracts features of 256,
512, 1024 and 2048 dimensions. The initial learning
rate is set to 1e-3.

o VGGI16 [16]: Features are extracted from the last
MaxPool2d layer (layer 30) of the network with a
stride and kernel size of 2. The initial learning rate is
set to 3e-3.

e VGG19 [16]: Features are extracted from the last
MaxPool2d layer (layer 36) of the network. The initial
learning rate is set to 3e-3

o EfficientNet-B3 [17]: Features are extracted from the
last MBConv Layer of the network. The initial learning
rate is set to 3e-3.

B. Evaluation Metrics

Precision, Recall, and Average Precision are standard
metrics used to evaluate the performance of object detection

models. In the context of the malaria parasite detection
problem, precision is the ratio of the number of cells correctly
detected to the total number of cells detected. The recall is the
ratio of correctly detected cells of a class to the number of all
actual cells of that particular class.

The average precision, which is used as the evaluation
metric in our experiments, is the average of all the precision
rates at different recall rates. The average of AP across all
classes is called mean average precision (MAP). Instead, it's
commonly referred to as AP. Average precision is a good
measure of an object detection model’s comprehensive
detection capacity.

TABLE I. AVERAGE PRECISION SCALES

AP at different loU values

APs.95 AP averaged over interval loU=[0.50, 0.95](primary

challenge metric)

APsy AP at 1oU=0.50 (PASCAL VOC metric)

AP AP at 1o0U=0.75 (strict metric)

C. Evaluation Results

The models were all tested under the same model parameters
and hardware environment. However, the models were
trained and tested in two different ways:
1) Binarized dataset approach

In this case, we binarized the classes in the dataset into either
an uninfected or infected class. The uninfected class
comprised of red blood cells and leukocytes; and an infected
class that includes the ring, schizont, trophozoite and
gametocyte classes. Other related works on this subject have
sought to classify cells in smear-images as either infected or
uninfected. The results of the performance of the models
tested on a binarized version of the dataset, shown in Table 2
and Figure 5, may present a useful comparison to similar
works. ResNet-101 performs marginally better than the other
models in this case.

TABLE II. DETECTION RESULTS FROM BINARIZED DATASET
CNN Backbone APs.95 APs AP
ResNet-50 0.669 0.849 0.792
ResNet-101 0.69 0.87 0.815
VGG16 0.64 0.85 0.767
VGG19 0.664 0.857 0.8
EfficientNet B3 0.656 0.868 0.8
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Fig. 4. Comparison of model accuracies on the binarized version of dataset
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2) Standard dataset approach

In the second approach, the models were trained and tested
on all classes included in the dataset except for the cells
labeled as difficult. The class labeled as “difficult” was
discarded from the dataset on the rationale that it would add
noise to the system and make it difficult for the model to
classify cells it has learned features of more confidently. As
shown in the Table 3 and Figure 6, ResNet-101 is the better
performing model in this case too, but with a larger margin
than in the binarized approach.

TABLE IlI. DETECTION RESULTS FROM STANDARD DATASET
CNN Backbone APso.95 APs APz
ResNet-50 0.512 0.619 0.60
ResNet-101 0.70 0.88 0.842
VGG16 0.492 0.621 0.588
VGG19 0.505 0.649 0.611
EfficientNet B3 0.572 0.728 0.70
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Fig. 5. Comparison of model accuracies on the standard version of dataset

D. Results Display

An example of detection results using ResNet-101 as a
backbone for detection on the standard dataset are shown in
the Figure 6. Due to the heavy in-balance in the dataset, the
model has a high recall for the red blood cell class but
performs relatively poorly on the other classes. Because to
this, if there is a need to not only classify the particular
development stage of the parasite and not just that the cell is
infected, a two-stage detection model in which a second CNN
is trained especially on the other classes in the dataset as was
done in [18] would be recommended.

IV. CONCLUSION

In this paper, we used the Faster R-CNN object detection
model to localize and classify uninfected and malaria-
infected blood cells in giemsa-stained thin-blood smears. It is
seen that a deep learning model that performs well on general
image classification can also be adapted to microscopy image
interpretation and have the potential to assist in the
automation of malaria parasitological tests. We tested five
deep learning models (ResNet-50, ResNet-101, VGGL16,
VGG19, and EfficientNet-B3) as feature extracting
backbones for the Faster R-CNN model and compared their
impact on the accuracy of the model. Of the models tested,
ResNet-101 achieved the best results.
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