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Abstract—Today, software product line engineering (SPLE) is an 

emerging software engineering paradigm. SPLE is based on the concept 

of reusing software artifacts gaining from the previous software product 

lifecycle. For SPLE, many researchers concerns with domain analysis 

and feature modeling (FM). In this system, the feature model 

management process is proposed for SPLE about mobile phone 

environment. To create feature model, there are two processes. The first 

is feature extraction process that is extracted feature from the tested 

mobile environment. For feature extraction process, this system uses 

iterative dichotomiser-3 (ID-3) and frequent pattern growth (FP-

growth) algorithms. Moreover, this system compares these two feature 

extraction algorithms to know which algorithm is more effective for 

feature extraction process. By using extracted features, this system uses 

the propositional formula to create feature model for SPLE. This system 

is tested by using different HTC mobile versions. According to the 

performance comparison results, FP-growth is faster than ID-3 about 

feature extraction process. 
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I.  INTRODUCTION  

In the software engineering, software product line 

engineering (SPLE) is a process that delivers reusable 

components, which can be reused to develop a new 

application for the domain. SPLE defines software product 

lines requirements, software architecture and a set of 

reusable components, shared by the products, which 

implements a considerable part of the products’ 

functionalities.  

The purpose of SPLE is to reduce the time and costs of 

production and to increase the software quality by reusing 

elements which have been already tested and secured.  

These objectives can be realized by putting in common 

development artifacts such as requirement’s documents, 

conception’s diagrams, architectures, codes, test’s 

procedures, and maintenance’s procedures. The general 

process of product lines is based on the reusability of 

requirements, architecture and components. 

For the software product line, the proposed system is 

implemented as the performance comparison system for 

feature model management. For performance comparison, 

this system compares the feature extraction process of FP-

Growth and ID-3 algorithms. By using HTC extracted mobile 

features, this system uses propositional formula to product 

HTC feature model.  

 

The main objective of the proposed system is to extract 

the product features from high-level software artifacts rather 

than low-level artifacts. This system also proposes a feature 

diagram by means of data mining method that includes FP-

growth and ID-3. And then, this system also describes the 

performance compassion results. Finally, this system finds 

out common & variability analysis among the different 

version of same or different HTC software product. 

 This paper is organized into six sections. In the second 

section, related works are described. System design is shown 

in third section. Proposed methodology is described in fourth 

section. Implementation and experimental results are 

described in section five and six. Finally, conclusion is 

described in the seventh section. 
 

II. RELATED WORK  

In 2013, B. Zhang [1] presented the system about mining 

complex feature correlations from large software product line 

configurations. The input of our approach is product 

configurations separately documented in each product. The 

first process is configuration extraction which analyzes all 

existing product configurations and results into a 

configuration matrix consisting of selected features with their 

values across all products. Then the second process of data 

preparation adapts the information in the configuration matrix 

by unifying the data format and discretizing continuous 

feature values. 

 In 2014, B. Danilo and D. Mark [2] expressed the 

software product line engineering (SPLE) with feature 

models. One increasing trend in software development is the 

need to develop multiple, similar software products instead of 

just a single individual product. There are several reasons for 

this. Products that are being developed for the international 

market must be adapted for different legal or cultural 

environments, as well as for different languages, and so must 

provide adapted user interfaces. Because of cost and time 

constraints it is not possible for software developers to 

develop a new product from scratch for each new customer, 

and so software reuse must be increased. 

III. PROPOSED SYSTEM DESIGN 

 For SPLE, this system is proposed as the performance 

comparison system using FP-Growth and ID-3 algorithms. 

Firstly, this system extracts web pages about HTC mobile 

phone. And then, the user must choose one of two methods 

that are FP-Growth and ID-3 algorithms. In this system, these 

algorithms are used to extract HTC mobile features and HTC 

feature diagram.  
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After extracting feature diagram by using each 

algorithm, this system compares the performance of each 

algorithm about feature extraction process. Proposed system 

design is shown in Figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Proposed System Design 

 

By using extracted feature diagram, this system creates 

HTC feature model using propositional formula. To create 

feature model (FM), this system first integrates feature 

diagram based on semantic logic. And then, this system 

defines each feature relationships based on propositional 

formula. Finally, this system produces feature model about 

HTC mobile phone.  

IV. PROPOSED METHODOLOGY 

In this section, tow data mining methods are 

described for feature extraction process. These methods are 

FP-Growth and ID-3 algorithms. And then, the propositional 

formula is used for feature model creation process. 

A. Frequent Pattern Growth (FP-Growth) 

Frequent pattern growth (FP-Growth) approach is an 

efficient approach for producing the frequent itemsets 

without generation of candidate itemsets. It is based upon the 

divide and conquers strategy [3]. Instead of generating a large 

number of candidates, the FP-growth approach preserves the 

essential groupings of the original data elements for mining. 

Then the analysis is focused on counting the frequency of the 

relevant data sets instead of candidate sets. Instead of 

scanning the entire database to match against the whole 

corresponding set of candidates in each pass, the method 

partitions the data set to be examined as well as the set of 

patterns to be examined by database projection. Such a 

divide-and-conquer methodology substantially reduces the 

search space and leads to high performance. 

With the growing capacity of main memory and the 

substantial reduction of database size by database projection 

as well as the space needed for manipulating large sets of 

candidates, a substantial portion of data can be put into main 

memory for mining. New data structures and methods, such 

as FP-tree and pseudo-projection, have been developed for 

data compression and pointer-based traversal.  

FP-growth may eliminate or substantially reduce the 

number of candidate sets to be generated and also reduce the 

size of the database to be iteratively examined, and therefore, 

lead to high performance [4]. The FP-growth approach 

consists of two steps: 

• Constructing an FP-tree: The first step constructs a 

compact data structure called FP-tree that efficiently 

stores frequent patterns of a transaction database and 

enables efficient frequent pattern mining. 

• Mining patterns using an FP-tree: The second step uses 

an FP-tree to recursively mine all frequent patterns [4]. 

1) FP-Growth Algorithm: FP-growth algorithm for 

discovering frequent pattern without candidate generation is 

as follows [5]: 

Algorithm: FP-Growth. Mine frequent patterns using an FP-

tree by pattern fragment growth. 

Input: A transaction database, D; minimum support 

threshold, min-sup. 

Output: The complete set of frequent patterns. 

Method: 
1. The FP-tree is constructed in the following steps. 

(a) Scan the transaction database D once. Collect the set 

of frequent items F and their supports. Sort F in 

support descending order as L, the list of frequent 

items. 

Start 
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(b) Create the root of an FP-tree and label it as “null”. 

For each transaction Trans in D do the following. 

Select and sort the frequent items in Trans according 

to the order of L. Let the sorted frequent items list in 

Trans be [p|P], where p is the first element and P is 

the remaining list. Call insert-tree ([p|P], T). If T has 

a child N such that N.item-name = p.item-name, 

then increment N’s count by 1; else create a new 

node N, and let its count be 1, it parent link be 

linked to T, and its node-link to the nodes with the 

same item-name via the node-link structure. If P is 

nonempty, call insert-tree (P, N) recursively. 

2. Mining of an FP-tree is performed by calling FP-growth 

(FP-tree, Null), which is implemented as follows: 

 Procedure FP-growth (Tree,  ) 

(1) if Tree contains a single path P then 

(2) for each combination (denoted as  ) of the nodes 

in the path P 

(3) generate pattern   U   with support = minimum 

support of nodes in  ; 

(4) else for each ai in the header of Tree { 

(5) generate pattern  = ai U   with support = ai. 

support; 

(6) construct  ’s conditional pattern base and then  ’s 

conditional FP-tree Tree ; 

(7) if Tree ≠  then 

(8) call FP-growth ( Tree , ); } 

B. Iterative Dichotomiser-3 (ID-3) 

In ID-3, a decision tree is a flow-chart-like tree structure 

that employs a top down. To select the test attribute at each 

node in the tree, the information gain measure is used. The 

decision tree is built by using the attribute selection measure 

equation and decision tree algorithm [6].  

1) Decision Tree Algorithm: This algorithm is as follows: 

Algorithm : Generate_decision_tree. 

Step 1: create a node N; 

Step 2: if samples are all of the same class, C then return N 

as a leaf node labeled with the class C; 

Step 3: if attribute-list is empty then return N as a leaf node 

labeled with the most common class in samples; 

Step 4: select test-attribute, the attribute among attribute-list 

with the highest information gain; 

Step 5: label node N with test-attribute; 

Step 6: for each known value ai of test-attribute  

- grow a branch from node N for the condition 

test-attribute=ai;           

Step 7: let si be the set of samples in samples for which test-

attribute=ai; 

Step 8: if si is empty then attach a leaf labeled with the most 

common class in samples; 

  else attach the node returned by Generate _decision 

_tree; 

 

2) Attribution Selection Measure: Information gain 

measure is used to select the test feature at each node in the 

tree. The feature with the highest information gain is chosen 

as the test attribute for the current node. Let S be a set 

consisting of s data samples. Suppose the class label attribute 

has m distinct values defining m distinct classes, Ci (for 

i=1,..,m). Let si be the number of samples of S in class Ci. 

The expected information needed to classify a given sample 

is given by 

            



m

1i

)iplog(ip)ms,,2s,1s(I                    (1) 

where pi is the probability that an arbitrary sample belongs to 

Ci and is estimated by s/s i .  

Let attribute A have v distinct values, {a1, a2,…, av}. 

Attribute A can be used to partition S into v subsets, {S1, 

S2,…, Sv}, where Sj contains those samples in S that have 

value aj of A. Let sij be the number of samples of class Ci in a 

subset Sj. The entropy, or expected information based on the 

partitioning into subsets by A, is given by 

                  





v

1j

mjj1

mjj1
)s,,s(I

s

s,,s
)A(E 


            (2) 

The term 
s

s,,s mjj1 
acts as the weight of the jth subset 

and is the number of samples in the subset divided by the 

total number of samples in S. For a given subset Si, 

  





m

1i

ijijmjj2j1 )plog(p)s,,s,s(I                         (3) 

where jijij Ssp  and is the probability that a sample in Sj 

belongs to class Ci.  

The encoding information that would be gained by 

branching on A is  

                 
)A(E)s,,s,s(I)A(Gain m21            (4) 

The feature with the highest information gain is chosen as 

the test feature for the given set S. A node is created and 

labeled with the feature, branches are created for each value 

of the feature, and the samples are partitioned accordingly 

[6]. 

C. Propositonal Formula 

To create the feature model, this system uses the 

propositional formula. The semantics of a feature model is 

the set of feature configurations that the feature model 

permits. The most common approach is to use mathematical 

logic to capture the semantics of a feature diagram. Each 

feature corresponds to a boolean variable and the semantics is 

captured as a propositional formula. The satisfying valuations 

of this formula correspond to the feature configurations 

permitted by the feature diagram. For instance, if f1 is a 

mandatory sub-feature of f2, the formula will contain the 

constraint f1  f2.  

Relationships between a parent feature and its child 

features (or sub-features) are categorized as mandatory (child 

feature is required), optional (child feature is optional), Or (at 

least one of the sub-features must be selected) and 

Alternative (xor) (one of the sub-features must be selected). 
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In addition to the parental relationships between features, 

cross-tree constraints are allowed. The most common are: A 

requires B (The selection of A in a product implies the 

selection of B) and A excludes B (A and B cannot be part of 

the same product) [7, 8]. 

 

Propositional formula is shown in Table I. 
TABLE I.  PROPOSITIONAL FORMULA 

 

V. IMPLEMENTATION OF THE PROPOSED SYSTEM 

This system is implemented by using Java programming 

language. Feature model using FP-growth is shown in Figure 

2 and feature model using ID-3 is shown in Figure 3. 
 

 
Fig 2. Feature Model using FP-Growth 

 
Fig 3. Feature Model using ID-3 Algorithm 

VI. EXPERIMENTAL RESULTS OF THE PROPOSED SYSTEM 

This system is tested by using different versions of HTC 

mobile phone.  According to the experimental results, the 

feature extraction processing time of FP-growth is faster than 

the processing time of ID-3. So, the FP-growth algorithm is 

more effective than ID-3 algorithm for software product line 

engineering (SPLE). Some experimental results are shown in 

Table 2. 

TABLE II.  EXPERIMENTAL RESULTS 

ID Version Name Processing Time 

of FP-Growth 

Processing 

Time of ID-3 

1 HTC-7-Mozart (V1) and 

HTC-7-Pro (V2) 

75 372 

2 HTC-7-Mozart (V1), HTC-

7-Pro (V2) and HTC-7-

Surround (V3) 

72 90 

3 HTC-7-Mozart (V1), HTC-

7-Pro (V2), HTC-7-

Surround (V3) and HTC-

8XT (V4) 

97 117 

4 HTC-7-Mozart (V1), HTC-

7-Pro (V2), HTC-7-

Surround (V3), HTC-816-

Dual-SIM (V4), HTC-8XT 

(V5) and HTC-Advantage-

X7500 (V6) 

110 111 

  

Performance analysis results are shown in Figure 4. 
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Fig 4. Performance Analysis Result 

VII. CONCLUSION 

In conclusion, the proposed system provides the software 

product line by producing the feature model about mobile 

phone. This system is tested by using many web pages that 

contain HTC mobile phone information. By using the 

proposed system, the software developer can estimate the 

features about the coming mobile phone product. Moreover, 

this system compares the performance about feature 

extraction process. So, this system allows the user to know 

which data mining method is more effective about feature 

extraction process. So, the proposed system provides many 

benefits for the software product line about the mobile phone 

domain. 
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