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Abstract:-- This work is aimed at the comparative study of 

classical controllers such as PID controllers and new 

controllers (LQG and H∞ controllers) which are employed for 

the active vibration control of a cantilever plate with 

piezoelectric patches as sensors and actuators. These 

controllers are working for the purpose of vibration 

suppression over the plate. The cantilever plate is embedded 

with piezoelectric patches which are acting as actuators and 

sensors. The position of patches may be collocated or non-

collocated depending upon the controller type. A comparison 

among the PID, LQG and H∞ controllers for the same pupose 

has been carried out.   

Keywords: PID, LQG, H∞, cantilever plate, piezoelectric 

patches, active vibration control. 

Nomenclature: 

a = half length of the finite element in x direction, m 

A = relative to surface area 

b = half length of the finite element in y direction, m 

C = elastic constant, N/m2 

Cs = piezoelectric sensor capacitance, F 

D = electric displacement vector, C/m2 

e = piezoeletric stress coefficient, C/m2 

E = Young’s modulus, N/m2 

f  = force, N 

h = thickness, m  

K = stiffness matrix 

M = mass matrix 

q = displacement field vector 

qi = nodal displacement field, m 

k = kinetic energy, J 

u = displacement field in x direction, m 

U = potential energy, J 

v = displacement field in y direction, m  

V = volume, m3 

w = displacement field in z direction, m 

W = work, J  

Greek Symbols  
ε = strain field  

σ = stress, N/m 

ν = Poisson ratio  

θu = rotation about u-axis  

ξ = dielectric tensor  

ζ = nodal displacement vector 

Φ = electric potential, Volts  

ω = frequency, rad/s  

ρ = material density, kg/m3 

Subscripts 
a = refers to the actuator  

b = relative to the body 

p=  relative to the plate structure 

s = relative to the sensor 

sa = relative to the sensed voltage in the actuator 

x = relative to x direction 

y=  relative to y direction 

qq = relative to the stiffness  

qΦ = relative to the piezoelectric stiffness 

ΦΦ = relative to the dielectric stiffness  

Superscripts 

e = relative to the element  

S = relative to constant strain  

T = matrix transpose 

I. INTRODUCTION 

Active vibration control is the technique in which equal 

and opposite force is applied to suppress the external 

vibrations. Industrial processes which are precise cannot 

occur due to vibrations. Control of such vibrations is 

always being a field of curiosity for researchers. Today, 

there are different controllers which are employed for the 

vibration suppuration such as Proportional integrative 

differentiate, Linear quadratic Gaussian,  Linear quadratic 

regulator and H∞ controllers etc. 

 

Fig.1.  Schematic diagram for Active Vibration Control 

Caruso G. et al.[1] studied the vibration control of an 

elastic cantilever plate, clamped on one side and excited by 

impulsive force acting on the free side. A modal model 

obtained by employing a suitable finite-element 

formulation together with a modal reduction, was used in 

the controller design. Qiu Z. C. et al.[2] used piezoelectric 

ceramics patches as sensors and actuators to control the 

vibration of the smart flexible clamped plate. A method for 

optimal placement of piezoelectric actuators and sensors on 

a cantilever plate was developed. Experimental set-up was 

build for smart plate and results were found on it. C.M.A. 

Vasques[3] presented a comparative study between the 

classical control strategies, amplitude velocity feedback 

and constant gain, and optimal control strategies, linear 

quadratic regulator (LQR) and linear quadratic Gaussian 

(LQG) controller, is performed in order to investigate their 
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effectiveness to diminish vibrations in beams with 

piezoelectric patches acting as sensors or actuators. 

Vasudevan et. al.[4] showed the optimal control strategy 

based on the full state dynamic observer to control 

vibrations of a beam under limited magnetic field intensity. 

PID and LQR based on full state observer can reduce 

settling time and tip deflection response of free vibration 

oscillations. Shimon P. et al.[5] presented an efficient 

controller for vibration control in a fully clamped plate and 

an experiment between control methodologies and 

actuators was done. Theoretical and experimental studies 

were undertaken with verifying results. Chhabra et. 

al.[6][7] presented the active vibration control of beam like 

structures with laminated piezoelectric sensor and actuator 

layers bonded on top and bottom surfaces of the beam. The 

contribution of the piezoelectric sensor and actuator layers 

on the mass and stiffness of the beam has been considered 

with modeling of the structure in a state space form. The 

designing of state/output feedback control by Pole 

placement technique and LQR optimal control approach 

are exercised to achieve the desired control. Feedback Gain 

was find out by using Hybrid Multiobjective Genetic 

Algorithm-Artificial Neural Network. Pradeep et.al.[8][9] 

presented the work deals with the mathematical 

formulation and the computational model for vibration 

control of a beam with piezoelectric smart structures. A 

successful scheme of analyzing and designing piezoelectric 

smart structures with control laws is developed. Mukherjee 

A. et al.[10] studied the active vibration control of stiffened 

plates. The stiffened plate was formulated with finite 

element and piezoelectric effects. A velocity feedback 

algorithm was employed. Numerical examples for vibration 

control of isotropic and orthotropic stiffened plates were 

presented. Chhabra et. al.[11] showed that active vibration 

control of beam like structures with distributed 

piezoelectric actuator and sensor layers bonded on top and 

bottom surfaces of the beam. The control effect can be 

improved by locating the patches optimally. The 

piezoelectric patches are placed on the free end, middle end 

and fixed end. The study is done through simulation in 

MATLAB for various controllers like POF, PID and Pole 

Placement technique. Varun et. al.[12] studied the active 

vibration control in the cantilever beam with collocated 

sensors/actuators by using fuzzy controller. Amit et. al. 

[13] studied the basic techniques for analysis of active 

vibration control using piezoelectric sensor and  actuator. A 

smart cantilever plate with the Neural Network and LQG 

controller is developed. Neeraj et. al.[14] presented various 

optimization techniques which for the optimal placement of 

piezoelectric sensors/actuators on a smart structure for 

active vibration control. And also how these optimization 

techniques can be implemented is studied. Meta-heuristic 

approaches such as Genetic algorithms, swarm intelligence, 

simulated annealing, tabu search, and other recent 

approaches are explained. 

In this paper, different controllers used in active vibration 

control are stated. Classical controller like PID and new 

controllers like LQG and H∞ controllers with their 

formulations are explained. The terms like proportional, 

integrate and derivative are taken as parameters in PID 

controller, while noise reduction and collocation of patches 

is another requirement for LQG and H controller 

respectively. By using MATLAB, a comparison among 

these three controllers has been done by plotting graphs for 

different optimal positions of piezoelectric patches for 

respective controllers have been drawn. And a comparison 

by these plots is discussed. 

II. PID CONTROLLER: 

A. A proportional-integral-derivative controller (PID 

controller): 

A proportional-integral-derivative controller (PID 

controller) is a control loop feedback 

mechanism (controller) widely used in vibration control 

techniques. A PID controller calculates an error value as 

the difference between a measured process variable and a 

desired set point value. Manipulated variable is used to 

minimize the error by adjusting the process. The PID 

controller algorithm involves three separate constant 

parameters: the proportional, 

the integral and derivative values, 

denoted P, I, and D. Simply put, these values can be 

interpreted in terms of time: P depends on 

the present error, I on the accumulation of past errors, 

and D is a prediction of future errors, based on current rate 

of change.  The response of the controller can be explained 

in terms of the responsiveness of the controller to an error, 

the degree to which the controller overshoots the set point, 

and the degree of system oscillation.( Neeraj et. al.[16])                           

 

Fig.2: Block Diagram of PID controller 

B. PID Controller Theory: 

The PID controller is named after its three correcting 

terms, whose sum constitutes the manipulated variable 

(MV). The proportional, integral, and derivative terms are 

summed to calculate the output of the PID controller. 

Defining  as the controller output, the final form of 

the PID algorithm is: 

                              𝑢(𝑡) = 𝑀𝑉(𝑡) =  𝐾𝑝𝑒(𝑡) +

 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑡

0

𝑑

𝑑𝑡
𝑒(𝑡)                         

where 

Kp: Proportional gain, a tuning parameter 

Ki: Integral gain, a tuning parameter 

Kd: Derivative gain, a tuning parameter 

e: Error = SP- PV 

t: Time or instantaneous time (the present) 
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τ: Variable of integration; takes on values from 

time 0 to the present . 

III. LINEAR QUADRIC GAUSSIAN 

CONTROLLER 

More general problem is LQG problem that deals with 

optimization of a quadratic performance measure for 

stochastic system (i.e. noise problem is also taken in the 

LQG problems). 

LQG problem statement: 

Consider the stochastic system  

{𝑋̇𝑚}  =  [𝐴𝑚]{𝑋𝑚} +  [𝐵𝑢𝑚
]{𝑢} + [Г𝑚]{𝑤𝑚}                                                                           

(1) 

Where ([𝐴𝑚]{𝑋𝑚}) are the number of states with n x 1 

matrix, ([𝐵𝑢𝑚
]{𝑢}) are number of inputs with m x 1 matrix 

and ([Г𝑚]{𝑤𝑚}) is noise input with r x 1 matrix. 

In the case of optimal control, the following Lyapunov 

quadratic functional, to be minimized, is defined:  

𝐽𝑚 = (
1

2
) ∫ ({𝑋𝑚}𝑇[𝑄𝑚]{𝑋𝑚} + {𝑢𝑇}[𝑅𝑚]{𝑢})𝑑𝑡

∞

0
                                 

(2) 

Then, the following equations hold: 

{𝑋𝑚} = [𝛷]−1{𝑋} 

{
{𝜂}

{𝜂̇}
} = [

[𝛷]−1 0

0 [𝛷]−1] {
{𝑞}

{𝑞̇}
},                                                                                                    

(3) 

Modal weighting matrices [𝑄𝑚]and[𝑅𝑚] are related to the 

well known traditional weighting matrices [Q] and [R], 

respectively, by  

[𝑄𝑚] = [[𝛷]−𝑇[𝑄][𝛷]−1] and  [𝑅𝑚] = [[𝛷]−𝑇[R] [𝛷]−1]                                                          
(4) 

The input forces are defined by the relation: 

{𝑢} = −[𝐾𝑚]{𝑋𝑚} = −[𝐾𝑚] {
{𝜂}

{𝜂̇}
},                                                   

(5) 

Where [𝐾𝑚] , the modal gain matrix, is given by [𝐾𝑚] =

[[𝑅𝑚]−1[𝐵𝑢𝑚
]

𝑇
[𝑆𝑚]] ; and obtained solving the following  

Ricatti equation in the modal state space: 

[𝑆𝑚][𝐴𝑚] + [𝐴𝑚]𝑇[𝑆𝑚] − [𝑆𝑚][𝐵𝑢𝑚
][𝑅𝑚]−1[𝐵𝑢𝑚

]
𝑇

[𝑆𝑚] +

[𝑄𝑚] = [0]                                   (6) 

𝑋̂𝑚 is the estimated modal state obtained from Kalman 

Filter (KF) 

 [Minimizes the Performance Index] 

   𝐽𝑒     =   𝐸 [({𝑋𝑚} − {𝑋̂𝑚})𝑇 . ({𝑋𝑚} − {𝑋̂𝑚})] 

          =    𝑡𝑟 [𝐸[({𝑋𝑚} − {𝑋̂𝑚})({𝑋𝑚} − {𝑋̂𝑚})𝑇]] 

      Where tr is trace value of performance index. 

{𝑋̇̂𝑚}  = [𝐴𝑚]{𝑋̂𝑚} + [𝐵𝑢𝑚
]{𝑢} + [𝐿]({𝑌𝑚} −

[𝐶𝑚]{𝑋̂ 𝑚})                                                  (7) 

= ([𝐴𝑚] − [𝐿][𝐶𝑚]){𝑋̂𝑚} + [𝐵𝑢𝑚
]{𝑢} + [𝐿]{𝑌𝑚}                                                                 

(8) 

[𝐿] is computed as follows: 

As [𝐾𝑚] = [[𝑅𝑚]−1[𝐵𝑢𝑚
]

𝑇
[𝑆𝑚]] 

And replacing values as; 

[𝐴𝑚] → [𝐴𝑚]𝑇 , [𝐵𝑢𝑚
] → [𝐶𝑚]𝑇 , [𝑄𝑚] →

[𝑊𝑚], [𝑅𝑚] → [𝑉𝑚], [𝐿] → [𝐾𝑚]𝑇   

So,  [𝐿] = [𝑆𝑚𝑒
][𝐶𝑚]𝑇[𝑉𝑚]−1 

[𝑆𝑚𝑒
]  is computed by solving Continuous Filter 

Algebraic Riccati Equation( CFARE). 

[𝐴𝑚][𝑆𝑚𝑒
] + [𝑆𝑚𝑒

][𝐴𝑚]𝑇 −

[𝑆𝑚𝑒
][𝐶𝑚]𝑇[𝑉𝑚]−1[𝐶𝑚][𝑆𝑚𝑒

] + [Г][𝑊𝑚][Г]𝑇 = 0                        

(9) 

Block Diagram of LQG controller:  

        

Fig.3:  The inner structure of the LQG closed-loop system. 

The LQG separation properly: 

From equation (1), 

{𝑋̇̂𝑚} = ([𝐴𝑚] − [𝐿][𝐶𝑚] − [𝐵𝑢𝑚
][𝐾𝑚]) {𝑋𝑚} + [𝐿]{𝑌𝑚}                                                         

(10) 

From (2) and (10) with [Г] = [I]rxr, we get 

[
{𝑋̇𝑚}

{𝑋̇̂𝑚}
] =

[
[𝐴𝑚] −[𝐵𝑢𝑚

][𝐾𝑚]

[𝐿][𝐶𝑚] [𝐴𝑚] − [𝐵𝑢𝑚
][𝐾𝑚] − [𝐿][𝐶𝑚]

] [
{𝑋𝑚}

{𝑋̂𝑚}
] +

[
[𝐼] [0]

[0] [𝐿]
] [

[𝑊𝑚]

[𝑉𝑚]
]                  (11) 

 Error becomes {𝑒𝑚} = {𝑋𝑚} − {𝑋̂𝑚} , 

[
{𝑋̇𝑚}

{𝑒𝑚}
]  =

 [
[𝐴𝑚] − [𝐵𝑢𝑚

][𝐾𝑚] [𝐵𝑢𝑚
][𝐾𝑚]

[0] [𝐴𝑚] − [𝐿][𝐶𝑚]
] [

{𝑋𝑚}

{𝑒𝑚}
] +

[
[I] [0]

[I] −[L]
] [

[𝑊𝑚]

[𝑉𝑚]
]                   (12) 
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([𝐴𝑚] − [𝐵𝑢𝑚
][𝐾𝑚]), [𝐾𝑚]([𝐴𝑚] − [𝐿][𝐶𝑚]) matrices are 

stable. 

Eigen values of ([𝐴𝑚] − [𝐿][𝐶𝑚])  should be 5 to 10 

times([𝐴𝑚] − [𝐵𝑢𝑚
][𝐾𝑚]), to get better performance.( 

Wodek K. Gawronski[15]) 

IV. H∞ CONTROLLER: 

In the LQG controller design we assumed that the control 

inputs were collocated with disturbances, and that the 

control outputs were collocated with the performance. This 

assumption imposes significant limits on the LQG 

controller possibilities and applications. The locations of 

control inputs do not always coincide with the disturbance 

locations, and the locations of controlled outputs are not 

necessarily collocated with the location where the system 

performance is evaluated. This was discussed earlier, when 

the generalized structure was introduced. The H2 

and H∞ controllers address the controller design problem in 

its general configuration of non-collocated disturbance and 

control inputs, and non-collocated performance and control 

outputs. The H∞ method addresses a wide range of the 

control problems, combining the frequency- and time-

domain approaches. The design is an optimal one in the 

sense of minimization of the H norm of the closed-loop 

transfer function. The H∞ model includes colored 

measurement and process noise. It also addresses the issues 

of robustness due to model uncertainties, and is applicable 

to the single-input–single-output systems as well as to the 

multiple-input–multiple output systems.(Monu et. al. [17])  

In this chapter we present the H∞ controller design for 

flexible structures. We chose the modal approach to H∞ 

controller design, which allows for the determination of a 

stable reduced-order H∞ controller with performance close 

to the full-order controller. 

A. Definition and Gains 

The closed-loop system architecture is shown in figure. In 

this figure G is the transfer function of a plant (or 

structure), K is the transfer function of a controller, w is the 

exogenous input (such as commands, disturbances), u is the 

actuator input, z is the regulated output (at which 

performance is evaluated), and y is the sensed (or 

controlled) output. This system is different from the LQG 

control system  besides the actuator input and controlled 

output it has disturbance input and the regulated output. 

Needless to say, it represents a broader class of systems 

than the LQG control system. 

 

The H∞ closed-loop system configuration: G—plant, K—

controller, u— actuator input, w—exogenous input, y—

sensed output, and z—regulated output. 

For a closed-loop system as in Fig.1 the plant transfer 

function G(s) and the controller transfer function K(s) a    

                      (𝑧(𝑠)
𝑦(𝑠)

)  =  𝐺(𝑠) (𝑤(𝑠)

𝑢(𝑠))     

                          𝑢(𝑠) = 𝐾(𝑠)𝑦(𝑠)  

where u, w are control and exogenous inputs and y, z are 

measured and controlled outputs, respectively. The related 

state-space equations of a structure are as follows: 

                                         𝑥̇ = 𝐴𝑥 + 𝐵1𝑤 + 𝐵2𝑢, 

                                         𝑧 =  𝐶1𝑥 + 𝐷12𝑢, 

                                         𝑦 =  𝐶2𝑥 + 𝐷21𝑤. 

Hence, the state-space representation in the H∞ controller 

description consists of the quintuple (A,B1,B2 ,C1,C2 ). For 

this representation (A,B2 )  is stabilizable and (A,C2 ) is 

detectable, and the conditions H∞ and H2 controllers 

                                        𝐷12
𝑇 [𝐶1 𝐷2] = [0 𝐼], 

                                        𝐷21[𝐵1
𝑇 𝐷21

𝑇 ] = [0 𝐼] 

are satisfied. When the latter conditions are satisfied the H∞ 

controller is called the central H∞ controller. These are 

quite common assumptions, and in the H2 control they are 

interpreted as the absence of cross terms in the cost 

function (𝐷12
𝑇 𝐶1 = 0) and the process noise and 

measurement noise are uncorrelated(𝐵1𝐷21
𝑇 = 0). 

 

The H∞ control problem consists of determining controller 

K such that the H� norm of the closed-loop transfer 

function Gwz from w to z is minimized over all realizable 

controllers K, that is, one needs to find a realizable K such 

that 

                                                 ‖𝐺𝑤𝑧(𝐾)‖∞ 

is minimal. Note that the LQG control system depends on y 

and u rather than on w and z, as above. 

The solution says that there exists an admissible controller 

such that‖𝐺𝑤𝑧‖∞ <  𝜌, where 𝜌 is the smallest number such 

that the following four conditions hold : 

1)  𝑆∞𝑐 > 0 solve the following central H∞ controller 

algebraic Riccati equation (HCARE),  

   𝑆∞𝑐𝐴 + 𝐴𝑇𝑆∞𝑐 + 𝐶1
𝑇𝐶1 − 𝑆∞𝑐(𝐵2𝐵2

𝑇 − 𝜌−2𝐵1𝐵1
𝑇)𝑆∞𝑐 = 0 

 

2)  𝑆∞𝑒 > 0 solves the following central H∞ filter (or 

estimator) algebraic Riccati equation (HFARE), 

𝑆∞𝑒𝐴𝑇 + 𝐴𝑆∞𝑒 + 𝐵1𝐵1
𝑇 − 𝑆∞𝑐(𝐶2

𝑇𝐶2 − 𝜌−2𝐶1
𝑇𝐶1)𝑆∞𝑐 = 0 

3)                       𝜆𝑚𝑎𝑥( 𝑆∞𝑐 𝑆∞𝑒. ) <  𝜌2 

        where 𝜆𝑚𝑎𝑥  (X ) is the largest eigen value of X. 

4) The Hamiltonian matrices 

                                         [
𝐴 𝜌−2𝐵1𝐵1

𝑇 − 𝐵2𝐵2
𝑇

−𝐶1
𝑇𝐶1 −𝐴𝑇 ], 

                                         [
𝐴𝑇 𝜌−2𝐶1𝐶1

𝑇 − 𝐶2𝐶2
𝑇

−𝐵1𝐵1
𝑇 −𝐴

], 
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do not have eigen values on the jω-axis. 

 

 

Fig.4. Block diagram for H∞ Controller 

V. COMPARISON IN PID, LQG, H∞ 

CONTROLLERS: 

As we are using three types of Controllers namely PID, 

LQG and H∞, so it is necessary to find out that which 

controller would give better performance in controlling the 

vibrations in the cantilever plate. For this purpose, we plot 

the graphs between the parameters showing properties of 

the mentioned controllers and hence see the comparison 

among these three. All graphs are drawn in Matlab. 

As compared to LQG and H∞ controllers, the PID 

controller is much simple and easy. LQG and H∞ control 

approaches are well suited for the requirements of damping 

out the effect of disturbances as quickly as possible and 

maintaining stability robustness, whereas in PID control 

approach it is not possible. In LQG controller, the design is 

based on the independent mode space control techniques to 

suppress the modes vibration of the system, but in PID 

controller the design is dependent inputs given, whereas in 

H∞ controller multi- inputs which are dependent and 

independent mode space control can be given. PID 

algorithm for control does not guarantee optimal control of 

the system or system stability. The main limitation of PID 

controller in that it is a feedback system, with constant 

parameters, and no direct knowledge of the process and 

thus overall performance is reactive and a compromise. 

There is also noise problem in the derivative term of PID 

controller, but due to Kalman’s filter in LQG controller, 

there is noise elimination up to a good extent. Also in H∞ 

controller the reduction of noise can be done up to a certain 

limit. In H∞ controller collocated as well as non-collocated 

positions of piezoelectric patches can be used but in PID 

and LQG controllers, it is not possible. LQG controller 

concerns with uncertain linear systems disturbed by 

additive white Gaussian noise, having incomplete state 

information. Also, LQG controller applies to both linear 

time-invariant systems as well as linear time-varying 

systems, whereas in the PID controller it is not possible. 

PID and LQG controllers are single input- single output 

controllers whereas H∞ controller is a multi input- multi 

output controller.  

VI. RESULTS AND DISCUSSION:  

First, taking PID controller,In graph 1, the plot is drawn 

between the Amplitude (on ordinate) and Time also with 

Impulse response (on abscissa). In the following graph the 

value for the proportional input is taken as 98, whereas the 

values for integrative and derivative inputs are taken as 

zero. The green lines show the system (i.e. input 

noise/vibrations) and blue lines show the model system 

(i.e. controllers output). As the blue lines are exceeding the 

green lines, so we can conclude that our vibrations are 

under control. 

          

 

Graph 1: PID controller with P=98, I=0, D=0 

In graph 2, the plot is drawn between the Amplitude (on 

ordinate) and Time also with Impulse response (on 

abscissa). Values are P= 105, I= 0, D= 0. 

         

 

Graph 2: PID controller with P=105, I=0, D=0 

In graph 3, the plot is drawn between the Amplitude (on 

ordinate) and Time also with Impulse response (on 

abscissa). Values are P= 110, I= -0.1, D= 0.1. 
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Graph 3: PID controller with P=110, I= -0.1, D=0.1 

Now, taking Linear Quadratic Gaussian (LQG) controller, 

similar to PID controller, we can plot different type of 

graphs between amplitude/tip displacement and time. By 

changing the values of different parameters, we can find 

out various results. Also, for LQG controller position of the 

piezoelectric patches matters. The value of output varies 

with the position of PZT patches. The open and control 

loop graphs can also be drawn. 

First, drawing a graph between the amplitude/tip 

displacement (ordinate) and time (abscissa) for LQG 

controller in closed loop condition.  

Graph 4: LQG controller (closed loop case) 

In close loop case for LQG controller, the graph can be 

plotted as shown above. The green sinusoidal wave shows 

the vibrations of the system, and the blue sinusoidal wave 

shows the controller’s output to control the same 

vibrations. The amplitude for the closed loop LQG 

controller varies from 3 to -2 units and decreases 

continuously. For some time say, 0.15 sec. controller’s 

wave traces the initial vibrations wave but after it, the 

controller controls the vibrations very significantly.  

We can draw the LQG controller graphs for the different 

positions of piezoelectric patches which are acting as the 

actuators/sensors.  LQG controller graph for the PZT 

position 16, can be shown as below. In which, the 

amplitude varies from the value 3 to -2.5 units and the 

settling time is 0.7 sec. The green wave shows the initial 

vibrations and blue waves shows the controller’s output. As 

the green and blue waves are tracing each other, so we can 

say that a better control is achieved.                        

 

Graph 5: LQG controller at PZT position 16. 

Similarly, we can draw the H∞ controller graphs for the 

different positions of piezoelectric patches which are acting 

as the actuators/sensors.  

H∞ controller graph for the PZT position 46, can be shown 

as below. In which, the amplitude varies from the value 3.2 

to -3.2 units and the settling time is more than LQG 

controller. The green wave shows the initial vibrations and 

blue waves shows the controller’s output. As the green and 

blue waves are tracing each other, so we can say that a 

better control is achieved.                      

 

Graph 6: H∞ controller at PZT position 46 

Likewise, H∞ controller plot at PZT position 52 can be 

shown as in the graph 7 below:                    

 

Graph 7: H∞ controller at PZT position 52 

VII. CONCLUSION: 

This work shows the basic technique of analysis of 

cantilever plate for Active Vibration Control using 

piezoelectric sensors and actuators. The optimal location 

and size of sensor actuator pair for cantilever plate and 

control effectiveness of PID, LQG and H∞ controller is 

obtained. Results concluded that the sensor actuator pair is 

optimally located based on the lower settling time criteria. 

It is noted that the control effectiveness of PID controller is 

insignificant when compares to the LQG and H∞ 

controller’s. Study also revealed that LQG controller offers 

optimal effectiveness with lower peaks in settling time as 

compared to other classical control like PID strategies. 

Whereas H∞ controller is better than both PID and LQG 

controllers in the sense of input- output mode and 

collocated phenomenon.  
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