
Comparison of FP-Growth and ID3 by Creating

Feature Model for Software Product Line

Win Pa Pa Htun

University of Computer Studies,

 Mandalay (UCSM)

Mandalay, Myanamar

Khin Mar Myo
University of Computer Studies,

Mandalay (UCSM)

Mandalay, Myanmar

Abstract—Today, software product line engineering (SPLE) is an

emerging software engineering paradigm. SPLE is based on the concept

of reusing software artifacts gaining from the previous software product

lifecycle. For SPLE, many researchers concerns with domain analysis

and feature modeling (FM). In this system, the feature model

management process is proposed for SPLE about mobile phone

environment. To create feature model, there are two processes. The first

is feature extraction process that is extracted feature from the tested

mobile environment. For feature extraction process, this system uses

iterative dichotomiser-3 (ID-3) and frequent pattern growth (FP-

growth) algorithms. Moreover, this system compares these two feature

extraction algorithms to know which algorithm is more effective for

feature extraction process. By using extracted features, this system uses

the propositional formula to create feature model for SPLE. This system

is tested by using different HTC mobile versions. According to the

performance comparison results, FP-growth is faster than ID-3 about

feature extraction process.

Keywords—SPLE, FP-Growth, ID-3, HTC Mobile Feature.

I. INTRODUCTION

In the software engineering, software product line

engineering (SPLE) is a process that delivers reusable

components, which can be reused to develop a new

application for the domain. SPLE defines software product

lines requirements, software architecture and a set of

reusable components, shared by the products, which

implements a considerable part of the products’

functionalities.

The purpose of SPLE is to reduce the time and costs of

production and to increase the software quality by reusing

elements which have been already tested and secured.

These objectives can be realized by putting in common

development artifacts such as requirement’s documents,

conception’s diagrams, architectures, codes, test’s

procedures, and maintenance’s procedures. The general

process of product lines is based on the reusability of

requirements, architecture and components.

For the software product line, the proposed system is

implemented as the performance comparison system for

feature model management. For performance comparison,

this system compares the feature extraction process of FP-

Growth and ID-3 algorithms. By using HTC extracted mobile

features, this system uses propositional formula to product

HTC feature model.

The main objective of the proposed system is to extract

the product features from high-level software artifacts rather

than low-level artifacts. This system also proposes a feature

diagram by means of data mining method that includes FP-

growth and ID-3. And then, this system also describes the

performance compassion results. Finally, this system finds

out common & variability analysis among the different

version of same or different HTC software product.

 This paper is organized into six sections. In the second

section, related works are described. System design is shown

in third section. Proposed methodology is described in fourth

section. Implementation and experimental results are

described in section five and six. Finally, conclusion is

described in the seventh section.

II. RELATED WORK

In 2013, B. Zhang [1] presented the system about mining

complex feature correlations from large software product line

configurations. The input of our approach is product

configurations separately documented in each product. The

first process is configuration extraction which analyzes all

existing product configurations and results into a

configuration matrix consisting of selected features with their

values across all products. Then the second process of data

preparation adapts the information in the configuration matrix

by unifying the data format and discretizing continuous

feature values.

 In 2014, B. Danilo and D. Mark [2] expressed the

software product line engineering (SPLE) with feature

models. One increasing trend in software development is the

need to develop multiple, similar software products instead of

just a single individual product. There are several reasons for

this. Products that are being developed for the international

market must be adapted for different legal or cultural

environments, as well as for different languages, and so must

provide adapted user interfaces. Because of cost and time

constraints it is not possible for software developers to

develop a new product from scratch for each new customer,

and so software reuse must be increased.

III. PROPOSED SYSTEM DESIGN

 For SPLE, this system is proposed as the performance

comparison system using FP-Growth and ID-3 algorithms.

Firstly, this system extracts web pages about HTC mobile

phone. And then, the user must choose one of two methods

that are FP-Growth and ID-3 algorithms. In this system, these

algorithms are used to extract HTC mobile features and HTC

feature diagram.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060400
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

836

After extracting feature diagram by using each

algorithm, this system compares the performance of each

algorithm about feature extraction process. Proposed system

design is shown in Figure 1.

Fig 1. Proposed System Design

By using extracted feature diagram, this system creates

HTC feature model using propositional formula. To create

feature model (FM), this system first integrates feature

diagram based on semantic logic. And then, this system

defines each feature relationships based on propositional

formula. Finally, this system produces feature model about

HTC mobile phone.

IV. PROPOSED METHODOLOGY

In this section, tow data mining methods are

described for feature extraction process. These methods are

FP-Growth and ID-3 algorithms. And then, the propositional

formula is used for feature model creation process.

A. Frequent Pattern Growth (FP-Growth)

Frequent pattern growth (FP-Growth) approach is an

efficient approach for producing the frequent itemsets

without generation of candidate itemsets. It is based upon the

divide and conquers strategy [3]. Instead of generating a large

number of candidates, the FP-growth approach preserves the

essential groupings of the original data elements for mining.

Then the analysis is focused on counting the frequency of the

relevant data sets instead of candidate sets. Instead of

scanning the entire database to match against the whole

corresponding set of candidates in each pass, the method

partitions the data set to be examined as well as the set of

patterns to be examined by database projection. Such a

divide-and-conquer methodology substantially reduces the

search space and leads to high performance.

With the growing capacity of main memory and the

substantial reduction of database size by database projection

as well as the space needed for manipulating large sets of

candidates, a substantial portion of data can be put into main

memory for mining. New data structures and methods, such

as FP-tree and pseudo-projection, have been developed for

data compression and pointer-based traversal.

FP-growth may eliminate or substantially reduce the

number of candidate sets to be generated and also reduce the

size of the database to be iteratively examined, and therefore,

lead to high performance [4]. The FP-growth approach

consists of two steps:

• Constructing an FP-tree: The first step constructs a

compact data structure called FP-tree that efficiently

stores frequent patterns of a transaction database and

enables efficient frequent pattern mining.

• Mining patterns using an FP-tree: The second step uses

an FP-tree to recursively mine all frequent patterns [4].

1) FP-Growth Algorithm: FP-growth algorithm for

discovering frequent pattern without candidate generation is

as follows [5]:

Algorithm: FP-Growth. Mine frequent patterns using an FP-

tree by pattern fragment growth.

Input: A transaction database, D; minimum support

threshold, min-sup.

Output: The complete set of frequent patterns.

Method:
1. The FP-tree is constructed in the following steps.

(a) Scan the transaction database D once. Collect the set

of frequent items F and their supports. Sort F in

support descending order as L, the list of frequent

items.

Start

Extract Web Page

FP-Growth

or ID-3?

Web Page

Feature Diagram Feature Diagram

Extract HTC Feature

Create Feature Diagram

using FP-Growth Algorithm
Create Feature Diagram

using ID-3 Algorithm

Extract HTC Feature

Produce Feature Diagram Produce Feature Diagram

Compare Processing Time about Feature Diagram Creation

Display

Performance

Comparison Result

Feature Model

Integrate Feature Diagram based on Semantic Logic

Define Feature Relationship using Propositional Formula

Produce HTC Mobile Phone Feature Model

Display HTC

Mobile Phone

Feature Model

End

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060400
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

837

(b) Create the root of an FP-tree and label it as “null”.

For each transaction Trans in D do the following.

Select and sort the frequent items in Trans according

to the order of L. Let the sorted frequent items list in

Trans be [p|P], where p is the first element and P is

the remaining list. Call insert-tree ([p|P], T). If T has

a child N such that N.item-name = p.item-name,

then increment N’s count by 1; else create a new

node N, and let its count be 1, it parent link be

linked to T, and its node-link to the nodes with the

same item-name via the node-link structure. If P is

nonempty, call insert-tree (P, N) recursively.

2. Mining of an FP-tree is performed by calling FP-growth

(FP-tree, Null), which is implemented as follows:

 Procedure FP-growth (Tree, )

(1) if Tree contains a single path P then

(2) for each combination (denoted as ) of the nodes

in the path P

(3) generate pattern  U  with support = minimum

support of nodes in  ;

(4) else for each ai in the header of Tree {

(5) generate pattern  = ai U  with support = ai.

support;

(6) construct  ’s conditional pattern base and then  ’s

conditional FP-tree Tree ;

(7) if Tree ≠  then

(8) call FP-growth (Tree ,); }

B. Iterative Dichotomiser-3 (ID-3)

In ID-3, a decision tree is a flow-chart-like tree structure

that employs a top down. To select the test attribute at each

node in the tree, the information gain measure is used. The

decision tree is built by using the attribute selection measure

equation and decision tree algorithm [6].

1) Decision Tree Algorithm: This algorithm is as follows:

Algorithm : Generate_decision_tree.

Step 1: create a node N;

Step 2: if samples are all of the same class, C then return N

as a leaf node labeled with the class C;

Step 3: if attribute-list is empty then return N as a leaf node

labeled with the most common class in samples;

Step 4: select test-attribute, the attribute among attribute-list

with the highest information gain;

Step 5: label node N with test-attribute;

Step 6: for each known value ai of test-attribute

- grow a branch from node N for the condition

test-attribute=ai;

Step 7: let si be the set of samples in samples for which test-

attribute=ai;

Step 8: if si is empty then attach a leaf labeled with the most

common class in samples;

 else attach the node returned by Generate _decision

_tree;

2) Attribution Selection Measure: Information gain

measure is used to select the test feature at each node in the

tree. The feature with the highest information gain is chosen

as the test attribute for the current node. Let S be a set

consisting of s data samples. Suppose the class label attribute

has m distinct values defining m distinct classes, Ci (for

i=1,..,m). Let si be the number of samples of S in class Ci.

The expected information needed to classify a given sample

is given by

 



m

1i

)iplog(ip)ms,,2s,1s(I  (1)

where pi is the probability that an arbitrary sample belongs to

Ci and is estimated by s/s i .

Let attribute A have v distinct values, {a1, a2,…, av}.

Attribute A can be used to partition S into v subsets, {S1,

S2,…, Sv}, where Sj contains those samples in S that have

value aj of A. Let sij be the number of samples of class Ci in a

subset Sj. The entropy, or expected information based on the

partitioning into subsets by A, is given by






v

1j

mjj1

mjj1
)s,,s(I

s

s,,s
)A(E 


 (2)

The term
s

s,,s mjj1 
acts as the weight of the jth subset

and is the number of samples in the subset divided by the

total number of samples in S. For a given subset Si,






m

1i

ijijmjj2j1)plog(p)s,,s,s(I  (3)

where jijij Ssp  and is the probability that a sample in Sj

belongs to class Ci.

The encoding information that would be gained by

branching on A is

)A(E)s,,s,s(I)A(Gain m21   (4)

The feature with the highest information gain is chosen as

the test feature for the given set S. A node is created and

labeled with the feature, branches are created for each value

of the feature, and the samples are partitioned accordingly

[6].

C. Propositonal Formula

To create the feature model, this system uses the

propositional formula. The semantics of a feature model is

the set of feature configurations that the feature model

permits. The most common approach is to use mathematical

logic to capture the semantics of a feature diagram. Each

feature corresponds to a boolean variable and the semantics is

captured as a propositional formula. The satisfying valuations

of this formula correspond to the feature configurations

permitted by the feature diagram. For instance, if f1 is a

mandatory sub-feature of f2, the formula will contain the

constraint f1  f2.

Relationships between a parent feature and its child

features (or sub-features) are categorized as mandatory (child

feature is required), optional (child feature is optional), Or (at

least one of the sub-features must be selected) and

Alternative (xor) (one of the sub-features must be selected).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060400
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

838

In addition to the parental relationships between features,

cross-tree constraints are allowed. The most common are: A

requires B (The selection of A in a product implies the

selection of B) and A excludes B (A and B cannot be part of

the same product) [7, 8].

Propositional formula is shown in Table I.
TABLE I. PROPOSITIONAL FORMULA

V. IMPLEMENTATION OF THE PROPOSED SYSTEM

This system is implemented by using Java programming

language. Feature model using FP-growth is shown in Figure

2 and feature model using ID-3 is shown in Figure 3.

Fig 2. Feature Model using FP-Growth

Fig 3. Feature Model using ID-3 Algorithm

VI. EXPERIMENTAL RESULTS OF THE PROPOSED SYSTEM

This system is tested by using different versions of HTC

mobile phone. According to the experimental results, the

feature extraction processing time of FP-growth is faster than

the processing time of ID-3. So, the FP-growth algorithm is

more effective than ID-3 algorithm for software product line

engineering (SPLE). Some experimental results are shown in

Table 2.

TABLE II. EXPERIMENTAL RESULTS

ID Version Name Processing Time

of FP-Growth

Processing

Time of ID-3

1 HTC-7-Mozart (V1) and

HTC-7-Pro (V2)

75 372

2 HTC-7-Mozart (V1), HTC-

7-Pro (V2) and HTC-7-

Surround (V3)

72 90

3 HTC-7-Mozart (V1), HTC-

7-Pro (V2), HTC-7-

Surround (V3) and HTC-

8XT (V4)

97 117

4 HTC-7-Mozart (V1), HTC-

7-Pro (V2), HTC-7-

Surround (V3), HTC-816-

Dual-SIM (V4), HTC-8XT

(V5) and HTC-Advantage-

X7500 (V6)

110 111

Performance analysis results are shown in Figure 4.

Concept Diagram Propositional

Formula

Mandatory

SB  S

A

Optional

CS

DS

OR

(SA  B

 C) 

almost1 (A, B,

C)

X-OR

SA  B

 C

S

A B

S

C D

S

A B C

S

A B C

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060400
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

839

0

50

100

150

200

250

300

350

400

V1, V2 V1, V2,

V3

V1, V2,

V3, V4

V1, V2,

V3, V4,

V5, V6

FP-

Growth

ID-3

Fig 4. Performance Analysis Result

VII. CONCLUSION

In conclusion, the proposed system provides the software

product line by producing the feature model about mobile

phone. This system is tested by using many web pages that

contain HTC mobile phone information. By using the

proposed system, the software developer can estimate the

features about the coming mobile phone product. Moreover,

this system compares the performance about feature

extraction process. So, this system allows the user to know

which data mining method is more effective about feature

extraction process. So, the proposed system provides many

benefits for the software product line about the mobile phone

domain.

REFERENCES

[1] B. Zhang, "Mining Complex Feature Correlations from Large Software
Product Line Configurations", Software Engineering Research Group,
University of Kaiserslautern, Germany, Technical Report of AGSE,
April 3, 2013.

[2] B. Danilo Beuche and D. Mark, “Software Development Magazine –
Programming”, Software Testing, Project Management, Jobs, 2014.

[3] G. Kaur and S. Aggarwal, "Performance Analysis of Association Rule
Mining Algorithms", International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, August, 2013, pp.
856-858.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation”, In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, USA.

[5] J. Han and M. Kamber, "Data Mining: Concepts and Techniques",
Simon Fraser University, United States of America, 2001.

[6] H. Jiawei and K. Micheline, "Data Mining Concepts and Techniques",
Simon Fraser University, United States of America, 2001.

[7] K. Czarnecki and S. Helsen and U. Eisenecker, "Staged configuration
using feature models", Proceedings of the Third International
Conference on Software Product Lines (SPLC '04), vol 3154, Springer,
August 2004.

[8] K. Czarnecki and A. Wasowski, "Feature Diagrams and Logics: There
and Back Again", University of Waterloo, Canada, 2008.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060400
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

840

