
Comparative Study of Privacy Preservation and

Access Control of Cloud Data

Disha M. Wagle

Department of Computer Engineering

MCT’s Rajiv Gandhi Institute of Technology

Mumbai, Maharashtra

Abstract— Security of data involved during sharing of data

in a cloud computing environment is one of the biggest concerns

in a cloud platform. Nobody should be trusted with important

data, not even the Cloud Service Provider. Even though the

Cloud Service Providers enforce the access control policies and

follow protocols, they are ‘curious’. They want to find out as

much information about the user’s data as possible. There have

been several approaches which have been adopted in the past, to

provide protection to the data but most of these techniques have

certain disadvantages. Hence, a useful approach has been

devised. This approach makes use of multiple layers of

commutative encryption to protect data against Cloud Service

Providers while an authorization mechanism enforced by the

Cloud Service Provider is responsible for data protection

against unauthorized users.

Keywords—Cloud, privacy preservation, access control,

encryption, Cloud Service Providers

I. INTRODUCTION

Cloud computing is one of the most sort after
technologies in today’s time. There are several concepts
which have contributed to the facilities it provides and the
major cause of its success. Some of them are virtualization,
utility computing, elastic computing and network centric
content [1]. The cloud makes various provisions to its users
like resource pooling, pay as you go, on-demand self service
and elasticity. Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), Software as a Service (SaaS), also known as
the SPI framework is the service provided by cloud [2]. But
of late, Data as a Service has been increasingly growing
mostly due to the large data storage and retrieval
requirements of users. The data is stored in the cloud as well
as processed within the cloud and has the ability to be shared
with multiple users at the same time. The cloud provides a
virtual environment which makes its memory scalable. The
data needs of a big, medium or small scale enterprise may be
satisfied by the cloud. But along with every advantage a
compromise has to be made. When it comes to cloud, security
is a major concern.

Security can be viewed with respect to several aspects.
According to [3], security risks could be traditional security
risks, risks due to system availability and risks due to third-
party data control. In this paper, we have concentrated on one
of the most important concerns which arise due to third-party
control of data and cloud service providers (CSP). Privacy
preservation of data and access control to the cloud has been
a growing concern. Before a user starts using the cloud
services, he/she has to provide certain information about

himself/herself. The user also agrees to a contract with the
CSP which, usually, makes an explicit statement that the
cloud providers are not responsible for any data loss or
leakage and that the user should store the data at his/her own
risk. This further increases the concerns. But most of the
cloud providers store data on their servers in order to recover
from an accidental data loss. This could lead to leakage of
data from the servers. These methods are adopted by the
CSPs without the knowledge of the user hence if a user
deletes some data from the cloud, the data might still exist on
the server, probably upon replication failure. A large-scale
enterprise having its private cloud can probably store all its
confidential information like its financials onto the cloud. A
rogue employee could mess with these details since the CSP
has the ability to access the user data if security is not
appropriately implemented [1].

Cloud Service Providers are curious about the data stored
by the users. The CSP could provide customer information to
a third party like advertising company to target individuals
for advertisements. Hence, it is extremely important that the
the privacy of the users be maintained and the data stored is
provided the right kind of access control.

The paper focuses on the various systems proposed in
order to maintain privacy and how different kinds of access
control policies are devised to control authorization to
individual resources provided by cloud service. A
comparative study is provided for the analysis of the systems.
This shows how the systems have gotten better over a period
of time taking into consideration several new parameters
every time.

II. PRIVACY AND ACCESS CONTROL MODELS

There have been several systems which have been proposed,

specifically, to address the needs of privacy preservation of

user data and control the access multiple users might have to

the cloud data.

A. RBTBAC MODEL

Model: According to [4], Role Based Time Bound Access
Control Model considers Electronic Health Record datasets.
This system introduces the role based access. Every user has
some role, which could be that of a doctor, patient or staff.
Each and every role has some privilege depending on the
personal details of the user. This role based model is
constructed using a hierarchical approach. Also, the access
control policies which are devised for every user involve the
time parameter. A user with a certain role, along with

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

165

selective privileges, also has a time constraint which is the
authorized time interval within which the user can access the
records.

The encryptor collects health record information from
various organizations and institutions. The data is encrypted
and stored. When a new user wishes to gain access to the
data, the Trusted Authority has to be contacted. In order to
gain access to the records a new user should get hold of the
system identity credential and access credential. The system
identity credential includes an ID, role of user, user’s master
key and some system parameters. Once this credential is
acquired, the user can log in to the system but not access the
records. Then an access request is made which includes the
user’s role, patient’s ID, access time period and significant
words pertaining to data needed. The TA examines the
request and then gives access to the user. During the specific
time period, if user needs access to some other data then new
system identity credentials are not required.

The patient’s privacy is maintained too, as the patient is
involved in deciding the access control policies as to who can
access what data related to his information. The policy for a
patient can be expressed as follows: policy=(r, < Pj, {o} >,<
tb, te, ti >, mo, op). Here, r is the user’s role, Pj is the patient
whose data is needed along with the target data to be
accessed, tb, te and ti is the start time, end time and the
maximum time data can be accessed, respectively, mo is the
motive of accessing the data and op is the output of access
request, whether or not access is given.

For the EHR, a tree is constructed wherein each patient is
the root. The tree consists of index nodes, i.e. nodes for a
doctor and nodes according to the doctor’s specialization and
hospital. Data nodes are also present in the tree, these are the
leaf nodes which are which contain diagnosis information for
the patient.

Implementation: The RBTBAC is implemented in several
steps. These steps are:-

1. Initialization: Here, the encryptor chooses a random
value, R, to calculate the root node for the hierarchical
tree structure. It calculates the master key which is the
root node, Kroot = g

H’(r)
. Similarly, it calculates keys for

each class or particular set of data. Here, g is the
generator of a collision-resistant hash function. Also, the
encryptor encrypts the index nodes with the class key.
Hence, the system parameters are initialized.

2. Encryption: The RBTBAC model puts a time constraint
for access to EHR. The time granules are represented in
the form of a complete binary tree. Each leaf node of the
tree denotes the value of the smallest time granule while
the root node denotes the entire timeline. In order to
encrypt a class of data for its access only at a particular
time, access key for each class is calculated which
includes the class key and the value of time interval. Kk,t

= H(Kk||VB(t)), where Kk is the key to class Ck and VB(t) is
the value of time interval t.

3. User Registration: When a new user (Doctor D) is wants
to access the EHR, then the system identity credential
given by TA contains the master key, KD. The credential
includes sc{encpkd(KD,H(.))} which means the cipher text
is encrypted using the private key algorithm with D’s
public key and this encrypted form is submitted to the

user in the form of a digital signature with the TA’s
public key.

4. User Request: After the doctor gains the system identity
credential, the TA verifies the request, searches for the
access control policies and issues an access credential to
the doctor which includes the encrypted forms, using the
data’s private key, of the set: begin time, end time, root
nodes of the full binary trees and relationship values for
the concerned class. The root nodes of FBSs is calculated
using the following algorithm:

 procedure FindRootOfFBS

level = 0, head = tb, end = te;

while head < end do

if (head mod 2 == 1) then

RootNodes ! elem:val = head;

RootNodes ! elem:pos = level;

RootNodes = RootNodes ! next;

head=head + 1;

end

if (end mod 2 == 0) then

RootNodes ! elem:val = end;

RootNodes ! elem:pos = level + 1;

RootNodes = RootNodes ! next;

end = end � 1;

end

level + +;

head = head >> 1;

end = end >> 1;

end

Print(RootNodes);

5. Access and Decryption: The user, thereafter sends a
request of access to data. The user’s credentials are
verified and the required data is retrieved. After this, the
user D, computes decryption key Kk,t which decrypts the
data.

Advantages: The various plus points for this system are-

 The master key for every user is never known to anybody
except the user itself. Hence security is maintained.

 Attack by an unauthorized user, attack on an unauthorized
class, attack in an unauthorized time interval or a
collusion attack is not possible due to the lack of the
digital signature of the Trusted Authority which is
crucial for authentication during data retrieval.

 The privacy of patients is maintained too since the
patients are involved in construction of the access control
policies.

 Also, a credential revocation list is used which store the
serial numbers of all the expired credentials. This list is

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

166

checked while deciding whether access is to be given or
not. Hence, credentials issued expire after a certain time
and need to be revocated. These expired ones cannot be
reused.

 The hierarchical tree key management scheme saves
space as it has a space complexity of O(Nleaf) as
compared to traditional techniques which have a space
complexity of O(N

2
-N), where N is the total number of

nodes and Nleaf is the number of leaf nodes.

 During encryption key generation for a specific time
granule, the time granule has to be calculated which is
done using one-way hash evaluation. Hence the time
complexity of the number of hash evaluations is less than
log2(z+1) times less using the binary tree method as
compared to the linear hash chain method.

 During decryption, time cost includes calculation of class
key using user’s master key and calculation of time
granule parameters. Due to which its time complexity is
log2(te-tb+1) as compared to linear hash chain method
with time complexity of log2(te-tb) where [te,tb] is a
valid time interval for access by a particular user.

B. CLOUDMASK MODEL

Model: [5] focuses on the security and privacy of Data as
a service (DaaS) facility of cloud. The CloudMask is an
approach for securing EHR data as well. The entire data is
divided and managed in the form of documents. The major
entities involved in this system are:-

 Document Manager: It manages the subscription and
encryption of documents.

 Cloud Service Provider: It provides the cloud service
wherein the encrypted data is to be stored.

 Users: They could be anybody ranging from a cashier or
healthcare staff to patient or a doctor. The data can be
accessed and stored by them

 Identity Providers: They compute and provide unique
identity tokens to users during data access.

The most significant part of this model is the usage of two
protocols which are the Oblivious Commitment Based
Envelope (OCBE) and Broadcast Group Key Management
(BGKM). Firstly, the Oblivious Commitment Based
Envelope (OCBE) Protocol is used by the Document
Manager (DM), who manages subscriptions and encrypts data
according to the access control policies. The user sends the
DM an identity attribute according to a condition. The DM
returns an envelope. The user can decrypt it only if he/she
knows the attribute value committed. The DM will not come
to know of this attribute. Secondly, the Broadcast Group Key
Management Scheme is followed. In this, communication
with a group of users is made secure by broadcasting the
message to those users which they can decrypt by a
symmetric key. But if the group dynamics change, if a person
leaves or joins the group, new keys are not reissued. Each
user is given a secret which can be combined with some
public information to obtain the group key. Hence, a change
in group dynamics leads to change of public information.

Implementation: The implementation of CloudMask is
done in different phases. These phases are:

1. Token Issuance: A new user sends its identity attributes
and its proof to the Identity Provider (IdP). The IdP
verifies the authenticity of the proof and issues tokens to
the user. Each token is unique and is given in a standard
format of <ps, idt, c, ds> wherein ps is the pseudonym
which uniquely identifies a user, idt is the identity
attribute being considered, c is the Pedersen’s
commitment and ds is the digital signature given by the
IdP.

2. Token Registration: Users need to register with the Cloud
Service Provider before gaining access to the content. As
mentioned above, the data is divided and subdivided into
documents and subdocuments, respectively. A user, first,
retrieves the access control policies which are of the
form <subj, pid> where pid is the policy id and subj is
the subject of the policy which is nothing but a set of
conditions. These conditions must be satisfied to satisfy
the policy. A condition could be any comparison
statement where a particular value is compared to the
identity attribute. Every subdocument has a policy
configuration associated with it. In order to access the
subdocument at least one of the conditions in the policy
must be satisfied. The user provides its identity token to
the Document Manager. Here, the OCBE protocols come
into the picture. Every time a token is sent to the
Document Manager, Conditional Subscription Secrets
are issued by the Document Manager and are sent to the
user. It contains the keys which allow users to decrypt
the subdocument whose policies are satiated. This is
done using the BGKM scheme

3. Publication and Authorization: The data is encrypted by
the Document Manager and published. The
subdocuments contain the unique identifier for each
subdocument, encrypted data, encrypted metadata
identifying keywords from actual data, hash–based
message authentication code (HMAC) and access control
vector. The users are given access to the metadata and
data by using an authorization method i.e. users calculate
their HMAC using their Conditional Subscription Secrets
and public access control vector. If this HMAC matches
the HMAC of the subdocument then access is given.

These phases provide access to the users but from a
technical point of view, key management is an
important task. The algorithmic procedures followed
for key management are:

1. Setup(): The Document Manager initializes all the
necessary parameters:

2. q an l-bit prime number,

3. N the size of group of users which is mostly set to n,

4. H a cryptographic hash function which generates F,
which is a finite field with q elements,

5. KS key space which set to F,

6. SS Secret space which is l-bit random secrets, and

7. S used secrets which is set to null initially

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

167

8. SecGen(): The unused secret, s, in SS is picked at random
for a particular user such that s is not an element of S.

9. KeyGen(S): The group key, k is picked up from KS, and
n random bit strings are chosen from which are of l bits.
A matrix A which is the Access Control Matrix, is
formed in which each element ai,j is stored in the
following form: if j=0, ai,j =1 else ai,j =H(s||z). The
Document Manager chooses nonzero vector Y from the
null space of A such that AY=0. Thus, the Access
Control Vector(ACV) is computed where ACV=k.e+Y.
e=(1,0,0,..,0) is the base vector for F. Now, private k and
public PI is output where PI =(ACV,<z1,..,zn>).

10. KeyDer(s,PI): Using the PI and s, the user computes the
Key Extraction Vector (KEV). This vector is a unique
representation of a row of the matrix A. Thereby the
group key k’ is calculated by taking the inner product of
the KEV and ACV.

11. Update(S): The key generation algorithm is run again to
generate a new public information tuple. This is when
the group dynamics change. By changing the PI only,
new group key can be issued.

Advantages: The pros of the system include-

 Identity tokens are issued to the users based on their
attributes but the Document Manager and Cloud Service
Provider do not come to know of the attributes and
privacy is maintained.

 The data and metadata is stored in the encrypted form due
to which the Service Provider never learns of the data
stored.

 Attribute based access control makes registration and
authorization more secure.

 Cloud Service Provider charges users on the basis of
bandwidth utilization. Hence, the HMAC authorization
principle used in the system controls the bandwidth used
by the user in the cloud.

 The system can be used with subset-cover techniques
wherein each user is provided with multiple secrets,
some of them may or may not be unique. When minimal
secrets are chosen which cover all the members of the
group, it makes the complexity sublinear with n and
number of secrets needed is reduced to log n. This in turn
improves the algorithms used in the system.

C. TWO LEVEL ACCESS CONTROL MODEL

Model: Usually, access control models propose solutions
to enhance data sharing where read access control is stressed
upon but [6] also, provides a solution to write access control.
The roles participating in the system are:-

 Data owner: who owns the data, stores it in the cloud in
the encrypted form and decides who gets what kind of
privilege with the data

 Data user: who is allowed by the data owner to use the
data and has a certain privilege over the data

 Cloud Provider: who stores the data in its service and
upon verifying the access request may or may not provide
access to a person other than the data owner

Data resources or files stored in the cloud are divided into
access blocks. The two levels of access control utilized in the
model are coarse-grained and fine-grained access control.
The coarse-grained level view is provided to the cloud
provider. These access blocks have privilege levels associated
with them. When a request is made for the block, the cloud
provider matches the request to the block itself. The fine-
grained level view is for the users of the data. The owner
provides access to the users on their request based on each
file within a block. The cloud is unaware of these policies and
inputs.

Implementation: The model is implemented in the form of
two separate solutions, one for read access and one for write
access. Thereafter, an integrated approach is suggested.

1. Read Access Control:

2. System Setup: At the fine-grained level, files are
distributed into access blocks. For each block, generate a
tree graph by running Publish(r; o; eo; acl) for each
resource r owned by o with an initial set of ACLs.
Encrypt resources using keys from internal nodes in the
tree. At the coarse-grained level, compute parameters for
a predicate encryption scheme. Each owner construct a
separate tree graph over all resources he owns to
distribute authorization tokens SKf =GenKeySK(f) based
on the initial ACLs.

3. Access Authorization: At the fine-grained level, add a leaf
node containing the new user's public key to the
corresponding tree graph with encryption keys. Update
the graph by adding new internal nodes and appropriate
edges if necessary. Update file encryptions if new
internal nodes were added previously. At the coarse-
grained level, perform similar operations with respect to
the tree graph containing read access tokens.

4. Access Request: At the fine-grained level, an authorized
user u derives the decryption key from tree graph for
resource r by calling Find Chain(u; r), Find Resources (u;
r) and Compute Key(u; chain). At the coarse-grained
level, he calls the same set of functions but to query the
tree graph with access tokens and token cid = EncSK(id)
for the requested _le id, and then submit a randomized
token tid = Rand(cid) to the cloud.

5. Access Check: At the _ne-grained level, only authorized
users can derive the correct decryption key for each _le
using the public tree structure. At the coarse-grained
level, the cloud provider executes File Access Check to
identify the block that contains the requested file.

6. Access Rule Update: At the _ne-grained level, changes
are applied immediately upon policy updates. If the
policy update involves access revocation, the data owner
changes the encryption of corresponding _les. The data
owner identifies the blocks affected by those files and
updates their tree graphs with decryption keys. The
changes at the coarse-grained level happen at longer
intervals of time, the length of which would depend on
the resources of the data owner. They involve updating
of the tree graph with access tokens.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

168

7. Write Access Control:

 File Encryption: We apply an asymmetric encryption

scheme to handle all possible combinations of read and

write access to a file. Since such scheme is

computationally expensive for large size of data, file

content is still encrypted using a symmetric key (e.g.,

AES), which is further encrypted under the public key.

Two trees are constructed for key distribution per block-

one for the public(encryption) keys and the other for the

private (decryption) keys. These two trees share the same

set of internal nodes for a one to one correspondence

between public and private key pair. Only files readable

and writable by the same set of users can share the same

public key pair.

 Access Authorization: Tokens Two trees are constructed

by each data owner for the distribution of read and write

access tokens respectively.

 File Identifiers for Write Updates: We observe that the

write authorization token is a valid encryption for a

predicate encryption that provides polynomials

evaluation, and the structure of the encrypted plaintext

for access to file id is a vector of the form (1; id; id2; : : :

; idn), where n is the number of files placed in a block.

The structure of the ciphertext allows it to be split into

parts where one part is an encryption of the vector (1; id;

id2; : : : ; idk) (k < n, n > 2), which is no longer a valid

write access token for that file, but can still be used

identify file updates for users with read privilege. This

can be achieved using a decryption predicate for a

polynomial of degree k that has id as a zero point.

8. Integrated Read-Write Access Control:

 Setup: At the fine-grained level, construct a key

distribution tree per block based on read access rules. For

each node in the tree, generate a public-private key pair

(skn; pkn), but only store the secret key skn. Construct

another tree with the same set of nodes to store the public

key pkn, with edges determined by write access rule. For

each file id generate a AES key skaesid for encryption,

and append to the ciphertext Encpkn(skaesid). At the

coarse-grained level, each data owner generates a tree

graph, where each node contains read access token

Encpk’ra (id) and SKx-id = GenKeysk’’-ra(f) where f(x)

= x-id using predicate encryption with different keys.

Similarly, construct another tree to distribute write

access tokens Encpkwa (id).

 Access Authorization: At the coarse-grained level,

extend the trees with read and write access tokens with

new leaves for the new user and update the edges

according to his read and write permissions. This may

involve splitting of nodes and re-encrypting files with

new keys if the user has read access only to a subset of

files that have been encrypted with the same key.

 Write Access Request: At the fine-grained level, obtain

the encryption key pkn for the file to be updated from the

write tree. Encrypt the new content for that file with key

pkn. At the coarse-grained level, submit to the cloud a

re-randomized copy of the write authorization token for

that file.

 Write Access Check: At the fine-grained level, a user can

modify a file only if he has the encryption key and the

write authorization token. Upon read he will check at the

end of a block a list of updates with valid write access

tokens. At the coarse-grained level, the cloud finds if

there is a block for which the authorization token grants

write access. The write access token is of the form (C0;

fC1;i;C2;ign i=1), and the cloud uses the first

components (C0; fC1;i;C2;ig2i=1) as an identifier for

updates appended to a block.

 Write Access Rule Update: Update per-block trees for

encryption keys and the tree for distributing write access

tokens accordingly.
Advantages: Upon analysis of the various possible attacks

on the system, the following results were found:

 For the privacy of the data owners, the cloud provider

does not learn any of the content of the files that he

stores. The cloud learns the frequency of access to

particular blocks but not the exact files that have been

accessed within a block. For users' privacy, the cloud

provider cannot relate access requests to particular users',

neither can he infer which requests were submitted from

the same user. However, he can observe the block access

pattern from the requests of all users. The data owner

does not learn anything about the access requests for the

data.

 For privacy of the data owners, the cloud provider learns

how often update requests are submitted for each block

but without finding out which files have been written.

Similarly to the read requests, write requests coming

from the users are anonymous and unlinkable. Thus the

cloud provider cannot learn anything about the access

behavior of a particular user, but only a cumulative view

over the requests from all users.

D. HSAC MODEL

Model: In order to achieve the desired functionality
described above, [7] proposes to make anonymous and
oblivious access control decisions and grant access to
resources based on tickets, using a universal homomorphic
computation container (UHCC). The UHCC will allow for
the integration of a suitable AC mechanism, such as a simple
AC list, RBAC, or many other existing methods. We combine
this to create the foundation for Homomorphic cryptography
Supported Access Control (HSAC). Besides few assumptions
about the infrastructure, this foundation allows the system to
be tailored to the requirements of its application while
achieving a maximum of privacy. We assume that the
resource provider and the subject follow the push sequence
for getting access to a resource. A subject obtains an
authorisation ticket from an organisation’s AAA Server (the
PDP) and presents this ticket to the service equipment (the
PEP), therefore proving that access was allowed by the PDP.
This indirection allows for maximised privacy during the
PDP’s decision process. Using the push sequence, the PEP
cannot know when or by whom the ticket was obtained.
Compared to the more direct pull sequence (the PEP obtains
the authorisation from PDP itself), the push sequence allows
for the separation of the PDP and PEP and only increases

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

169

communication complexity from one to a second exchange.
This is desirable if the subject has an interest in maintaining
his privacy and therefore in protecting the ticket and has the
advantage of separation between PDP and PEP. However,
PDP and PEP will usually reside within the same
organisation, and hence an honest but curious provider can
correlate information from both entities.

Implementation:-

 Homomorphic Container: The UHCC is a complete
computer which takes in inputs for a program and
produces outputs but all of these are in the encrypted
form. The owner assembles a program which is
encrypted with public key of the owner, present within a
memory image. This image is sent to an executing entity.
The parts of program which are modified due to
outcomes are sent back to the owner. These encrypted
outcomes are thereafter decrypted by the owner using its
private key.

 HSAC Model can be implemented using an arbitrary
function f. This function considers the subject
credentials, policies and static environment variables. It
takes Access Control decisions based on subject to role,
role to permission and resource to permission mapping.
Function f is computed and hidden from the provider. f,
i.e. subject credentials and resource identifiers are
encrypted using the public key of the subject and are
wrapped into a homomorphic container. This is sent to
the PDP. The encrypted function f is provided with
inputs using subject’s public key for compatibility. If
outcome generated is 1, and the mapping is valid then a
PDP issues a ticket which is encrypted using the PDP’s
private key. This ticket is sent to the subject. The subject
decrypts the container using its private key. The ticket
sent is verified by the subject and PEP using the PDP’s
public key. If the ticket is valid PEP gives permission to
the subject to access the resource.

Advantages: After considering attacks from malicious
adversaries apart from network attacks, the model offers the
following advantages:

 The request parameters travelling from subject to
provider are encrypted which prevents getting hold of
this information by the provider, i.e. information
regarding the subject credentials

 The ticket issued by the PDP cannot be modified either
as the PDP digitally signs the ticket and it can be
accessed using the PDP’s public key only

 The outcome generated as a result of execution of the
program at PDP, is injected into predetermined memory
locations of the image and only those parts are sent due
to which the plaintext or the PDP’s private key cannot be
acquired.

E. PRIVACY AWARE ACCESS CONTROL MODEL

Model: [8] proposes a privacy aware access control

system that provides two levels of protection for user’s data

stored on a CSP. The CSP is responsible for protecting user’s

data from unauthorized users, while user’s data is protected

from the CSP with the help of a third-party service provider.

Instead of using complicated PKI paradigm, we employ

multiple layers of commutative encryption are used along

with a third party service provider to protect the users’ data

from the CSP while there is no need for users to trust the

third party service provider either. Our approach separates the

data protection against CSPs from the data protection against

unauthorized users. We use commutative encryption to

protect data against CSPs while an authorization mechanism

enforced by the CSP is responsible for data protection against

unauthorized users. By this separation, our proposed

approach enables data owners to protect their resources from

untrusted CSPs using encryption while allowing them to

share their resources with authorized users and protect their

resources from unauthorized users using fine-grained access

control policies. The granularity level of these policies

depends on what access control mechanism the CSP supports.

The major entities which are considered to participate in
this system are:

 the data owner who creates the data and store it on the

cloud service provider in an encrypted format and

determines who has access to the data

 the data consumer who may have access to the protected

data depending on the access control policies defined by

the data owner

 the cloud service provider that stores the encrypted data

and responds to access requests by the data

Implementation:-

 Setup Phase: The setup process is executed only once

during the installation phase and its goal is to initialize

required parameters for cryptographic operations on all

parties, the CSP, the PMS, and the user. It determines a

symmetric key space, a symmetric key initialization

vector space, a symmetric stream cipher, a

cryptographically secure hash function, a HMAC-based

key derivation function, and a random master secret.

 Data Encryption: Before moving the data to the CSP, the

data owner encrypts the data using a (non-commutative)

symmetric key k. Then, the resulting cipher text is

transferred and stored on the CSP. The data owner

defines access control policies which are enforced by

access control mechanism of the CSP on the encrypted

data.

 Key Encryption Algorithm: Once the data owner

encrypts the data using the key k and stores it on the

CSP, we need to share this key with authorized data

consumers, so they (and only they) can decrypt the data.

Since neither of the CSP nor the PMS are trusted, they

should not be able to access the key k. We use multiple

layers of commutative encryption to encrypt and share

the key k with authorized data consumers. The key

encryption algorithm 1 used for this purpose includes the

following procedures.

Add-DataOwner-CELayer: This procedure is performed

on the data owner side before sharing the key. Its input is

the clear text key clrtxtkeyo∈ {0, 1}∗and the steps 1-6

of the algorithm 1 are executed.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

170

Add-CSP-CELayer: After the data owner successfully

runs the Add-DataOwner-CELayer procedure, the CSP

runs the Add-CSP-CELayer procedure. Its input is the

cipher text key cphtxtkyo and the CSP runs the steps 7-

11 of the algorithm 1 to add another layer to the cipher

text key cphtxtkyo. Remove-DataOwner-CELayer: This

procedure is run on the data owner side after receiving

the cipher text key from the CSP. Its inputs are _ivcs,

cphtxtkeyocs_ from the Add-CSP-CELayer procedure as

well as kstro and Digo from Add-DataOwner-CELayer

procedure. This procedure removes the data owner’s

encryption layer from the cipher text key cphtxtkeyocs

by running the steps 12-13 of the algorithm1. Algorithm

1 Key Encryption Algorithm Input: clrtxtkeyo This part

is performed at the data owner side (Add-DataOwner-

CELayer)

1: Generate ivo ∈ IVu

2: Generate cko ∈ CKu

3: Digo ← Hu(clrtxtkeyo)

4: kstro ← SymStru(ivo, cko)

5: cphtxtkeyo ← clrtxtkeyo ⊕ kstro

6: Send _cphtxtkeyo_ to the CSP

This part is performed at the CSP side (Add-

CSPCELayer)

7: ckcs ← HKDFcs(hn,Xcs)

8: Generate ivcs ∈ IVcs

9: kstrcs ← SymStrcs(ivcs, ckcs)

10: cphtxtkeyocs ← cphtxtkeyo ⊕ kstrcs

11: Send _ivcs, cphtxtkeyocs_ to the data owner

This part is performed at the data owner side

(Remove-DataOwner-CELayer)

12: cphtxtkeycs ← cphtxtkeyocs ⊕ kstro

13: Send _cphtxtkeycs, ivcs,Digo_ to the PMS

 Key Decryption Algorithm: Once the data consumer is

authorized and granted access to the cipher text data

according to the access control policies, she receives the

key k that was used to encrypt that data. The key k itself

is encrypted using the CSP’s encryption layer and the

data consumer should be able to decrypt the key. The key

decryption algorithm 2 is used by the data consumer to

recover the clear text key. It includes the following

procedures.

Add-DataConsumer-CELayer: This procedure is

performed locally at the data consumer side. The input is

the tuple _cphtxtkeycs, ivcs,Digo_ and the steps 1-5 of

the algorithm 2 are executed.

Remove-CSP-CELayer: After a data consumer

successfully runs the Add-DataConsumer-CELayer

procedure, the CSP runs the Remove-CSP-CELayer

procedure. Its inputs are the cipher text cphtxtkeycsc and

the initialization vector ivcs. The steps 6-9 of the

algorithm 2 are performed by the CS to remove its

encryption layer from cphtxtkeycsc.

Remove-DataConsumer-CELayer: After the Add-

DataConsumer-CELayer and the Remove-CSP-CELayer

procedures were run successfully, the data consumer

runs the Remove-DataConsumer-CELayer procedure to

recover the clear text key. Its inputs are the result from

the Remove-CSP-CELayer procedure as well as ivc ,

kstrc and Digo from the Add-DataConsumer-CELayer

procedure. As shown in steps 10-12 of the algorithm 2, it

decodes cphtxtkeyc with kstrc and calculates the digest

of the result using Hu. If the digest equals to Digo, it

accepts the clear text key, otherwise the key is rejected

because its integrity has been violated. If the data has not

been manipulated by potential adversaries, clrtxtkeyc

should be same as clrtxtkeyo.

Algorithm 2 Key Decryption Algorithm

Input: cphtxtkeycs and ivcs and Digo

This part is performed at the data consumer side

(Add-DataConsumer-CELayer)

1: Generate ivc ∈ IVu

2: Generate ckc ∈ CKu

3: kstrc ← SymStru(ivc, ckc)

4: cphtxtkeycsc ← cphtxtkeycs ⊕ kstrc

5: Send _cphtxtkeycsc, ivcs_ to the CSP

This part is performed at the CSP side (Remove-

CSP-CELayer)

6: ckcs ← HKDFcs(Hcs(c),Xcs)

7: kstrcs ← SymStrcs(ivcs, ckcs)

8: cphtxtkeyc ← cphtxtkeycsc ⊕ kstrcs

9: Send cphtxtkeyc to the data consumer

This part is performed at the data consumer side

(Remove-DataConsumer-CELayer)

10: clrtxtkeyc ← cphtxtkeyc ⊕ kstrc

11: Digc ← Hu(clrtxtkeyc)

12: Compare Digc and Digo and accept the clear text key

if they are equal.
Advantages: The proposed approach offers the following

advantages.

 It does not require any public key infrastructure or key

distribution scheme.

 If access control policies change, there is no need to re-

encrypt the data or re-generate and re-distribute

encryption keys. Since our approach separates the data

protection against CSPs from the data protection against

unauthorized users, changes in policies which are used

for data protection against unauthorized users do not

affect the encryption part of the approach which is used

for data protection against the CSP.

 It is possible to enable data owners to define policies at

various granularity levels such as role-based, attribute

based, group based, etc.

 As the encryption part is independent from CSP’s

access control mechanism, data owners are able to

protect data from mistrusted CSPs regardless of access

control mechanism the CSPs support and types of

access policies they can define.

 It provides flexibility in terms of types of access control

policies that the data owner can define; various types of

access control policies can be enforced.

 The enforcement of access control policies that protect

data from unauthorized users is performed by the CSP

and the encryption part is shared between the CSP, the

PMS and users. So, data owner does not have to be in

charge of huge part of enforcement while being able to

protect his resources from mistrusted CSPs.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

171

 It is scalable since the data encryption part is separated

from access control policies and no public key

infrastructure, key distribution scheme or re-encryption

is needed.

Unauthorized User: If an unauthorized user is able to break

the CSP’s access control mechanism somehow and get

access to the cipher text, he cannot decrypt the cipher text as

the key which was used for encryption is stored on the PMS.

On the other hand, if an unauthorized user is able to break

the PMS and get access to the cipher text key and decipher it,

he cannot do anything as he does not have access to the

cipher text which is stored on the CSP. An unauthorized user

is able to break the system if and only if he can break both

the CSP’s access control system and the PMS at the same

time. In this case, he would be able to decrypt the key using

a similar process as data consumer uses in our proposed

approach (cf. key decryption algorithm) and consequently

decrypt the data. However, if the access control policies are

properly enforced by the CSP unauthorized users will not

able to get access to the cipher text stored on the CSP.

PMS Provider: When the key is stored on the PMS provider,

it is protected by an encryption layer from CSP. During

encryption phase, the data owner encrypts the clear text key

clrtxtkeyo using key stream kstro which is in turn encrypted

using the CSP’s encryption layer and only the final result

cphtxtkeycs ← cphtxtkeyocs ⊕ kstro is sent to the PMS

provider. The key is encrypted using the CSP’s encryption

layer and the PMS cannot extract the clear text key.

Cloud Service Provider: The data stored on the CSP is

encrypted using the data owner’s key. In order to decrypt the

encrypted data, the CSP must get access to the key k which

was used for encryption. When the key is sent to the CSP, it

is protected by an encryption layer from the data owner.

During decryption phase, the data consumer first adds an

encryption layer to the already encrypted key cphtxtkeycs

using key stream kstrc and sends the result cphtxtkeycsc =

cphtxtkeycs ⊕ kstrc to the CSP. In both cases, the key is

encrypted and the CSP cannot extract the clear text key.

Bit-Flip Attack It has been shown that XOR-based stream

ciphers are susceptible to bit-flip attacks. Stream ciphers

usually encrypt and decrypt data, one bit at a time by

XORing the plain text with a key stream. Because of this, an

attacker could modify one bit of cipher text through a man in

the middle attack or replay attack without knowing the key

and the recipient of the cipher text would not not know the

data had changed. In order to mitigate this attack and provide

message integrity, while adding an encryption layer to the

key k in the Add-DataOwner-CELayer procedure, we

calculate a message digest at the data owner side and send it

along with the encrypted key to the PMS while running the

Remove- DataOwner-CELayer procedure. The recipient of

the key verifies the message digest in the Remove-

DataConsumer-CELayer procedure and rejects the key if the

digest of the recovered clear text key is not correct.

Key Reuse Attack: If the same key is used for two or more

different messages, XOR-based encryption mechanism is

susceptible to key reuse attacks. The attacker can eliminate

the encryption key by applying XOR to the encrypted

messages by themselves. We use AES in countermode to

avoid the key reuse attack. The key stream is derived from a

secret key and a random initialization vector (IV). The IV

can be sent in the clear and combined with a secret master

key, it can be used to create a one-time key for the stream

cipher. The AES in counter mode (CTR) is not susceptible to

key-reuse attack, if the same combination of secret key and

IV is not used more than once to generate a key stream.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

172

TABLE I. Comparison of various access control and privacy preservation models

CONCLUSION

Security of cloud is a major limitation which disables
users from completely utilizing the cloud platform. The
privacy preservation and access control of the cloud, if made
secure enough will give users the freedom to store much
more confidential data and make cloud data storage more
popular. Hence, numerous approaches have been devised to
solve the problem. The shortcomings of the considered
approaches gave rise to a privacy aware access control
system.

Thus, the proposed privacy aware access control system
for data sharing applies two levels of encryption as well as
offers simpler key management technique

REFERENCES

[1] Cloud Computing: Theory and Practice, Dan C. Marinescu, ACM,
2012

[2] A Survey of Risks, Threats and Vulnerabilities in Cloud Computing,
Kamal Dahbur, Bassil Mohammad, Ahmad Bisher Tarakji, ACM 2011.

[3] R. Chow, P. Golle, M. Jackobsson, E. Shi, J. Staddon, R. Masouka, and
J. Mollina. “Controlling data on the cloud: outsourcing computations
without outsourcing control.”Proc. Cloud Computing Security
Workshop (CCSW09), pp. 85–90, 2009.

[4] R. Zhang, L. Liu, J. Li and Z. Han, “RBTBAC: Secure Access and
Management of EHR Data,” In Proc. Of the 3rd International
Workshop on e-Healthcare Information Security (e-HISec 2011), June
27-29, 2011.

[5] M. Nabeel, E. Bertino, B. Thuraisingham, and M. Kantarcioglu,
“Towards Privacy Preserving Access Control in the Cloud,” In Proc. of
the International Conference on Collaborative Computing: Networking,
Aplications and Worksharing (CollaborateCom), pp.172-180, Orlando,
Florida, USA, October 15-18, 2011.

[6] M. Raykova, H. Zhao, and S. M. Bellovin, “Privacy Enhanced Access
Control for Outsourced Data sharing,” In Proc. of the Financial
Cryptography and Data Security, March 2012.

Sr.No. Paper Model Publication

Year

Advantages Defects Resources

1. RBTBAC: Secure Access and

Management of EHR Data

Role based Time

Bound Access
Control Model

June, 2011 User privacy maintained,

digital signature usage
prevents unauthorized attacks,

credential revocation list

prevents usage of expired
credentials

Key distribution for

different classes
makes key handling

difficult

3rd

International
Workshop on

e-Healthcare

Information
Security

2. Towards Privacy Preserving

Access Control in the Cloud

CloudMask Model October,

2011

Group key generation and key

handling as well as rekeying
approach is user-friendly

Not practical for a

large number of
people within a

group, change of

policies leads to re-
encryption

International

Conference on
Collaborative

Computing:

Networking,
Applications

and Work

sharing

3. Privacy Enhanced Access

Control for Outsourced Data

sharing

Two Level Access

Control Model

March, 2012 Solutions for read and write

access control policies is

satisfied, use of two levels of
access control protects data

from cloud provider

Grouping of files

into access blocks is

difficult, if not done
properly may lead

to inefficiency

Financial

Cryptography

and Data
Security

4. Towards Privacy-Preserving

Access Control with Hidden

Policies, Hidden Credentials
and Hidden Decisions

Homomorphic

cryptography

Supported Access
Control Model

July, 2012 Policies and credentials

defined by user are hidden,

anonymity of user is
maintained

Computations

within the container

take a lot of time,
anonymity of user

makes it difficult to

maintain log

information

Tenth Annual

International

Conference on
Privacy,

Security and

Trust, IEEE

5. Privacy Aware Access Control

for Data Sharing in Cloud
Computing

Privacy Aware

Access Control
Model

June, 2014 Flexible access control policy

types, scalable as encryption
and access control policy part

is different, two levels of

protection of data,
commutative encryption

employed and is reliable and

easy

Data hidden but

policies defined by
the entities is not

hidden

SCC’14,

ACM

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

173

[7] Towards Privacy-Preserving Access Control with Hidden Policies,
Hidden Credentials and Hidden Decisions, Marian Harbach, Sascha
Fahl, Michael Brenner, Thomas Muders and Matthew Smith, 2012
Tenth Annual International Conference on Privacy, Security and Trust,
IEEE.

[8] Privacy Aware Access Control for Data Sharing in Cloud Computing
Environments Hassan Takabi, ACM June,2014

[9] D. Wei, "Commutative-like Encryption: A New Characterization of
ElGamal," The Computing Research Repository, vol. 1011, 2010

[10] RSA Laboratories, "Public-Key Cryptography Standards (PKCS),"
http://www.rsa.com/rsalabs/node.asp?id=2124

[11] Y. Zhu, H.X. Hu, G.J. Ahn, H.X. Wang, and S.B. Wang, "Provably
Secure Role-Based Encryption with Revocation Mechanism", Journal
of Computer Science and Technology, Vol. 26, No. 4, pp. 697--710,
2011.

a.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110113

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

174

