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Abstract:-- This work is aimed at the comparative study of
classical controllers such as PID controllers and new
controllers (LQG and How controllers) which are employed for
the active vibration control of a cantilever plate with
piezoelectric patches as sensors and actuators. These
controllers are working for the purpose of vibration
suppression over the plate. The cantilever plate is embedded
with piezoelectric patches which are acting as actuators and
sensors. The position of patches may be collocated or non-
collocated depending upon the controller type. A comparison
among the PID, LQG and Hw controllers for the same pupose
has been carried out.

Keywords: PID, LQG, Hw, cantilever plate, piezoelectric
patches, active vibration control.

Nomenclature:

a = half length of the finite element in x direction, m
A = relative to surface area

b = half length of the finite element in y direction, m
C = elastic constant, N/m?

Cs = piezoelectric sensor capacitance, F
D = electric displacement vector, C/m?
e = piezoeletric stress coefficient, C/m?
E = Young’s modulus, N/m?

f =force, N

h = thickness, m

K = stiffness matrix

M = mass matrix

g = displacement field vector

gi = nodal displacement field, m

k = kinetic energy, J

u = displacement field in x direction, m
U = potential energy, J

v = displacement field in y direction, m
V = volume, m?

w = displacement field in z direction, m
W = work, J

Greek Symbols

¢ = strain field

o = stress, N/m

v = Poisson ratio

0y = rotation about u-axis

& = dielectric tensor

¢ = nodal displacement vector

@ = electric potential, Volts

o = frequency, rad/s

p = material density, kg/m®

Subscripts

a = refers to the actuator

b = relative to the body

p=relative to the plate structure
s = relative to the sensor
sa = relative to the sensed voltage in the actuator
x = relative to x direction
y= relative to y direction
qq = relative to the stiffness
q® = relative to the piezoelectric stiffness
®D = relative to the dielectric stiffness
Superscripts
e = relative to the element
S = relative to constant strain
T = matrix transpose
. INTRODUCTION

Active vibration control is the technique in which equal
and opposite force is applied to suppress the external
vibrations. Industrial processes which are precise cannot
occur due to vibrations. Control of such vibrations is
always being a field of curiosity for researchers. Today,
there are different controllers which are employed for the
vibration suppuration such as Proportional integrative
differentiate, Linear quadratic Gaussian, Linear quadratic
regulator and Hoo controllers etc.
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Fig.1. Schematic diagram for Active Vibration Control

Caruso G. et al.[1] studied the vibration control of an
elastic cantilever plate, clamped on one side and excited by
impulsive force acting on the free side. A modal model
obtained by employing a suitable finite-element
formulation together with a modal reduction, was used in
the controller design. Qiu Z. C. et al.[2] used piezoelectric
ceramics patches as sensors and actuators to control the
vibration of the smart flexible clamped plate. A method for
optimal placement of piezoelectric actuators and sensors on
a cantilever plate was developed. Experimental set-up was
build for smart plate and results were found on it. C.M.A.
Vasques[3] presented a comparative study between the
classical control strategies, amplitude velocity feedback
and constant gain, and optimal control strategies, linear
quadratic regulator (LQR) and linear quadratic Gaussian
(LQG) controller, is performed in order to investigate their
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effectiveness to diminish vibrations in beams with
piezoelectric patches acting as sensors or actuators.
Vasudevan et. al.[4] showed the optimal control strategy
based on the full state dynamic observer to control
vibrations of a beam under limited magnetic field intensity.
PID and LQR based on full state observer can reduce
settling time and tip deflection response of free vibration
oscillations. Shimon P. et al.[5] presented an efficient
controller for vibration control in a fully clamped plate and
an experiment between control methodologies and
actuators was done. Theoretical and experimental studies
were undertaken with verifying results. Chhabra et.
al.[6][7] presented the active vibration control of beam like
structures with laminated piezoelectric sensor and actuator
layers bonded on top and bottom surfaces of the beam. The
contribution of the piezoelectric sensor and actuator layers
on the mass and stiffness of the beam has been considered
with modeling of the structure in a state space form. The
designing of state/output feedback control by Pole
placement technique and LQR optimal control approach
are exercised to achieve the desired control. Feedback Gain
was find out by using Hybrid Multiobjective Genetic
Algorithm-Artificial Neural Network. Pradeep et.al.[8][9]
presented the work deals with the mathematical
formulation and the computational model for vibration
control of a beam with piezoelectric smart structures. A
successful scheme of analyzing and designing piezoelectric
smart structures with control laws is developed. Mukherjee
A. et al.[10] studied the active vibration control of stiffened
plates. The stiffened plate was formulated with finite
element and piezoelectric effects. A velocity feedback
algorithm was employed. Numerical examples for vibration
control of isotropic and orthotropic stiffened plates were
presented. Chhabra et. al.[11] showed that active vibration
control of beam like structures with distributed
piezoelectric actuator and sensor layers bonded on top and
bottom surfaces of the beam. The control effect can be
improved by locating the patches optimally. The
piezoelectric patches are placed on the free end, middle end
and fixed end. The study is done through simulation in
MATLAB for various controllers like POF, PID and Pole
Placement technique. Varun et. al.[12] studied the active
vibration control in the cantilever beam with collocated
sensors/actuators by using fuzzy controller. Amit et. al.
[13] studied the basic techniques for analysis of active
vibration control using piezoelectric sensor and actuator. A
smart cantilever plate with the Neural Network and LQG
controller is developed. Neeraj et. al.[14] presented various
optimization techniques which for the optimal placement of
piezoelectric sensors/actuators on a smart structure for
active vibration control. And also how these optimization
techniques can be implemented is studied. Meta-heuristic
approaches such as Genetic algorithms, swarm intelligence,
simulated annealing, tabu search, and other recent
approaches are explained.

In this paper, different controllers used in active vibration
control are stated. Classical controller like PID and new
controllers like LQG and Hoo controllers with their
formulations are explained. The terms like proportional,
integrate and derivative are taken as parameters in PID

controller, while noise reduction and collocation of patches
is another requirement for LQG and H controller
respectively. By using MATLAB, a comparison among
these three controllers has been done by plotting graphs for
different optimal positions of piezoelectric patches for
respective controllers have been drawn. And a comparison
by these plots is discussed.

Il. PID CONTROLLER:

A. A proportional-integral-derivative
controller):

controller (PID

A proportional-integral-derivative controller (PID
controller) is a control loop feedback
mechanism (controller) widely used in vibration control
techniques. A PID controller calculates an error value as
the difference between a measured process variable and a
desired set point value. Manipulated variable is used to
minimize the error by adjusting the process. The PID
controller algorithm involves  three  separate  constant
parameters: the proportional,
the integral and derivative values,

denoted P, I, and D. Simply put, these values can be
interpreted in  terms  of  time: P depends on
the present error, | on the accumulation of past errors,
and D is a prediction of future errors, based on current rate
of change. The response of the controller can be explained
in terms of the responsiveness of the controller to an error,
the degree to which the controller overshoots the set point,
and the degree of system oscillation.( Neeraj et. al.[16])
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Fig.2: Block Diagram of PID controller
B. PID Controller Theory:

The PID controller is named after its three correcting
terms, whose sum constitutes the manipulated variable
(MV). The proportional, integral, and derivative terms are
summed to calculate the output of the PID controller.

Defining u(t} as the controller output, the final form of
the PID algorithm is:

u(t) = MV(t) = Kye(t) +
K; fote(‘r)d‘r + Kd%e(t)
where
Ky: Proportional gain, a tuning parameter
Ki: Integral gain, a tuning parameter
Kg: Derivative gain, a tuning parameter
e: Error = SP- PV

t: Time or instantaneous time (the present)
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7. Variable of integration; takes on values from
time O to the present .

1. LINEAR QUADRIC GAUSSIAN
CONTROLLER

More general problem is LQG problem that deals with
optimization of a quadratic performance measure for
stochastic system (i.e. noise problem is also taken in the
LQG problems).

LQG problem statement:

Consider the stochastic system

{Xm} = [Am]{Xm} + [Bum]{u} + [Ln]{wm}

1)

Where ([4,,]{Xm}) are the number of states with n x 1

matrix, ([B,,, |{u}) are number of inputs with m x 1 matrix
and ([, ]{ws,}) is noise input with r x 1 matrix.

In the case of optimal control, the following Lyapunov
quadratic functional, to be minimized, is defined:

Jm = (3) Iy (X} Q] X} + (T HR )t
2)

Then, the following equations hold:
X} = [@]7H{X}

mh _[lel™t o 7q}

Eg;}}_[ 0 [qb]—i]{{q}}’

Modal weighting matrices [Q,,]and[R,,] are related to the
well known traditional weighting matrices [Q] and [R],
respectively, by

E%m] = [[@]7"[Ql[®]7*]and [Ry] = [[@]7"[R] [®]7"]

The input forces are defined by the relation:

() = — (K] K} = (K] {g%}

®)

Where [K,,] , the modal gain matrix, is given by [K,,,] =
[[Rm]‘l[Bum]T[Sm]] ; and obtained solving the following
Ricatti equation in the modal state space:

[Sm][Am] + [An]" [Sm] = [Sm][Bu,, ] [Rm]_l[Bum]T[Sm] +
[Q@m] = [0] (6)

X,, is the estimated modal state obtained from Kalman
Filter (KF)

[Minimizes the Performance Index]
Je = E[({Xm}— {XAm})T (X} — {Xm})]
= tr [E[({Xm} — {Xm})({Xm} - {Xm})T]]

Where tr is trace value of performance index.

(X} = [An] (&} + [Bu, ]} + [L1((Ym} —
[Cnl{X m}) @

= ([An] = [LI[CnD X} + [Bu,, [{u} + [L](Yn}
(8)

[L] is computed as follows:
AS (K] = |(R] By, ] 5]

And replacing values as;

[Ap] = [An]",[By,,] = [Cul”, [Qn] —
(W], [Rim] = [Vl [L] = [Kpn]”
So, [L] = [Sm, |[Cr) " V] ™

[Sm,] is computed by solving Continuous Filter
Algebraic Riccati Equation( CFARE).

[Am] [Sme] + [Sme][Am]T -
[Sin [ [Cr )" V)" [Cd [, | + 131117 = 0O
)

Block Diagram of LQG controller:

Structure (G)

Fig.3: The inner structure of the LQG closed-loop system.
The LQG separation properly:
From equation (1),
£} = (Am] = [L1C] = [Buy, | 1Kn]) Xim} + [L](Yim}
(10)
From (2) and (10) with [I] = [1]rr, We get

-{Xm} _

(X}

I [Am] _[Bum] [Km] ] {Xm}]
[L] [Cm] [Am] - [Bum] [Km] - [L] [Cm] {XAm}
(/] [O1][[(W;n]

o L) a

Error becomes {e,,} = {X;n} — {Xim}

{Xm} _

{em}

[Am] - [Bum][Km] [Bum][Km] ] {Xm}] +
i [0][0] W] (4] = [L][Cn] ] Lem}
[ —wl ) a2)
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([Am] = [Bu,, | [Km]), [Km]([Am] — [L][Cp,]) matrices are
stable.

Eigen values of ([4,,,] — [L][C,,]) should be 5 to 10
times([Am] — [By,, |[Km]). to get better performance.(
Wodek K. Gawronski[15])

V. H., CONTROLLER:

In the LQG controller design we assumed that the control
inputs were collocated with disturbances, and that the
control outputs were collocated with the performance. This
assumption imposes significant limits on the LQG
controller possibilities and applications. The locations of
control inputs do not always coincide with the disturbance
locations, and the locations of controlled outputs are not
necessarily collocated with the location where the system
performance is evaluated. This was discussed earlier, when
the generalized structure was introduced. The H2

and H.. controllers address the controller design problem in
its general configuration of non-collocated disturbance and
control inputs, and non-collocated performance and control
outputs. The H. method addresses a wide range of the
control problems, combining the frequency- and time-
domain approaches. The design is an optimal one in the
sense of minimization of the H norm of the closed-loop
transfer function. The H., model includes colored
measurement and process noise. It also addresses the issues
of robustness due to model uncertainties, and is applicable
to the single-input-single-output systems as well as to the
multiple-input-multiple output systems.(Monu et. al. [17])

In this chapter we present the H. controller design for
flexible structures. We chose the modal approach to H.
controller design, which allows for the determination of a
stable reduced-order H., controller with performance close
to the full-order controller.

A. Definition and Gains

The closed-loop system architecture is shown in figure. In
this figure G is the transfer function of a plant (or
structure), K is the transfer function of a controller, w is the
exogenous input (such as commands, disturbances), u is the
actuator input, z is the regulated output (at which
performance is evaluated), and y is the sensed (or
controlled) output. This system is different from the LQG
control system besides the actuator input and controlled
output it has disturbance input and the regulated output.
Needless to say, it represents a broader class of systems

than the LQG control system.
wu [ v
| S

The H. closed-loop system configuration: G—plant, K—
controller, u— actuator input, w—exogenous input, y—
sensed output, and z—regulated output.

For a closed-loop system as in Fig.1 the plant transfer
function G(s) and the controller transfer function K(s) a

(9) = 6 (1)
u(s) = K(s)y(s)

where u, w are control and exogenous inputs and y, z are
measured and controlled outputs, respectively. The related
state-space equations of a structure are as follows:

x =Ax + Byw + Byu,
zZ = Clx + Dlzu,
y = sz + D21W.

Hence, the state-space representation in the H. controller
description consists of the quintuple (A,B1,B2 ,C1,C2). For
this representation (A,B2 ) is stabilizable and (A,C2 ) is
detectable, and the conditions H., and H, controllers

D¢, DJ=1[0 1],
D21[31T D2T1]=[0 1]

are satisfied. When the latter conditions are satisfied the H.,
controller is called the central H. controller. These are
quite common assumptions, and in the H2 control they are
interpreted as the absence of cross terms in the cost
function (D5,C, =0) and the process noise and
measurement noise are uncorrelated(B, DI, = 0).

The H., control problem consists of determining controller
K such that the HO norm of the closed-loop transfer
function Gy, from w to z is minimized over all realizable
controllers K, that is, one needs to find a realizable K such
that

1 Gwz (Koo

is minimal. Note that the LQG control system depends on y
and u rather than on w and z, as above.

The solution says that there exists an admissible controller
such that||G,,, |l < p, where p is the smallest number such
that the following four conditions hold :

1) S, > 0 solve the following central H. controller
algebraic Riccati equation (HCARE),

SecA+ATS, . +CTC, —S,.(B,BY —p~2B,B1)S.,.. =0

2) S, > 0solves the following central H.. filter (or
estimator) algebraic Riccati equation (HFARE),

SweAT + AS,o + ByBT — S, (CTC, — p72CTC)S,.. =0
3) Amax(Soc Swe-) < p?
where A, (X) is the largest eigen value of X.
4) The Hamiltonian matrices
A p72?B,BTf —B,BI

Lcre, —ar b
(AT Gl -Gl
—B,BT —A ’

Volume 3, I ssue 10

Published by, www.ijert.org 4



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCETEM S-2015 Confer ence Proceedings

do not have eigen values on the jo-axis.
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Fig.4. Block diagram for Hoo Controller

V. COMPARISON IN PID, LQG, Hoo
CONTROLLERS:

As we are using three types of Controllers namely PID,
LQG and Hoo, so it is necessary to find out that which
controller would give better performance in controlling the
vibrations in the cantilever plate. For this purpose, we plot
the graphs between the parameters showing properties of
the mentioned controllers and hence see the comparison
among these three. All graphs are drawn in Matlab.

As compared to LQG and Hoo controllers, the PID
controller is much simple and easy. LQG and Heo control
approaches are well suited for the requirements of damping
out the effect of disturbances as quickly as possible and
maintaining stability robustness, whereas in PID control
approach it is not possible. In LQG controller, the design is
based on the independent mode space control techniques to
suppress the modes vibration of the system, but in PID
controller the design is dependent inputs given, whereas in
Hoo controller multi- inputs which are dependent and
independent mode space control can be given. PID
algorithm for control does not guarantee optimal control of
the system or system stability. The main limitation of PID
controller in that it is a feedback system, with constant
parameters, and no direct knowledge of the process and
thus overall performance is reactive and a compromise.
There is also noise problem in the derivative term of PID
controller, but due to Kalman’s filter in LQG controller,
there is noise elimination up to a good extent. Also in Hoo
controller the reduction of noise can be done up to a certain
limit. In Heo controller collocated as well as non-collocated
positions of piezoelectric patches can be used but in PID
and LQG controllers, it is not possible. LQG controller
concerns with uncertain linear systems disturbed by
additive white Gaussian noise, having incomplete state
information. Also, LQG controller applies to both linear
time-invariant systems as well as linear time-varying
systems, whereas in the PID controller it is not possible.
PID and LQG controllers are single input- single output
controllers whereas Hoo controller is a multi input- multi
output controller.

VI. RESULTS AND DISCUSSION:

N i
-y -
< -
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o o2 04 0.6 o8 1 1.2 14 16 1.8 2

First, taking PID controller,In graph 1, the plot is drawn
between the Amplitude (on ordinate) and Time also with
Impulse response (on abscissa). In the following graph the
value for the proportional input is taken as 98, whereas the
values for integrative and derivative inputs are taken as
zero. The green lines show the system (i.e. input
noise/vibrations) and blue lines show the model system
(i.e. controllers output). As the blue lines are exceeding the
green lines, so we can conclude that our vibrations are
under control.

Impulse Response

Ampitude

Graph 1: PID controller with P=98, 1=0, D=0

In graph 2, the plot is drawn between the Amplitude (on
ordinate) and Time also with Impulse response (on
abscissa). Values are P= 105, I=0, D=0.

Impulse Respanse

Time (sec)

Graph 2: PID controller with P=105, 1=0, D=0

In graph 3, the plot is drawn between the Amplitude (on
ordinate) and Time also with Impulse response (on
abscissa). Values are P= 110, I1=-0.1, D=0.1.
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Graph 3: PID controller with P=110, I=-0.1, D=0.1

Now, taking Linear Quadratic Gaussian (LQG) controller,
similar to PID controller, we can plot different type of
graphs between amplitude/tip displacement and time. By
changing the values of different parameters, we can find
out various results. Also, for LQG controller position of the
piezoelectric patches matters. The value of output varies
with the position of PZT patches. The open and control
loop graphs can also be drawn.

First, drawing a graph between the amplitude/tip
displacement (ordinate) and time (abscissa) for LQG
controller in closed loop condition.

Graph 4: LQG controller (closed loop case)

In close loop case for LQG controller, the graph can be
plotted as shown above. The green sinusoidal wave shows
the vibrations of the system, and the blue sinusoidal wave
shows the controller’s output to control the same
vibrations. The amplitude for the closed loop LQG
controller varies from 3 to -2 units and decreases
continuously. For some time say, 0.15 sec. controller’s
wave traces the initial vibrations wave but after it, the
controller controls the vibrations very significantly.

We can draw the LQG controller graphs for the different
positions of piezoelectric patches which are acting as the
actuators/sensors. LQG controller graph for the PZT
position 16, can be shown as below. In which, the
amplitude varies from the value 3 to -2.5 units and the
settling time is 0.7 sec. The green wave shows the initial
vibrations and blue waves shows the controller’s output. As
the green and blue waves are tracing each other, so we can
say :[hat a better control is achieved.

x 10

3tk 4

2 4

Amplitude

o VW\N\NV A A A ALAAAAAAAAAAARAAAAAAAAA,

o 0.2 04 06 0.8 1 1.2 14 1.6 18 2
Time

Graph 5: LQG controller at PZT position 16.

Similarly, we can draw the Hoo controller graphs for the
different positions of piezoelectric patches which are acting
as the actuators/sensors.

Heo controller graph for the PZT position 46, can be shown
as below. In which, the amplitude varies from the value 3.2
to -3.2 units and the settling time is more than LQG

controller. The green wave shows the initial vibrations and
blue waves shows the controller’s output. As the green and
blue waves are tracing each other, so we can say that a
better control is achieved.

107
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Graph 6: Hoo controller at PZT position 46

Likewise, Hoo controller plot at PZT position 52 can be
shown as in the graph 7 below:

=< 107"
a

PREMETEL
o

o 0.2 0.4 0.5 o.8 1 1.2 1.4 1.6 1.8 2
Time

Graph 7: Heo controller at PZT position 52
VII. CONCLUSION:

This work shows the basic technique of analysis of
cantilever plate for Active Vibration Control using
piezoelectric sensors and actuators. The optimal location
and size of sensor actuator pair for cantilever plate and
control effectiveness of PID, LQG and Heo controller is
obtained. Results concluded that the sensor actuator pair is
optimally located based on the lower settling time criteria.
It is noted that the control effectiveness of PID controller is
insignificant when compares to the LQG and Hoo
controller’s. Study also revealed that LQG controller offers
optimal effectiveness with lower peaks in settling time as
compared to other classical control like PID strategies.
Whereas Hoo controller is better than both PID and LQG
controllers in the sense of input- output mode and
collocated phenomenon.
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