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Abstract—In the present work, the Neural network (NN) based 

controller design has been implemented for a non-linear 

continuous stirred tank reactor processes with input 

multiplicities. Multilayer feed forward networks (FFNN) were 

used as direct inverse neural network (DINN) controllers. The 

training as well as testing database was created by perturbing 

the open loop process with pseudo random signals (PRS). Direct 

inverse neural network controller is analyzed to a continuous 

stirred tank reactor (CSTR) carrying out series and parallel 

reaction: A→B→C and 2A→D (Van de Vusse reaction) and 

exhibiting input multiplicities in the space velocity (i.e., 

manipulated variable), on the product concentration (B), (i.e. 

the controlled variable). Continuous Stirrer Tank Reactor which 

exhibits input multiplicities in space velocity on concentration. 

i.e., two values of space velocity will give the same value of 

concentration. The Performance of proposed direct inverse 

neural network controller and linear PI controller has been 

evaluated at lower and higher input.  As the Neural network 

controller provides always the two values of space velocity for 

control action and by selecting the value at higher and lower to 

the operating point, it is found to give stable and faster 

responses than linear PI controller.    Thus, direct inverse 

neural network control is found to overcome the control 

problems due to the input multiplicities at lower and higher 

input space velocities. It is interesting to note that the present 

neural network controller is giving superior performance like 

previously proposed nonlinear controller by authors (Reddy, 

G.P. and Chidambaram, M (1995)) to overcome the control 

problems due to input multiplicities.  

Keywords: Direct inverse neural network control, CSTR, Input 

Multiplicities, space velocity and lower inputs 

1. INTRODUCTION 

Generally in a single Input and Single Output (SISO) 

process, more than one value of input variable producing  

 

 

 

 
same value of output is known as input multiplicity. As 

given in Fig. 1. The two inputs U1 & U2 will produce the  
same output Y. Input multiplicities occur due to the 

competing effects in the processes. Dynamic and steady 

state behavior of the process with input multiplicity will 

remain distinct at different input values for the same 

output.   Processes with multiple reactions, multi reactors 

or recycle structures are shown to exhibit input 

multiplicities (Koppel,L.B. (1982 &1983) ). Conventional 

linear PI controller will have control problems like 

instability, oscillatory and less economical (Dash, S.K. and 

Koppel, L.B.(1989))   due to input multiplicities in the 

process. The inherent nonlinearity of the production of 

cyclopentenol process often renders control difficult 

(Henson, M.A .and Seborg, D.E. (1982) and Agrawal, P 

and Lim (1984)).  In the last two decades, a new direction 

to control has gained considerable attention. This new 

approach to control is called „Intelligent control‟. The term 

„intelligent control‟ addresses to more general control 

problems.   It may refer to systems, which cannot be 

adequately described by differential equations framework. 

There are three basic approaches to intelligent control:  

knowledge-based experts systems, fuzzy logic and neural 

networks.  The term  „conventional  control‟  refers  to  

theories  and  methods  that  are  employed  to  control 

dynamic systems whose behavior is primarily described by 

differential and difference equations. Among these 

intelligent controllers, data based direct inverse neural 

control has become popular tool for control of dynamic 

process, demonstrating the ability of handling non linearity. 

Many neural network controllers are the data based type 
where the controller‟s output response is described by a 

series of data generation, training and validation of the 

control. The procedure used to perform the learning 

process is called a learning algorithm, the function of 

which is to modify the synaptic weights of the network in 

an orderly fashion to attain a desired design objective. 

Neural networks 
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Use sub symbolic processing characterized by microscopic 

interactions that eventually manifest themselves as 

macroscopic symbolic intelligent behavior. It is a 

computing system made up of a number of simple, highly 

interconnected nodes or processing elements, which 

process information by its dynamic state response to 

external inputs. The goal of a neural network is to map a 

set of input patterns into a corresponding set of output 

patterns. The network accomplishes this mapping by first 

learning from a series of past examples defining sets of 

input and output correspondences for the given system. The 

network then applies what it has learned to a new input 

pattern to predict the appropriate output. 

 Neurologists and artificial intelligence 

researchers have proposed a highly interconnected network 

of neurons or nodes for this purpose. By using a computer, 

information is input into a network of artificial nodes. 

These nodes mathematically interact with each other in 

ways unknown by the user. Eventually, based on the input, 

the network produces an output that maps the expected, 

macroscopic input-output pattern. The microscopic, sub 

symbolic processing that occurs in neural networks 

manifests itself as a macroscopic, symbolic, intelligent 

behavior.  

Neural network derives its computing power 

through first it‟s massively distributed structure and 

seconds its ability to learn and therefore generalize. 

Generalization refers to the neural network producing 

reasonable output for inputs not encountered during 

training. These two information processing capabilities 

make it possible for neural networks to solve complex 

problems that are currently intractable. However neural 

network cannot provide the solution by working 

individually. Rather they need to be integrated into a 

consistent system engineering approach. 

There are many advantages of neural networks like 

Information is distributed over a field of nodes, Neural 

networks have the ability to learn, Neural networks allow 

extensive knowledge indexing, Knowledge indexing is the 

ability to store a large amount of information and access it 

easily, The network stores knowledge in two forms a) the 

connection between the nodes b) the weight factors of these 

connections, Neural networks are better suited for 

processing noisy, incomplete, or inconsistent data and 

Neural networks mimic human learning processes. 

In this work, the design and evaluation of, unlike 

model based nonlinear controller, the lesser 

computationally involved direct inverse neural network 

controller for an isothermal CSTR is presented to 

overcome the control problems associated with 

conventional PI controller due to input multiplicities.  

 

 
Fig.1.Steady state Behavior of Input                             

Multiplicity process 

 

2. DESCRIPTION OF CSTR WITH INPUT 

MULTIPLICITIES. 

 

We consider here a continuous stirred tank reactor (CSTR) 

with the following isothermal series and parallel reactions 

(Van de Vusse, 1966); 

 

          k1                     k2 

  A       B                C        (1)     

                                                          

                 k3 

        2A                 D                  (2) 

                                                                                                                                                                   

The product B is the desired one. The mass balance 

equations for A and B are given by (Kravaris1990): 

dX1/dt = - k1*X1 – k3*X1
2
+ (CA,u – X1)*u(3)   

dX2/dt = k1*X1 – k1*X2+ X2*u                (4)                                                                                 

Where,  

  X1=CA, X2=CB, u=F/V                         (5)    

and F is the flow rate (l/min), CA and CB are the 

concentration of A and B in the reactor (mol/l) and  CA,u is 

the feed concentration of A (mol/l).The steady state 

solutions of equations (3) and (4) are given by 

X1,s = {-b + [b
2
+4*k3 CA,0 Us]0.5}/2*k1   

                                                             (6)     

us = {f2  [f
2
2 – 4 * f1*f3]

0.5
}/(2*f1)     (7)                                                                                    

Where  

               b = k1 + Us 

               f1 = d2
2
-1 

               f2 = -2*d2
2
d1 = 2*k1+ d3 

               f3 = d1
2
 – k

2
1     

       d1=(2k1*k2*X2+k
2

1)/k1 

       d2=(2k3*X2+k1)/k1 

       d3=4k3*CA,0 

The parameters considered for the present work are given 

by k1 = 0.8333 (min
-1

), k2 = 1.6667 (min
-1

), k3 = 0.16667 

(mol 
-1

*min
-1

), 

CA,0  = 10 (mol/l). The values of X2 vs us  is shown in Fig 1. 

Shows steady state input multiplicities in us on the product 

concentration (X2,s ). That is two same values of X2,s.for 

example, X2 = 1.117 can be obtained at us = 0.5714 and 

also at us=2.8746. The gain is +0.5848 at U = 0.5714 Min
-1

 

where as the gain is -0.1208 at U= 2.8746 Min
-1 

. 
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Fig.2. Steady state response space velocity 

of CSTR 

 

3. DESIGN OF A DIRECT INVERSE NEURAL 

NETWORK CONTROLLER 

The various steps of neural network based inverse model 

controller for the CSTR process are presented here. The 

Input-Output data is generated at lower and higher input 

put space velocities with pseudo random signal (PRS) 

shown in Fig.3 &4 for input signal of space velocities (u) 

of the CSTR system, the output responses shown in 

Fig.5&6 for the concentration of B, CB is generated using 

the simulink model of the process with a sampling time of 

0.2s for 1000 samples. 
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   Inverse Neural network model shown in Fig.5 is 

basically the neural network structure representing the 

inverse of the system dynamics at the completion of 

training. The training procedure in this case is called 

inverse modeling. Here the network is fed with past inputs, 

past outputs, present outputs. The network then predicts the 

controller output, u (t) to make the output to reach the set 

point. 

The final network representation of the inverse is given by 

u (t) = f-1[ y (t+1), y (t), y (t-1), u (t-1)…]  

                                                                (8) 

 
 

Training a neural network involves feeding the network 

with a set of known input-output patterns, & adjusting the 

network parameters until each input produces the 

appropriate output. In general, to train the neural networks, 

the weight factors are adjusted until the output pattern is 

calculated from the given input reflects the desired 

relationship. In this work, Levenberg – Marquardt method, 

a version of the back propagation algorithm is used for 

training the neural network. The objective of this algorithm 

is to minimize the sum of the squares of the errors. The 

most frequently used are two concepts of inverse neural 

network model architecture: (i) the „general training‟ 

architecture and (ii) the „specialized training‟ architecture. 

Often general training can be used to provide an 

initialization of the network so that on-line approach is 

only used for a fine-tuning of the controller. This is a 

highly recommended procedure. 

In the present NN design work, the Levenberg-Marquardt 

training method is used. This method uses the past values 

of input, u & output,y, the control signal required for 

producing the desired output is found. The difference 

between expected u and the neural model output uN is the 

error eN which can be utilized for network learning. The 

input- output data obtained is divided into two parts each 

containing 500 data. The first 500 data are taken for 

training. Weights are initialized from input to hidden layer 

& hidden to output layer. Weight matrix W11&W12 

contains weights from input to hidden layer & weight 

matrix W21&W22 contains weights from the hidden to 

output layer. The input matrix is chosen such that it 

contains the values of past input & output. 

The weights obtained after training are used in validation & 

control. Here lambda is the regularization factor which is 

chosen initially as 1. Based on the SSE the regularization 

factor is also updated. Lambda is increased if SSE has 

increased & decreased if the SSE has decreased. Once the 

Samples 

Fig 3. Pseudo Random Signal for Space velocity, u (process 
input) to CSTR process at lower input. 
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Samples 
Fig 4. Process response/ output in CB for the PRS input (u) 

shown in Fig 3 
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Fig 5.  Structure of inverse neural network model 
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training is complete the final weights are stored & these are 

used for validating the network. 

The criteria for choosing these values for the training 

parameters are SSE (Sum of the squares of the error). 

Initially number of nodes in hidden layer is taken as 1 & 

SSE computed. Then the nodes are increased and SSE is 

observed if it is decreasing then the nodes are increased till 

the value again starts decreasing. The numbers of nodes are 

chosen where it gives minimum SSE. Number of input 

nodes is taken as four and 10 hidden nodes based on 

selection of number of past input & output values. Number 

of outputs is taken as process outputs. Here only one output 

i.e. desired concentration of B is considered. 

After training is completed the remaining 500 data are 

taken for validation. In this case, the NN model obtained is 

called inverse NN model. The network is next validated on 

the remaining set of data to evaluate the model. After 

suitable training model is obtained then the network is 

validated using the remaining data. This inverse model 

after training &Validation is taken for control. Here the 

inverse model itself acts as the controller. 

 

4.  RESULTS AND DISCUSSION 

The performance of proposed direct inverse neural network 

controller and conventional PI controller to the CSTR with 

input multiplicities at lower and higher space velocities is 

evaluated using the closed loop block diagrams as shown in 

Figs 8 & 9. During the identification and control tasks the 

NNSYSID (M. Nørgaard, 1996) and NNCTRL (K. J. Hunt, 

D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, 2000) 

toolboxes for MATLAB are used.  

The simulation studies for servo and regulatory problem 

have been presented below at lower and higher space 

velocities. The parameters of conventional PI controller 

used in the simulation studies are, Kc=1.25, τI =0.5848 min 

(Chidambaram M and Reddy, G.P. (1995)) 

 

 

 
4.1 Lower Space velocity (u=0.5714min

-1
) 

 

 

 

4.1.1 Servo problem: 

 The servo response has been studied by giving a step 

change in set point of concentration of B (CB) with direct 

inverse neural network and PI controller. 

At lower space velocity the servo problem has been 

analyzed by giving step change in set point of 

concentration B from 1.117 to 1.22 and the corresponding 

responses are shown fig.8.Direct inverse control shows 

stable response at about 3 min but it gives 0.03 offset 

where as PI reaches after 6 min .To overcome offset in 

direct inverse neural network control, integral action 

(Ti=1.25 min) is introduced .It works as a hybrid control 

and this concept is now applicable to all control studies. 

The hybrid control response is shown in fig 9 and its 

corresponding control action in terms of space velocity is 

shown in fig. 10 

Fig 11 shows the step change in the set point of 

concentration B from 1.117 to 1.2.In this response the 

NNDIC+I reaches the set point at around 3min without any 

offset whereas PI is reaching the set point at 6min.The 

corresponding manipulated variable in terms of space 

velocity versus time behavior is shown fig  12 

Fig 13 shows the step change in the set point of 

concentration B from 1.117 to 1.0. In this response the 

NNDIC+I reaches the set point  before  2 min without any 

offset whereas PI is reaching the set point at  4 min.The 

corresponding manipulated variable in terms of space 

velocity versus time behavior is shown fig 14 

 
 

Fig  6. Closed loop block diagram of Direct Inverse Neural Network   

Control of CSTR 

 

Fig7. Closed loop Simulink diagram of dynamic  CSTR 

process 

 

Time, min 

Fig.8.Closed loop response of concentration CB for step 

change in set point from 1.117 to 1.22 at lower input 
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4.1.2 Regulatory problem: 

The regulatory response in concentration B of direct 

inverse neural network controller and PI controller for 

space velocity input of disturbance in feed concentration 

have been studied and they are stated below: 

The regulatory response in concentration B of direct 

inverse neural network and conventional PI is shown fig 15 

for a step change in feed  concentration from 10 to 

11(+10%).This fig shows that the response of the Direct 

inverse neural network controller is faster than that of the 

linear PI. Proposed neural network control has less 

deviation 1% whereas conventional PI controller has a 

larger deviation of about 8%. Direct inverse neural network 

controller has low settling time than the PI controller. The 

corresponding control actions for manipulated variable in 

terms of space velocity versus time behavior are shown in 

fig 16. 

The regulatory response in concentration B of direct 

inverse neural network and conventional PI is shown fig 17 

for a step change in feed  concentration from 10 to 9(-

10%).This fig shows that the response of the Direct inverse 

neural network controller is faster than that of the linear PI. 

Proposed neural network control has less deviation 2% 

whereas conventional PI controller has a larger deviation of 

about 8%. Direct inverse neural network controller has low 

settling time than the PI controller. The corresponding 

Time, min 

Fig.9.Closed loop response of concentration CB for step 

change in set point from 1.117 to 1.22 at lower input 
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Time, min 
Fig   10. Control action in Space velocity 

Vs Time for the response shown in fig  7.9 
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Time, min 
Fig.11.Closed loop response of concentration CB for step change in 

set point from 1.117 to 1.2 at lower input 
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Time, min 

Fig   12. Control action in Space velocity 

Vs Time for the response shown in fig 7.11 
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Fig 13.Closed loop response of concentration CB for step change in set 

point from 1.117 to 1.0 at lower input  
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Fig  14. Control action in Space velocity Vs Time 
for the response shown in fig 7.13 
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control actions for manipulated variable in terms of space 

velocity versus time behavior are shown in fig 18. 

 
 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

5. CONCLUSION 

 

For a continuous stirrer tank reactor with input 

multiplicities in space velocity, the performance of 

present Direct inverse neural network controller at lower 

input space velocities is found to much superior to that of 

the conventional PI controller at lower space velocity. 
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Fig 7.15 Closed loop response of CB for a disturbance change in CAO    from 

10 to 11 mol/l at lower input 
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Fig 16. Control action in Space velocity Vs 
Time 

For the response shown in fig 7.15 
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Fig 7.17 Closed loop response of CB for a disturbance change 

in CAO    from 10 to 09 mol/l at lower input 
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Time, min 

Fig  18. Control action in Space velocity Vs Time For the response 

shown in fig 7.17 
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