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Abstract— Deep learning algorithms, and Convolution 

Neural Networks in particular, have advanced significantly in 

the last decade and have seen ever-increasing applications to 

real-life problems—medical applications being some of the most 

promising. CNNs have been shown to perform better than 

traditional image processing methods and machine learning 

algorithms used in medical image classification or segmentation. 

In this paper, we adapt the Faster Region-based Convolutional 

Neural Network to the purpose of malaria parasite localization 

and classification in Giemsa-stained thin-blood smear through 

the process of transfer learning. Five convolutional neural 

networks i.e., (ResNet-50, ResNet-101, VGG16, VGG19 and 

EfficientNet B3) are used as feature extractors for Faster R-

CNN and their impact on the accuracy of the model is 

compared. We use the BBBC041v1 dataset as the source of the 

thin-blood smear images used in the experiments and the feature 

extractors are compared separately in detecting and localizing 

the six different classes of cells contained in the dataset. The 

experiment results demonstrate that ResNet-101 exhibits the 

best performance relative to the other four models tested as 

feature extractors. 

Keywords— Malaria, transfer-learning, object detection, faster 

r-cnn. 

I.  INTRODUCTION 
Malaria is a deadly yet treatable illness that affects 

millions of people each year. Infection with a Plasmodium 
parasite, of which five species (Plasmodium falciparum, 
Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, 
and Plasmodium knowlesi) may infect humans, causes 
malaria. Severe malaria is multi-syndromic and often 
manifests as cerebral malaria. Mortality is high if severe 
malaria is not promptly and effectively managed. A majority 
of the severe cases occur due to infection with the falciparum 
parasite [1]. These parasites are mostly transferred to humans 
by the bite of female Anopheles mosquitoes. 

According to the 2021 World Malaria Report by the World 
Health Organization, there was an estimate of 241 million 
malaria cases globally in 2020, which was an increase from 
227 million in 2019. Twenty-nine countries accounted for 
95% percent of the cases worldwide, and six countries for 
55% of the cases. The percentage of total malaria deaths in 
children under the age of 5 years was 77%. Most of the cases 
were from the African continent [2]. 

When malaria is detected early on, it may be efficiently 
treated with medicine, avoiding a mild case from becoming 
life-threatening. For adequate treatment and illness 

monitoring, an accurate malaria diagnosis is required. Due to 
the constraint of resources and remoteness, access to 
diagnostic procedures is restricted in places where the malaria 
load is highest [3]. 

Clinical diagnosis of malaria (based on symptoms such as 
fever rather than a diagnostic test) uses the fewest resources 
and is hence still extensively used. Malaria symptoms, on the 
other hand, are variable and overlap with those of many other 
prevalent tropical illnesses, resulting in low specificity in the 
clinical diagnosis. False positives are widespread in highly 
endemic areas, resulting in not only the underlying source of 
symptoms remaining untreated, but also over-prescription of 
antimalarial medications, which causes unwanted side effects 
and contributes to parasite drug resistance [4]–[6]. 

As a result, the WHO recommends that all suspected cases 
of malaria be verified with a parasitological test. The 
percentage of instances when this occurs has risen 
considerably in Sub-Saharan African nations over the last 
decade, from 38% of all suspected cases in 2010 to 85% in 
2018, owing to the advent of Rapid Diagnostic Tests (RDTs). 
Manual inspection of blood smears by light microscopy is the 
current gold-standard method for correctly identifying malaria 
parasites. The standard microscopic diagnostic procedure 
recommended by the WHO follows four steps: blood film 
preparation, staining, examination, and interpretation [7]. 

This manual inspection is slow and requires expertise; 
which, in resource-strained countries, can be costly and 
scarce. Therefore, automating the process of counting and 
classification of malaria-parasitized cells would be beneficial. 

Our work seeks to apply recent advances in Computer 
Vision to the problem to the problem of malaria parasite 
localization and classification in thin blood smear images. We 
seek to implement a robust object detection model that can 
surmount the challenges presented in examining malaria 
microscopy images such as the differences in illumination, 
color, cell shape and density, and the insufficiency of 
annotated well-balanced training data. 

II. METHODS 

A. Conventional Malaria Image Analysis Methods 

A lot of research has been proposed that has sought to 
leverage image processing technologies for the automation of 
malaria diagnosis. Many proposed methods that use traditional 
image processing techniques for the classification of thin 
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blood smear images aim to automatically count all uninfected 
and parasitized cells. They typically follow a process that 
includes preprocessing, segmentation, feature extraction, and 
classification [8], [9]. 

Figure 1 depicts a schematic representation of the typical 
pipeline for automated malaria image analysis using 
traditional image processing techniques. 

 

Fig. 1. Illustration depicting a schematic representation of the basic image 

analysis pipeline followed by most automated malaria diagnosis techniques. 

B. Proposed Method 

One of the main areas of research interest in Computer 
vision is Object Detection. In contrast to image classification, 
object detection not only identifies objects in an image but 
also localizes them. Object detection algorithms have seen 
increasing application in medical image processing and have 
shown very good results when compared to human experts. 

Our method, based on Faster R-CNN [10] is shown in 
figure 2. We tested five different CNNs, which are ResNet50, 
ResNet101, VGG16, VGG19, and EfficientNet B3, as feature 
extractors using transfer learning. These networks have 
achieved excellent results in image classification tasks. The 
nature of Faster R-CNN allows us to use any CNN as a feature 
extracting backbone. We performed tests to ascertain which of 
the five CNNs performed best as a feature extractor in the 
detection of parasitized cells.  

The features extracted from the CNN are shared between 
the Regional Proposal Network (RPN) and the Region of 
Interest (ROI) pooling layer. The RPN takes fixed bounding 
boxes, which are referred to as anchors and are placed 
throughout the image with different aspect ratios and sizes, 
and categorizes those that overlap with a ground truth object 
with an Intersection over union (IoU) greater than 0.5 as 
foreground objects and those that have an IoU less than 0.1 or 
have no overlap with any ground truth object as being 
background object. The RPN outputs a set of rectangular 
object proposals, each with an objectness score. The ROI 
pooling layer fixes the feature vectors of the object proposals 
to a uniform size and the feature vectors are finally sent to the 
classifier to complete the detection process. 

In this paper we aim to study the performance of the above 
mentioned CNNs as feature extractors for Faster R-CNN in 
the task of malaria parasite detection. 

 

Fig. 2. Faster RCNN architecture used in this study, with the CNN 

Backbone being either one of the five CNNs we test. 

C. Dataset 

We used image set BBBC041v1, available from the Broad 
Bioimage Benchmark Collection [11]. This dataset consists of 
1,328 images of Giemsa reagent stained thin-blood smears. 
The data came from ex vivo samples from Plasmodium vivax 
infected patients. For the training data, four patients were used 
and one was used for the testing data. There are seven classes 
in the dataset: red blood cells, trophozoites, rings, schizont, 
gametocytes, leukocytes and a “difficult” class that annotators 
were allowed to label as if they weren’t certain of the cell 
type. The object classes in the dataset have a heavy but natural 
imbalance, with red blood cells accounting for 97 % of the 
total cells in the dataset. The images are stored in .png or .jpg 
file formats and 24-bit color depth. There is a total of 85,985 
cells in those images. 1208 of the images in the dataset are 
1600×1200 pixels and the remaining 120 images are 
1944×1383. 88% of the dataset is used to train the models, and 
the remainder to test them. 

 

Fig. 3. Distribution of the number of cells over the seven classes. 

D. Image Pre-processing 

One of the most essential properties of Computer-Aided 
Diagnosis systems for microscopy images is robustness. 
However, if the systems work with multi-source images 
gathered under various configurations, it is difficult to assure 
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this property. Changes in lighting and acquisition devices 
modify the color of images and, in many cases, degrade the 
system's performance. As a result, before training and testing 
the models, the colors of the images in the dataset were 
adjusted. This normalization of colors in images is called color 
constancy. 

The Shades of Gray algorithm [12] is used for the color 
transformation with a gamma correction step .with a gamma 
set to the standard value of 2.2 [13] was applied to all the 
images before the color constancy was performed. 

III. RESULTS 

A. Parameter Settings 

The models were implemented using the PyTorch 
framework version 1.9.1 on Python 3.7.12 and were trained on 
a single NVIDIA Tesla P100 with 16GB RAM in Ubuntu 
20.04.  

The original framework parameters of Faster RCNN are 
initially used in our experiments. We aim to repurpose the 
original object detection framework to malaria parasite 
detection on high-resolution blood smear images through 
transfer learning. We use the Albumentations library [14] to 
perform image augmentations during the training process. 
Generalized R-CNN Transform operations of normalizing the 
images and resizing them (bilinear mode) are also applied.  

In all feature extractors, batch normalization is applied 
after every convolution. The parameters of the batch 
normalization are frozen to the parameters estimated during 
ImageNet pre-training. 

We used stochastic gradient descent with a momentum of 
0.9 as the optimizer. The initial learning rates we used 
depended on the particular feature extractors as detailed 
below. The learning rate was regulated by the 
ReduceLROnPlateau scheduler implemented in the Pytorch 
library. 

• ResNet-50 [15]:  We use ResNet50 with a Feature 
Pyramid Network. All layers from the FPN were used. 
The initial learning rate was set to 3e-3. 

• ResNet-101 [15]: We use ResNet101 along with a 
Feature Pyramid Network that extracts features of 256, 
512, 1024 and 2048 dimensions. The initial learning 
rate is set to 1e-3. 

• VGG16 [16]: Features are extracted from the last 
MaxPool2d layer (layer 30) of the network with a 
stride and kernel size of 2. The initial learning rate is 
set to 3e-3. 

• VGG19 [16]: Features are extracted from the last 
MaxPool2d layer (layer 36) of the network. The initial 
learning rate is set to 3e-3 

• EfficientNet-B3 [17]: Features are extracted from the 
last MBConv Layer of the network. The initial learning 
rate is set to 3e-3. 

B. Evaluation Metrics 

Precision, Recall, and Average Precision are standard 
metrics used to evaluate the performance of object detection 

models. In the context of the malaria parasite detection 
problem, precision is the ratio of the number of cells correctly 
detected to the total number of cells detected. The recall is the 
ratio of correctly detected cells of a class to the number of all 
actual cells of that particular class.  

The average precision, which is used as the evaluation 
metric in our experiments, is the average of all the precision 
rates at different recall rates. The average of AP across all 
classes is called mean average precision (mAP). Instead, it's 
commonly referred to as AP. Average precision is a good 
measure of an object detection model’s comprehensive 
detection capacity. 

TABLE I.  AVERAGE PRECISION SCALES 

AP at different IoU values 

AP50:95 AP averaged over interval IoU=[0.50, 0.95](primary 

challenge metric) 

AP50 AP at IoU=0.50 (PASCAL VOC metric) 

AP75 AP at IoU=0.75 (strict metric) 

 

C. Evaluation Results 

The models were all tested under the same model parameters 

and hardware environment. However, the models were 

trained and tested in two different ways: 

1) Binarized dataset approach 

In this case, we binarized the classes in the dataset into either 

an uninfected or infected class. The uninfected class 

comprised of red blood cells and leukocytes; and an infected 

class that includes the ring, schizont, trophozoite and 

gametocyte classes. Other related works on this subject have 

sought to classify cells in smear-images as either infected or 

uninfected. The results of the performance of the models 

tested on a binarized version of the dataset, shown in Table 2 

and Figure 5, may present a useful comparison to similar 

works. ResNet-101 performs marginally better than the other 

models in this case. 

TABLE II.  DETECTION RESULTS FROM BINARIZED DATASET 

CNN Backbone AP50:95 AP50 AP75 

ResNet-50 0.669 0.849 0.792 

ResNet-101 0.69 0.87 0.815 

VGG16 0.64 0.85 0.767 

VGG19 0.664 0.857 0.8 

EfficientNet B3 0.656 0.868 0.8 

 

 

Fig. 4. Comparison of model accuracies on the binarized version of dataset 
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2) Standard dataset approach 

In the second approach, the models were trained and tested 

on all classes included in the dataset except for the cells 

labeled as difficult. The class labeled as “difficult” was 

discarded from the dataset on the rationale that it would add 

noise to the system and make it difficult for the model to 

classify cells it has learned features of more confidently. As 

shown in the Table 3 and Figure 6, ResNet-101 is the better 

performing model in this case too, but with a larger margin 

than in the binarized approach. 

TABLE III.  DETECTION RESULTS FROM STANDARD DATASET 

CNN Backbone AP50:95 AP50 AP75 

ResNet-50 0.512 0.619 0.60 

ResNet-101 0.70 0.88 0.842 

VGG16 0.492 0.621 0.588 

VGG19 0.505 0.649 0.611 

EfficientNet B3 0.572 0.728 0.70 

 

 

Fig. 5. Comparison of model accuracies on the standard version of dataset 

D. Results Display 

An example of detection results using ResNet-101 as a 

backbone for detection on the standard dataset are shown in 

the Figure 6. Due to the heavy in-balance in the dataset, the 

model has a high recall for the red blood cell class but 

performs relatively poorly on the other classes. Because to 

this, if there is a need to not only classify the particular 

development stage of the parasite and not just that the cell is 

infected, a two-stage detection model in which a second CNN 

is trained especially on the other classes in the dataset as was 

done in [18] would be recommended. 

 

Fig. 6. Detection and classification result from proposed method with 

ResNet-101 backbone 

IV. CONCLUSION 

In this paper, we used the Faster R-CNN object detection 

model to localize and classify uninfected and malaria-

infected blood cells in giemsa-stained thin-blood smears. It is 

seen that a deep learning model that performs well on general 

image classification can also be adapted to microscopy image 

interpretation and have the potential to assist in the 

automation of malaria parasitological tests. We tested five 

deep learning models (ResNet-50, ResNet-101, VGG16, 

VGG19, and EfficientNet-B3) as feature extracting 

backbones for the Faster R-CNN model and compared their 

impact on the accuracy of the model. Of the models tested, 

ResNet-101 achieved the best results. 
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